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1 Introduction

Several algorithms have been developed for computing Selmer groups for the
Jacobians of curves. Typically, one is interested in computing a Selmer group
in order to bound a Mordell-Weil rank or study a part of a Tate-Shafarevich
group (see, for example, [Kr]). For curves of genera 1 and 2, algorithms using
homogeneous spaces have been developed for computing Selmer groups ([BSD,
GG]). Already in the genus 2 case, the homogeneous spaces are quite difficult
to describe. For that reason, these tend to be somewhat unwieldy to implement.
Other algorithms use functions on the curve to compute a Selmer group ([BK,
Ca, CF, Fd, FPS, KS, Mc, PS, Sc1, Tp]). These tend to be far easier. Their
success, however, seems to be based on two assumptions. These assumptions
have been satisfied in the examples presented, so far, but should not be expected
to be satisfied in all cases. In this paper, we attempt to provide a framework
for the study and development of algorithms for computing Selmer groups using
functions on the curve. In particular, we consider the assumptions they are based
on.

Let C be a curve defined over the number fieldK and letJ be its Jacobian.
We standardly identifyJ with Pic0(C(K )) which we will denote Pic0(C). Let A
be an abelian variety defined overK and letφ : A → J be an isogeny defined
over K . Let A[φ] denote the kernel ofφ. For most practical purposes (such as
descent), it is really only useful to work with an isogeny whose kernel has a
prime-power exponent. So we assume thatA[φ] has exponentq = pl for some
prime numberp.
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In Sect. 2 we provide a framework for developing an algorithm for computing
the φ-Selmer group forA over K . For the sake of clarity, we first describe a
straightforward way of creating such an algorithm. The assumptions that such
an algorithm is based on are discussed in Sect. 2.4. All but one algorithm in
the literature, that the author is aware of, fits into the framework described. In
Sect. 2.5, we discuss how this framework can be extended in special cases to
encompass this and other algorithms.

The strength of this approach is that it allows us to develop an algorithm
tailored to the data at hand. We give several examples. In Sect. 3 we describe
an algorithm for computing a Selmer group for curves of the formyp = f (x)
wherep is a prime not dividing the degree off . We do three examples. Letζp

denote a primitivepth root of unity. In the first, we find the Mordell-Weil ranks
of the Jacobian ofy3 = (x2 + 1)(x2 − 4x + 1) over Q(ζ3) and Q. In the second
we describe all solutions ofy2 = x5 + 1 in fields of degree 2 or less overQ. In
the third we describe all solutions ofy3 = x(x − 1)(x − 2)(x − 3) in fields of
degree 3 or less overQ. In the latter two examples, the Mordell-Weil ranks of
the Jacobians are 0 overQ(ζ5) and Q(ζ3) respectively. In Sect. 4 we compute
the 2-Selmer group and Mordell-Weil rank, overQ, of the Jacobian of a smooth
plane quartic curve, using bitangents of the curve.

In Sect. 5 we give a review of the literature in which algorithms for curves
of genus greater than 1 are discussed.

2 The algorithm

Let us define the Selmer group. LetJ , K , A, φ, q and p be as in Sect. 1. Let
S be a finite set of primes ofK that includes primes overp, primes dividing
the conductor ofA, and if p = 2, includes real primes also. For any Gal(K/K )-
moduleM let M (K ) denote the Gal(K/K )-invariants ofM andH 1(K , M ) denote
H 1(Gal(K/K ), M ). Let H 1(K , A[φ]; S) denote the subgroup ofH 1(K , A[φ]) of
cocycle classes that are unramified outsideS. Let δ be the map fromJ (K ) to
H 1(K , A[φ]) arising from the long exact sequence of Galois cohomology attached
to the short exact sequence

0 → A[φ] → A
φ→ J → 0.

The kernel ofδ is φA(K ). Similarly, for any primes ∈ S we have a coboundary
mapδs from J (Ks) to H 1(Ks, A[φ]) with kernelφA(Ks). Let αs be the restriction
map fromH 1(K , A[φ]) to H 1(Ks, A[φ]). The following is a commutative diagram.

J (K )/φA(K )
δ

↪→ H 1(K , A[φ]; S)
↓ ↓ ∏

αs

∏
s∈S

J (Ks)/φA(Ks)

∏
δs

↪→ ∏
s∈S

H 1(Ks, A[φ])
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Define the Selmer group,Sφ(K , A), to be the intersection of the groups
α−1

s (δs(J (Ks)/φA(Ks))) for all s ∈ S. This is equivalent to the usual defini-
tion (see [Mi3, p. 92]).

In Sect. 2.1, we find a finitely generatedK -algebraL and a mapF , derived
from functions onC , so thatF mapsJ (K )/φA(K ) to L∗/L∗q. In Sect. 2.2 we
find a mapι from H 1(K , A[φ]) to L∗/L∗q so thatF = ι ◦ δ. The mapι will be
induced from a Weil pairing and a Kummer map. LetLs = L ⊗K Ks. We will
similarly be able to define mapsFs andιs so thatFs = ιs ◦ δs. Once these maps
are defined, the following will be a commutative diagram where theβs’s are
natural maps.

J (K )/φA(K )
δ

↪→ H 1(K , A[φ]; S)
ι

↪→ L∗/L∗q

↓ ↓ ∏
αs ↓ ∏

βs

∏
s∈S

J (Ks)/φA(Ks)

∏
δs

↪→ ∏
s∈S

H 1(Ks, A[φ])

∏
ιs

↪→ ∏
s∈S

L∗
s/L∗q

s

We finish that section by making an assumption causingι and ιs and henceF
andFs to be injective. In Sect. 2.3, we show how to use the mapsF andFs to
compute the Selmer group.

In order for the mapsF andFs to be derived from functions onC , we need
to make the following assumption. We will denote Div0(C(K )) by Div0(C).

Assumption I: For K = K or Ks, with s ∈ S, every element ofJ (K )
/φA(K ) is represented by a divisor class containing an element of Div0(C)(K ),
the divisors ofC of degree 0 defined overK .

2.1 The choice of F and L

Since we will be dealing with a Weil pairing, we need to consider the dual
isogeny toφ. Let φ̂ : Ĵ → Â be the dual isogeny toφ and Ĵ [φ̂] be the kernel
of φ̂. Let λ : J → Ĵ be the canonical principal polarization ofJ with respect to
C . SinceC is defined overK , the principal polarizationλ is also (see [Mi1, p.
186]). LetΨ = λ−1(Ĵ [φ̂]); we know Ψ is contained inJ [q].

Step 1.Determine the subgroup ofJ [q] that is Ψ .
If φ is the multiplication byq map, thenΨ = J [q]. For non-trivial examples,

see Proposition 3.1 and Sect. 5.

Step 2. Choose some suitable Gal(K/K )-invariant set of divisors in Div0(C)
whose classes spanΨ .

We denote the linear equivalence class of the degree-0 divisorD in Pic0(C)
by [D ]. We choose{D1, . . . , Dn} to be a Gal(K/K )-invariant set of degree-0
divisors of C for which the divisor classes{[Di ]} spanΨ . As we will see, the
choice of spanning set determines the mapF and theK -algebraL. Typically one
wants a minimal, Galois-invariant spanning set. We also want to pick a spanning
set so that the second assumption holds, if possible. This is discussed in Sect. 2.4.
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Step 3.Determine the mapF and the finitely generatedK -algebraL based on
the divisors chosen in Step 2.

First we define the finitely generatedK -algebraL. Let

L′ =
n∏

i =1

Ki

with Ki = K . Let us define an action of Gal(K/K ) on L′. If σ ∈ Gal(K/K ), then
let σ ∈ Sn be defined such that ifσDi = Dj , thenσi = j . Let

σ(a1, . . . , an) = (σaσ−11, . . . ,
σaσ−1n)

for ai ∈ Ki . DefineL to be the Gal(K/K )-invariants inL′.
Let us find a more practical description ofL. LetΛ be a subset of{1, 2, . . . , n}

such that the set{Dj }j ∈Λ contains one representative of each Gal(K/K )-orbit of
{Di }. Let Lj = K (Dj ) be the minimal field of definition ofDj . Then we can find
an isomorphism

L ∼=
∏

j ∈Λ

Lj .

Let us describe that isomorphism. For simplicity, assume that Gal(K/K ) acts
transitively on the{Di } and let Λ = 1. We haveL1 = K (D1). Let {σi } be
elements of Gal(K/K ) such that

Gal(K/K ) =
∐

i

σi Gal(K/L1)

andσiD1 = Di . We have

L1
∼= L by l ∈ L1 7→ (σ1 l , . . . , σn l ) ∈

n∏

i =1

Ki .

If there are several orbits, then we can extend this isomorphism by concatenation.
Let us define the mapF . Let qDi = (fi ) wherefi is defined overK (Di ). Such

fi ’s exist overK (Di ) by Hilbert’s Theorem 90. Let Supp(Di ) be the support of
the divisorDi .

Definition. The avoidance set is the set of points∪Supp(Di ) in C(K ).
Define F = (f1, . . . , fn) from the complement of the avoidance set toL′. By
abuse of notation we usePL to denote then-tuples of divisors and divisor
classes (D1, . . . , Dn) and ([D1], . . . , [Dn]). Let P̂L denote then-tuple of elements
(λ[D1], . . . , λ[Dn]) of Ĵ [φ̂].
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2.2 Equivalence of maps

In this subsection we show thatF induces a well-defined homomorphism from
J (K )/φA(K ) to L∗/L∗q and thatF is related to cohomological maps used to
define a Selmer group. We will return to the algorithm in Subsect. 2.3.

Definition. A good divisor is a divisor of C of degree 0, defined over K (or Ks),
whose support does not intersect the avoidance set.

From Assumption I, every element ofJ (K )/φA(K ) is represented by a divisor
class containing a divisor of degree 0, defined overK . From [La, Lemma 3, p.
166], every divisor class that contains a divisor defined overK , contains a divisor
defined overK , whose support does not intersect any given finite set, in particular,
the avoidance set. So every element ofJ (K )/φA(K ) is represented by a good
divisor.

Let g be aK -defined function fromC to K . Let R =
∑

ni Ri be a divisor of
C of degree 0, defined overK , whose support does not intersect the support of
(g). We define

g(R) =
∏

(g(Ri ))
ni ∈ K ∗.

By abuse of notation we define the mapF from good divisors toL∗ in an
analogous way.

The mapF on good divisors, composed with the isomorphism ofL with∏
j ∈Λ Lj , is the map

∏
j ∈Λ fj . In examples, we will often denote

∏
j ∈Λ Lj by L

and this composition byF , since they are more practical.

Lemma 2.1. The map F induces a homomorphism from the subgroup of J(K )
/qJ(K ) represented by divisor classes containing good divisors to L∗/L∗q.

Proof. The good divisors form a subgroup of Div0(C)(K ). The mapF is a
homomorphism from good divisors toL∗. Let D and D ′ be linearly equivalent
good divisors. We would like to show thatF (D − D ′) is in L∗q. Let h be aK -
defined function with (h) = D −D ′. From Weil reciprocity, we have the following
equalities ofn-tuples

F (D − D ′) = F ((h)) = h((F )) = h(qPL) = (h(PL))q ∈ L∗.

SincePL is fixed by Gal(K/K ) we knowh(PL) is in L∗. SoF (D −D ′) is in L∗q.
�

At this point let us relate the mapF to the maps derived from cohomology
which are traditionally used to compute a Selmer group. First let us recall the
definition of the Weil pairing. Letτ be an isogeny of abelian varieties fromB to
V and τ̂ be the dual isogeny from̂V to B̂. Let P ∈ B[τ ] and Q ∈ V̂ [τ̂ ] and D
be a divisor onB̂ representingP. There is a functiong on V̂ with divisor τ̂−1D .
Theneτ (P, Q) = g(X + Q)/g(X) for any X ∈ V̂ for which the right hand side of
the equation is defined.

Let µq(L′) be theqth roots of unity inL′. We have
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µq(L′) ∼= µq(K1) × . . . × µq(Kn).

Let eφ(P, Q) denote theφ-Weil pairing of P ∈ A[φ] and Q ∈ Ĵ [φ̂]. Define the
mapw from A[φ] to µq(L′) by

w(P) = eφ(P, P̂L) = (eφ(P, λ[D1]), . . . , eφ(P, λ[Dn])).

Proposition 2.2. The mapw from A[φ] to µq(L′) is injective and defined over K .

Proof. Since the elements of then-tuple P̂L spanĴ [φ̂], the mapw is injective
from the non-degeneracy of the Weil pairing. Letσ ∈ Gal(K/K ). We would like
to show thatσw(P) = w(σP). We have

w(σP) = (eφ(σP, λ[D1]), . . . , eφ(σP, λ[Dn]))

and

σw(P) = σ(eφ(P, λ[D1]), . . . , eφ(P, λ[Dn]))

= (σeφ(P, λ[Dσ−11]), . . . , σeφ(P, λ[Dσ−1n]))

= (eφ(σP, λ[σDσ−11]), . . . , eφ(σP, λ[σDσ−1n]))

= (eφ(σP, λ[D1]), . . . , eφ(σP, λ[Dn])).

�

The mapw induces a map fromH 1(K , A[φ]) to H 1(K , µq(L′)) which we also
call w. From [Se, p. 152],H 1(K , µq(L′)) ∼= L∗/L∗q by a map we callk. The
mapk sends the cocycle class containing (σ 7→ σ( q

√
l )/ q

√
l ) to l ∈ L∗.

Theorem 2.3. The maps F and k◦w◦δ are the same as maps from J(K )/φA(K )
to L∗/L∗q.

Proof. Let δq be the coboundary map fromJ (K )/qJ(K ) to H 1(K , J [q]). Let
wq be the map fromJ [q] to µq(L′) that sendsR ∈ J [q] to eq(R, P̂L). For
clarity we redenoteδ and w by δφ and wφ. We first show that the mapF is
the same as the compositionk ◦ wq ◦ δq on the subgroup ofJ (K )/qJ(K ) of
elements represented by divisor classes containing good divisors. LetP be a
good divisor representing such an element ofJ (K )/qJ(K ). From Lemma 2.1,
the choice of such aP is unimportant. From [La, Lemma 3, p. 166], we can pick
a degree 0 divisorQ, whose support does not intersect the avoidance set, and
for which qQ is linearly equivalent toP. The class of cocyclesδq([P]) includes
the cocycle (σ 7→ [σQ − Q]) with σ ∈ Gal(K/K ). So wq ◦ δq([P]) is the class
of cocycles that includes (σ 7→ eq([σQ − Q], P̂L)). Let eλ

q (S, T) = eq(S, λT) for
S, T ∈ J [q]. The eλ

q -Weil pairing can be defined as follows. Ifh1 and h2 are
functions onC with divisors qE1 and qE2 respectively, with disjoint supports,
theneλ

q ([E1], [E2]) = h2(E1)/h1(E2). Let (g) = qQ−P with g defined overK (Q).
We have (σg) = qσQ − P and so (σg/g) = qσQ − qQ. Recall (fi ) = qDi . We have

eλ
q ([σQ − Q], [Di ]) =

fi (σQ − Q)
σg/g(Di )

.
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Thus we have the following equalities ofn-tuples

eq([σQ − Q], P̂L) =
F (σQ − Q)

σg/g(PL)
=

σβ

β

whereβ = F (Q)/g(PL). So we have

k ◦ wq ◦ δq([P]) ≡ βq ≡ F (qQ)
g(qPL)

≡ F (qQ)
F (qQ − P)

≡ F (P) modL∗q.

Let us show thatF andk ◦ wφ ◦ δφ are the same as maps fromJ (K )/φA(K )
to L∗/L∗q. It follows from Assumption I that every element ofJ (K )/φA(K ) is
represented by a good divisor. There is an isogenyτ : J → A with φ ◦ τ = q.
From the commutative diagram

0 → J [q] → J (K )
q→ J (K ) → 0

↓ τ ↓ τ ↓ 1

0 → A[φ] → A(K )
φ→ J (K ) → 0

we get the following commutative diagram by taking Gal(K/K )-invariants.

J (K )/qJ(K )
δq→ H 1(K , J [q])

↓ ↓ τ

J (K )/φA(K )
δφ→ H 1(K , A[φ])

From the compatibility of Weil pairings we haveeq(R, P̂L) = eφ(τ (R), P̂L).
Thus the triangle of the following diagram commutes and so the whole diagram
commutes.

J (K )/qJ(K )
δq→ H 1(K , J [q]) ↘ wq

↓ ↓ τ H 1(K , µq(L′)) k→ L∗/L∗q

J (K )/φA(K )
δφ→ H 1(K , A[φ]) ↗ wφ

From commutivity,F must factor throughφA(K ) andF andk ◦ wφ ◦ δφ are the
same as maps fromJ (K )/φA(K ) to L∗/L∗q. �

Inspiration for this proof can be found in [Li] and [Mc, Lemma 2.2].
Note that Lemma 2.1 and Theorem 2.3 hold if we replaceK andL′ by any

field K (containingK ) andL′ ⊗K K . Let s ∈ S andLs = L ⊗K Ks. The map
F induces a mapFs from J (Ks)/φA(Ks) to L∗

s/L∗q
s . In order to compute the

Selmer group, we want the mapsF and Fs to be injective. The mapsδ, δs, k
andks are injective automatically. Let us make an assumption that makesw and
ws injective also.

Let K be any field containingK andK be an algebraic closure. Let coker
be defined to make the following an exact sequence of Gal(K /K )-modules.

0 → A[φ]
w→ µq(L′) → coker→ 0
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In addition, letK ′ denote the minimal field of definition, overK , of theDi ’s.
We have

H 1(K , A[φ])
w→ H 1(K , µq(L′)) is injective

⇔ µq(L′)(K ) → coker(K ) is surjective

⇔ H 1(Gal(K ′/K ), A[φ])
w→ H 1(Gal(K ′/K ), µq(L′)) is injective.

Assumption II : The mapsH 1(G, A[φ])
w→ H 1(G, µp(L′)) are injective forG =

Gal(K ′/K ) andG = Gal(K ′
s/Ks) with s ∈ S.

This assumption guarantees that the mapsF andFs are injections.

2.3 Computing the Selmer group

Step 4.Find a setS.
The set of primes ofK denotedS must include the primes dividing the

conductor ofA, the primes overp, and if p = 2, the real primes. The primes
dividing the conductor ofA are the same as those dividing the conductor ofJ .
These are a subset of the primes at which the reduction ofC is singular. It is
easier, in general, to determine the primes at which the reduction ofC is singular
(see [Ha, chap. 1, Sect. 5]), than the primes dividing the conductor ofJ . So, for
simplicity, we can include inS all of the primes at which the reduction ofC is
singular.

Step 5. Determine the image ofH 1(K , A[φ]; S) in L∗/L∗q and find generators
of that image.

We haveL ∼= ∏
j ∈Λ Lj where theLj are fields. ThusL∗/L∗q is isomorphic to∏

j ∈Λ L∗
j /L∗q

j .

Definition. Let Lj (S, q) be the subgroup of L∗j /L∗q
j of elements with the property

that if we adjoin the qth root of a representative to Lj , that we get an extension
unramified outside of primes over primes of S . Let L(S, q) =

∏
j ∈Λ Lj (S, q).

Since we are making Assumption II, we have

H 1(K , A[φ]) ∼= ker : H 1(K , µq(L′)) → H 1(K , coker)

and

H 1(K , A[φ]; S) ∼= ker : H 1(K , µq(L′); S) → H 1(K , coker)
∼= ker : L(S, q) → H 1(K , coker).

By abuse of notation, we refer to the subgroup ofL(S, q) above as
H 1(K , A[φ]; S). Let βs be the natural map fromL∗/L∗q to L∗

s/L∗q
s . The image of

J (K )/φA(K ) in H 1(K , A[φ]) actually lies inH 1(K , A[φ]; S) and the following
diagram commutes (see [Mi3, p. 92]).
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J (K )/φA(K )
F
↪→ H 1(K , A[φ]; S)

↓ ↓ ∏
βs

∏
s∈S

J (Ks)/φA(Ks)

∏
Fs

↪→ ∏
s∈S

L∗
s/L∗q

s

From Theorem 2.3 and the injectivity ofk ◦ w the Selmer group,Sφ(K , A),
is isomorphic to the intersection of the groupsβ−1

s (Fs(J (Ks)/φA(Ks))) for all
s ∈ S.

Step 6.Find generators forJ (Ks)/φA(Ks) and their images underFs, in L∗
s/L∗q

s ,
for all s ∈ S.

For representatives, we findKs-rational, degree 0 divisors. It may be neces-
sary to shift their supports so that we have good divisors. To check if the classes
of good divisors are independent inJ (Ks)/φA(Ks), it is easiest to check if their
images under the injective mapFs are independent inL∗

s/L∗q
s . A deterministic

algorithm for finding such generators for the Jacobians of curves of genus 2 and
the multiplication by 2 map is given in [St1].

We need to know how many generators are needed. LetC have genusg and
s be a finite prime ofK . Recallq = pl .

Proposition 2.4. If s|p, then#J (Ks)/qJ(Ks) = qg[Ks:Qp] · #J (Ks)[q]. If s 6 |p, then
#J (Ks)/φA(Ks) = #A(Ks)[φ].

Both statements can be shown using the snake lemma and the fact thatJ (Ks)
contains a subgroup of finite index isomorphic tog copies of the ring of integers
in Ks (see [Ma] and [Sc2, Lemma 3.8, Proposition 3.9]). Of course, #J (Ks)[q] =
q2g. If φ is not a multiplication byq map, ands lies overp, then the computation
of #J (Ks)/φA(Ks) is not always trivial. This is discussed in [Sc2, Sect. 3], where
an algorithm is given, in the case thatJ is an elliptic curve. In certain other cases
it can be accomplished, as in Corollary 3.6.

If p = 2, thenS includes real primes.

Proposition 2.5. If q = 2l and J is defined overR, then#J (R)/qJ(R) = q−g ·
#J (R)[q].

For the proof, simply replace 2 byq = 2l in [Sc2, Proposition 5.4] where one
can find discussions of more general isogenies of even degree at real primes.

Step 7. Find the intersection inH 1(K , A[φ]; S) of β−1
s (Fs(J (Ks)/φA(Ks))) for

all s ∈ S.
At this point we have accomplished our goal of computing the Selmer group.

One reason that Selmer groups are computed is for the purpose of bounding
the Mordell-Weil rank. The groupJ (K ) is called the Mordell-Weil group ofJ
over K . It is a finitely generated abelian group and its freeZ-rank is called
the Mordell-Weil rank ofJ over K . In order to find the Mordell-Weil rank,
we need to find elements ofJ (K )/φA(K ) and map them toL∗/L∗q. One can
save time by doing this before Step 6 since elements ofJ (K )/φA(K ) map to



456 E.F. Schaefer

elements in eachJ (Ks)/φA(Ks). Let X(K , A)[φ] denote theφ-torsion of the
Tate-Shafarevich group forA over K . We hope to generate all of the kernel
from Sφ(K , A) to X(K , A)[φ] (assuming you know whatX(K , A)[φ] is!) This
kernel is isomorphic toJ (K )/φA(K ). If we have success, then we can attempt
to compute the Mordell-Weil rank ofJ (K ).

Let φ′ be an isogeny fromJ to A for which φ ◦ φ′ = τ and τ t = mu for
some unitu in End(J ), and integerst and m = qj . In addition, assume that we
are able to computeA(K )/φ′J (K ) (at this point it would be helpful ifA were
a Jacobian). The following proposition contains an exact sequence which helps
combine the sizes of these groups to find the size ofJ (K )/mJ(K ).

Proposition 2.6. Let B and D be abelian groups and let f: B → D andg : D →
B be homomorphisms. The following is an exact sequence

0 → B[f ]/g(D [f g]) → B/gD
f→ D/f gD → D/fB → 0.

Proof. The proposition follows from the diagram below, which commutes from
the snake lemma applied to the middle two exact sequences.

0 → g(D [f g]) → B[f ] → B[f ]/g(D [f g]) →
↓ ↓ ↓

0 → gD → B → B/gD → 0
↓ f ↓ f ↓ f

0 → f gD → D → D/f gD → 0
↓ ↓ ↓

→ 0 → D/fB → D/fB → 0

�
If f and g are isogenies of abelian varieties, then the groupB[f ]/g(D [f g])

will be a quotient of torsion groups, hence computeable. Replacingf andg by
φ and φ′, from J (K )/φA(K ) and A(K )/φ′J (K ) we can computeJ (K )/τJ (K )
using the exact sequence. By replacingf andg by τ i , 1 ≤ i ≤ t − 1, andτ , we
can compute the size ofJ (K )/mJ(K ). If r is the Mordell-Weil rank ofJ over
K , thenJ (K )/mJ(K ) ∼= (Z/mZ)r ⊕ J (K )[m].

On the other hand,φ-Selmer groups have many interesting uses beyond com-
puting J (K )/mJ(K ). For example, in [We], Wetherell provides a method of
bounding the number of rational points on a curveC when the Mordell-Weil
rank is at least as large as the genus. This is the case that effective Chabauty (see
[Co]) does not help with. In order to do this, he considers a set of covers of the
curve parametrized by elements of aφ-Selmer group, whereφ is any isogeny
from an abelian variety to the Jacobian ofC .

2.4 Assumptions

Let us consider the two assumptions that we made.
Let d = gcd{ [K † : K ] | K ⊆ K † ⊂ Q, C(K †) /= ∅}. Recall that the exponent

of A[φ] is q = pl .
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Proposition 2.7. If p 6 |d, then Assumption I is satisfied.

Proof. Let K † be a field of degreed† over K with C(K †) /= ∅. From [Mi1, p.
168], every element ofJ (K †) is represented by a degree 0 divisor ofC defined
over K †. Let N denote any map induced by the norm map fromK † to K . The
following is a commutative diagram.

Div0(C)(K †) → J (K †) → 0
↓ N ↓ N ↓ N

Div0(C)(K ) → J (K ) → coker

The composition of the natural inclusion of Div0(C)(K ) in Div0(C)(K †) with
the norm map to Div0(C)(K ) is the multiplication byd† map. Sod† kills the
cokernel. The cokernel is thus killed byd, the greatest common divisor of the
d†’s. Sinceq is relatively prime tod, we know that every element ofJ (K )/φA(K )
is represented by a divisor class that contains a divisor ofC defined overK .

Fix a primes ∈ S. Sincep|/d, there is a completion ofK † at a prime over
s whose degree overKs is prime top. The same argument as above shows that
every element ofJ (Ks)/φA(Ks) is represented by a divisor class that contains a
divisor of C defined overKs. �

Now let us consider Assumption II. If the induced mapw on cohomology
groups is an injection for some given spanning set then we have an injection
for any spanning set containing the given one. To test whether there exists a
spanning set satisfying Assumption II, it suffices to use the entire setΨ . For
any given spanning set, the following provides a simplification. LetK ′ be the
minimal field of definition of theD ′

i s. Let L′
j =

∏
K ij where ij ranges over

all those l such thatDl is in the same Gal(K ′/K )-orbit as Dj . We let L′
j in-

herit its Gal(K ′/K )-module structure fromL′. We haveL′ ∼= ∏
j ∈Λ L′

j . The
groupH 1(Gal(K ′/K ), µq(L′)) is isomorphic to⊕j ∈ΛH 1(Gal(K ′/K ), µq(L′

j )). Let
Stabj be the stabilizer in Gal(K ′/K ) of Dj . The latter sum is isomorphic to
⊕j ∈ΛH 1(Stabj , µq) from Shapiro’s lemma (see [AW, p. 99]). We can make an
analogous statement by replacingK with Ks.

2.5 Extension of the algorithm

Let f be a polynomial of degree 2d over the number fieldK with distinct roots in
K . Let C be the normalization of the curve given by the affine equationy2 = f (x)
and let J be its Jacobian. Let{αi } be the set of roots off . Then the divisor
classes inPL = ([(α1, 0) − (α1, 0)], [(α2, 0) − (α1, 0)], . . . , [(α2d, 0) − (α1, 0)])
spanJ [2]. We can letL = K [T]/(f (T)), andL′ = K [T]/(f (T)) where Gal(K/K )
acts trivially on T. Note K [T]/(f (T)) ∼= ∏

K [T]/(T − αi ) ∼= ∏
Ki by T 7→

(T, . . . , T) 7→ (α1, . . . , α2d). The mapw′, given byP 7→ e2(P, P̂L), sendsJ [2] to
µ2(L′). However this map may not be defined overK . The groupG generated by
the set{(σ −1)(w′(P)) | P ∈ J [2], σ ∈ Gal(K/K )} is contained in±1 ⊂ µ2(L′).
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Thus the induced map fromJ [2] to µ2(L′)/ ± 1 is defined overK ; it is also
injective. The map this induces on cohomology may not be injective, but the
kernel is sufficiently under control so that Mordell-Weil ranks can nevertheless
sometimes be computed. In this case, the mapF is x − T and its image is
in L∗/L∗2K ∗. This case is far more complicated than those that fit into the
framework given earlier. It is discussed in [Ca], [FPS], [PS] and [St1].

We can try to use this technique in general. We can pick some spanning set
and quotient out by a group likeG. But then we can not typically expect the
induced map on cohomology to be close enough to injective to be useful.

3 Curves of the form yp = f (x )

Let K be a field of characteristic 0. Letf (x) be a monic polynomial overK of
degreed with distinct roots inK . Let C be the normalization of the projective
curve defined by the affine equationyp = f (x), wherep is a prime that does
not divided. (The case wherep does divided is described in [PS]). From [Tw,
Sect. 1], the genus ofC is g = (p−1)(d−1)/2. Sincep /= d there is a single point
on the line at infinity. Ifd /= p ± 1, then the projective curve will be singular at
∞. Also from [Tw, Sect. 1], sincep 6 |d, the normalization has a single rational
point over the point on the line at infinity which we denote∞. Since we chose
f to have distinct roots, the projective curve given byyp = f (x) can be singular
nowhere else.

Consider the mapτ on C , that on the affine part sends (x, y) 7→ (x, ζpy).
The mapτ induces an automorphism ofJ . The groupJ is generated by divisor
classes of the form [P − ∞] whereP is an affine point onC . The divisor of the
function x − x(P) is τp−1P + . . . + τP + P − p∞. Consider the subringZ[τ ] in
End(J ). The minimal polynomial ofτ over Z is tp−1 + . . . + t + 1. Thusτ acts
as a primitivepth root of unity in End(J ); so by abuse of notation we rename it
ζp. Let φ = 1 − ζp in End(J ).

For 1 ≤ i ≤ p − 1, the quotient of the numbers (1− ζ i
p) and (1− ζp) is a

unit. Thus the subgroupJ [φ] of J is fixed by Gal(K/K ). The abelian variety
J/J [φ], however, will typically not be a Jacobian overK unlessK containsζp.
Thus it will be difficult to compute the Mordell-Weil rank ofJ (K ) directly for
the reasons presented at the end of Sect. 2.3. For that reason, we assume thatK
containsζp so φ is a K -defined endomorphism.

Here is one case where the quotient is a Jacobian. LetC be y3 = x2 − k
and C ′ be y3 = x2 + 27k with k ∈ K ∗ (and K not necessarily containingζp)
and let E and E′ be their Jacobians (elliptic curves). Letφ = 1 − ζ3 on E
and φ′ = 1 − ζ3 on E′. Then there are isogeniesτ : E → E/E[φ] ∼= E′ and
τ ′ : E′ → E′/E′[φ′] ∼= E defined overK with τ ′ ◦ τ = 3. In [Tp], Top describes
the computation of theτ - andτ ′-Selmer groups along the lines of Sect. 2.

Let us show thatΨ = λ−1Ĵ [φ̂] = J [φ].

Proposition 3.1. Let λ be the canonical principal polarization from J tôJ with
respect to C . We haveλ−1Ĵ [φ̂] = J [φ].
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Proof. Let (1 − ζp)† denote the image in End(J ) of 1 − ζp under the Rosati
involution. By definition, the following diagram commutes.

J
λ→ Ĵ

(1 − ζp)† ↑ ↑ 1̂ − ζp

J
λ→ Ĵ

From [Mi2, p. 139], we haveζ†
p = ζ−1

p . Thus we have

Ψ = λ−1Ĵ [1̂ − ζp] = J [(1 − ζp)†] = J [1 − ζ†
p ] = J [1 − ζ−1

p ] = J [1 − ζp] = J [φ]

since the quotient of 1− ζ−1
p and 1− ζp is a unit. �

We know (φ)p−1 = u · p whereu is a unit in End(J ).

Definition. Let dimM denote the dimension of anFp-vector space M .

We also know dimJ [p] = 2g = (p − 1)(d − 1), so dimJ [φ] = d − 1. We need to
choose a Galois-invariant spanning set ofJ [φ]. Let {αi } be the set of roots of
f .

Proposition 3.2. The divisor classes[(α1, 0) − ∞], . . . , [(αd−1, 0) − ∞] form a
basis for J[φ].

Proof. The following proof was suggested by Michael Stoll. LetK (C) be the
function field of C over K and let Princ denote the principal divisors. The
following sequences are both exact.

0 → K
∗ → K (C)∗ div→ Princ→ 0

0 → Princ→ Div0(C) → J → 0

Let τ , as before, be the automorphism ofC given on the affine part byτ (x, y) =
(x, ζpy). By extendingτ from points to divisors, the mapτ induces maps on
Princ, Div0(C) andJ . We can letτ act onK (C) by fixing K (x) and sendingy
to ζ−1

p y. Let G = 〈τ〉. Under these actions, both are exact sequences ofZ[G]-
modules.

UnderG-cohomology we have the following exact sequence.

0 = H 1(G, K (C)∗) → H 1(G, Princ)→ H 2(G, K
∗
) = K

∗
/K

∗p
= 1

To get the first equality, we can identifyG with Gal(K (C)/K (x)) and use
Hilbert’s theorem 90. The next-to-last equality comes from the fact thatG is
a finite cyclic group and soH 2(G, K

∗
) ∼= ker(1 − τ )/image(Norm), where

Norm = 1 +. . . + τp−1. ThereforeH 1(G, Princ) = 0 and hence the map from
Div0(C)G to J G = J [φ] is surjective. SoJ [φ] is generated byG-invariant divi-
sors. The group Div0(C)G is generated by divisors of the formP − ∞ where
P ∈ CG and by those of the form Norm(P − ∞) for arbitraryP ∈ C \ ∞. Each
such Norm(P − ∞) = div(x − x(P)) and so is principal. ThusJ [φ] is generated
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by divisors of the formP − ∞ whereP ∈ CG but the only points fixed byG
are those withy-coordinate 0 and∞.

We have already seen that dimJ [φ] = d − 1 and that the sum of alld divisor
classes [(αi , 0) − ∞] is 0, so the result follows. �

ThereforePL = ((α1, 0)−∞, . . . , (αd, 0)−∞) is a Galois-invariant set whose
divisor classes spanJ [φ]. Thus we can setL = K [T]/(f (T)) and

L′ = K [T]/(f (T)) ∼=
d∏

i =1

K [T]/(T − αi )

∼=
d∏

i =1

K i by T 7→ (T, . . . , T) 7→ (α1, . . . , αd)

where Gal(K/K ) acts trivially onT. Therefore we can letF = x − T where if
R =

∑
ni Ri is a good divisor, then

(x − T)(R) =
∏

(x(Ri ) − T)ni ∈ L∗.

When composed with the isomorphism ofL′ and
∏

Ki , the mapx − T becomes
the d-tuple of functions (x − α1, . . . , x − αd), whose divisors arepPL.

It is often convenient to work with divisors of the formD − r ∞ whereD is a
K -rational, effective divisor of degreer . Let us consider the image of the divisor
class containing such a divisor under the mapx − T. The following proposition
holds even whenK does not containζp.

Proposition 3.3. Any element of J(K ) can be represented by a divisor of degree
0 which is defined over K and whose support does not include∞ or points with
y-coordinate 0. In particular, let D= σ1Q + . . . + σrQ − r ∞ where theσi Q are
the r conjugates over K of the point Q of C and y(Q) /= 0. We have

(x − T)([D ]) ≡
r∏

i =1

(x(σiQ) − T)(modL∗p).

Let D = (α1, 0) + . . . + (αr , 0)− r ∞ where theαi are conjugate over K , possibly
renumbered, and r< d. We have

(x − T)([D ]) ≡
d∏

i =r +1

(αi − T)−1 +
r∏

i =1

(αi − T) (modL∗p).

Proof. Assumep is odd. SinceC has aK -rational point, namely∞, the first
sentence follows from Proposition 2.7. LetQ = (x0, y0) be a point ofC defined
over a finite extension ofK and fix a set{σi } of embeddings ofK (Q) in K ,
such thatσ1Q, . . . , σrQ are the conjugates ofQ over K . Let

D = (
r∑

i =1

σiQ) − r ∞.
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Any degree 0 divisor defined overK can be written as the sum and difference
of such divisors (possibly with different sets of{σi }).

First we assume thaty0 /= 0. Let a, b ∈ K ∗ with f (a) /= 0. Let (a, c), (a, ζpc),
. . . , (a, ζp−1

p c) be thep affine points on the linex = a and let (g1, b), . . . , (gd, b)
be thed affine points on the liney = b; the latterd points are not necessarily
distinct. Sincep does not divided we can find integersn and m such that
nd + m(d − p) = 1. The divisor of the function (x − a)mr(y − b)−nr−mr is

r ∞ + rm(a, c) + . . . + rm(a, ζp−1
p c) − r (n + m)(g1, b) − . . . − r (n + m)(gd, b).

When we addD to this principal divisor we get a divisor without∞ or points
with y-coordinate 0 in its support. Therefore we have

(x − T)([D ]) =
(a − T)prm(x(σ1Q) − T) · . . . · (x(σrQ) − T)

((g1 − T) · . . . · (gd − T))r (n+m)

=
(a − T)prm(x(σ1Q) − T) · . . . · (x(σrQ) − T)

((−1)d(f (T) − bp))r (n+m)

≡ (x(σ1Q) − T) · . . . · (x(σrQ) − T)(modL∗p).

Let D = (α1, 0)+. . .+(αr , 0)−r ∞ where theαi are conjugate overK andr <
d. We can letr < d since

∑
(αi , 0)−d∞ is principal. Letg = y −∏r

i =1(x −αi ).
We have

(g) = (α1, 0) + . . . + (αr , 0) +
m′∑

j =1

Pj − (m′ + r )∞

wherem′ = max{d − r , r (p − 1)} and Pj = (xj , yj ) with yj /= 0 and thexj ’s are
the roots of the polynomial

d∏

i =r +1

(x − αi ) −
r∏

i =1

(x − αi )
p−1.

We have

D − (g) = m′∞ −
m′∑

i =1

Pi

which is the negative of a divisor of the form we handled in the first part of the
theorem. Therefore we have

(x − T)([D ]) ≡ (
m′∏

i =1

(xi − T))−1 ≡ (
m′∏

i =1

(T − xi ))
−1

≡ (
d∏

i =r +1

(T − αi ) −
r∏

i =1

(T − αi )
p−1)−1(modL∗p).

Let us considerL to be a product of number fields or to be contained in
∏

Ki .
In either case, one of the two products in the above formula will be 0 at each
factor. Thus we have
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(x − T)([D ]) ≡
d∏

i =r +1

(αi − T)−1 +
r∏

i =1

(αi − T) (modL∗p).

For thep = 2 case, see [Sc1, Lemma 2.2]. �

The upshot of the first formula in the above lemma is that you can basically
ignore the appearance of∞ in such a divisor.

The following proposition shows that the mapw induces on cohomology is
injective and describesH 1(K , J [φ]; S).

Proposition 3.4. Let K be a number field containingζp. The groups

H 1(K , J [φ]; S) and ker : L(S, p)
norm→ K ∗/K ∗p are isomorphic via k◦ w.

Proof. First we show that the following is a split exact sequence of Gal(K/K )-
modules

0 → J [φ]
w→ µp(L′) N→ µp(K ) → 0

whereN is the norm map. The dimensions of the threeFp-vector spaces ared−1,
d and 1 respectively. The divisor of the functiony is (α1, 0) +. . .+ (αd, 0)−d∞.
So the sum of thed divisor classes [(αi , 0) − ∞] is trivial. Then sinceζp ∈ K ,
the Weil pairing is linear and the image ofw is therefore equal to the kernel
of the norm. Let∆ be the diagonal embedding ofµp(K ) in µp(L′). Let b be a
positive residue ofd−1(mod p). Then the composition of∆b and the norm is
the identity, so the exact sequence splits.

Since this short exact sequence splits, the following is a split exact sequence

0 → H 1(K , J [φ])
w→ H 1(K , µp(L′)) N→ H 1(K , µp(K )) → 0.

The groupH 1(K , µp(L′)) is isomorphic toL∗/L∗p by the map we callk. The
groupH 1(K , µp(K )) is isomorphic toK ∗/K ∗p by a Kummer map also. Sok ◦w
induces an isomorphism ofH 1(K , J [φ]) with the kernel of the norm fromL∗/L∗p

to K ∗/K ∗p and of H 1(K , J [φ]; S) with the kernel of the norm fromL(S, p) to
K ∗/K ∗p. �

The following proposition has two corollaries for a number fieldK . The first
gives the size ofJ (Ks)/φJ (Ks) for s a finite prime. The second shows how to
find the Mordell-Weil rank ofJ (K ) from J (K )/φJ (K ) and knowledge of torsion.

Proposition 3.5. Let K be a number field or the completion of a number field
at a finite prime, that containsζp. ThendimJ (K )/pJ(K ) − dimJ (K )[p] is
the same as(p − 1)(dimJ (K )/φJ (K ) − dimJ (K )[φ]).

Proof. For eachn ≥ 1, the following is an exact sequence from Proposition 2.6
whereB = D = J (K ) andg = φ and f = φn.

0 → J (K )[φn]
φ(J (K )[φn+1])

→ J (K )
φJ (K )

φn

→ J (K )
φn+1J (K )

→ J (K )
φnJ (K )

→ 0
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Therefore
dimJ (K )/pJ(K ) = dimJ (K )/φp−1J (K )

= (p − 1)dimJ (K )/φJ (K ) −
p−2∑

i =1

dimJ (K )[φi ] +
p−2∑

i =1

dimφ(J (K )[φi +1]).

Thus

dimJ (K )/pJ(K ) − dimJ (K )[p] = (p − 1)dimJ (K )/φJ (K )

−
p−1∑

i =1

dimJ (K )[φi ] +
p−1∑

j =1

dimφ(J (K )[φj ]).

For eachj ≥ 1, the following is an exact sequence.

0 → J (K )[φ] → J (K )[φj ]
φ→ φJ (K )[φj ] → 0

Thus

dimJ (K )/pJ(K ) − dimJ (K )[p] = (p − 1)dimJ (K )/φJ (K )

−(p − 1)dimJ (K )[φ].

�

Corollary 3.6. Let Ks be a finite extension ofQs containing ζp and let r =
ordp(s). In addition letg be the genus of C . ThendimJ (Ks)/φJ (Ks) = gr [Ks :
Qs(ζp)] + dimJ (Ks)[φ].

Proof. If s /= p, thenr = 0 and this follows from Proposition 2.4. Lets lie over
p; so r = 1. From Proposition 2.4, we have

dimJ (Ks)/pJ(Ks) = g[Ks : Qp] + dimJ (Ks)[p].

Using Proposition 3.5 we have

g[Ks : Qp] = (p − 1)(dimJ (Ks)/φJ (Ks) − dimJ (Ks)[φ])

g[Ks : Qp(ζp)] = dimJ (Ks)/φJ (Ks) − dimJ (Ks)[φ].

�

Corollary 3.7. Let K be a number field containingζp. The Mordell-Weil rank of
J (K ) is (p − 1)(dimJ (K )/φJ (K ) − dimJ (K )[φ]).

This follows immediately from Proposition 3.5.
We conclude with a proposition suggested independently by Armand Brumer,

Michael Stoll and the referee. The proof appears after [PS, Lemma 13.4].

Proposition 3.8. Let C be defined over K , a number field not necessarily con-
tainingζp. The Mordell-Weil rank of J(K ) is the quotient of the Mordell-Weil rank
of J(K (ζp)) by [K (ζp) : K ].
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3.1 Example where not all elements ofΨ are rational

Proposition 3.9. Let C be the projective curve given by the affine equation y3 =
(x2 + 1)(x2 − 4x + 1) and let J be its Jacobian. The group J(Q) has Mordell-Weil
rank 1 and the group J(Q(ζ3)) has Mordell-Weil rank 2.

Proof. Let K = Q(ζ3) and f (x) = (x2 + 1)(x2 − 4x + 1). Let φ = 1 − ζ3. We
first computeJ (K )/φJ (K ). The roots off are ±i and 2± √

3. We haveL =
K [T]/(f (T)) ∼= K (i ) × K (i ) by T 7→ (i , 2 +

√
3) and L∗/L∗3 is isomorphic

to (K (i )∗/K (i )∗3)2. In K (i ) = Q(ζ12), we fix ζ3 = (−1 +
√−3)/2 and

√
3 =

i
√−3. The bad primes ofC over Q are 2 and 3. There is one prime ofK (i )

over 2 generated by (1 +i ); it is inert in K and ramifies inK (i ). There is one
prime q of K (i ) over 3; it ramifies inK and then is inert up toK (i ). We will
denote the restriction of these primes toK by 2 andq. SinceK (i ) is a totally
imaginary extension of the rationals, it has unit rank 1. We note thati − ζ3 is a
fundamental unit. The class group of the fieldK (i ) is trivial. ThusK (i )(S, 3) is
〈i − ζ3, ζ3, 1 + i ,

√−3〉.
From Proposition 3.4, the groupH 1(K , J [φ]; S) is the kernel of the norm

from L(S, 3) ∼= K (i )(S, 3)2 to K ∗/K ∗3. The numberζ3(i − ζ3) generates the
kernel of the norm fromK (i )(S, 3) to K ∗/K ∗3. Thus H 1(K , J [φ]; S) = 〈(i −
ζ3, (i − ζ3)2), (ζ3, ζ

2
3), (1 + i , (1 + i )2), (

√−3,
√−3

2
), (1, ζ3(i − ζ3))〉. The group

Sφ(K , J ) is the intersection of the groupsβ−1
s (Fs(J (Ks)/φJ (Ks))) for the primes

s = 2 andq of K .
At this point let us find the images of the known elements ofJ (K ) by the

mapx − T. The groupJ (K )[φ] has order 3 and is generated by the divisor class
[(i , 0) + (−i , 0) − 2∞]. In J (K ) there is also the divisor class [(0, 1) − ∞]. In
the following table we present the images of these two classes inH 1(K , J [φ]; S)
by the mapx − T. Above each coordinate is writtenx − α to remind us how
to compute that coordinate. We use Proposition 3.3 to compute the images of
[(0, 1) − ∞] and [(i , 0) + (−i , 0) − 2∞].

x − i x − (2 +
√

3)
[(i , 0) + (−i , 0) − 2∞] 7→ (1 + i )2 ζ2

3(i − ζ3)2(1 + i )
[(0, 1) − ∞] 7→ 1 ζ2

3(i − ζ3)2

From the first exact sequence in the proof of Proposition 3.5, we knowJ (K )[φ]
/φ(J (K )[3]) injects intoJ (K )/φJ (K ) which injects intoL∗/L∗3. Thus we know
thatJ (K )[3] = J (K )[φ] and is generated by [(i , 0)+(−i , 0)−2∞] since its image
is not trivial. In addition we see that the image of [(0, 1)− ∞] is independent of
the image of torsion and so the divisor class has infinite order. We will show that
Sφ(K , J ) is generated by the images of [(i , 0) + (−i , 0)− 2∞] and [(0, 1)− ∞].

Let us describe the groupsJ (Kq)/φJ (Kq) and L∗
q/L∗3

q
∼= (Kq(i )∗

/Kq(i )∗3)2. The groupKq(i )∗/Kq(i )∗3 is 〈√−3, 1 +
√−3, 1 + i

√−3, 1 +
√−3

2
,

1 + i
√−3

2
, 1 +

√−3
3〉. Let us rename those numbers〈A, B, E, Γ, Φ, ∆〉, to

agree with the notation in [KS]. Multiplicatively, anything that is 1 modulo
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9 is a cube, as are 1± i
√−3

3
and −1. We have [i − ζ3, ζ3, 1 + i ,

√−3] ≡
[BE, B2Γ, Γ 2, A] modKq(i )∗3. Thus the kernel ofβq is trivial. From Corol-
lary 3.6 we know dimJ (Kq)/φJ (Kq) is the sum of 3[Kq : Q3(ζ3)], which is
3, and dimJ (Kq)[φ], which is 1 sinceKq ∩ K (J [φ]) = K , for a total of 4.
In the following table we list generators ofJ (Kq)/φJ (Kq) and their images in
L∗

q/L∗3
q

∼= (Kq(i )∗/Kq(i )∗3)2.

x − i x − (2 +
√

3)
[(i , 0) + (−i , 0) − 2∞] 7→ Γ ΓE2

[(0, 1) − ∞] 7→ 1 Γ 2E2

[(4, y1) − ∞] 7→ Φ ΓE

[( 1+
√−33

√−33 , y2) − ∞] 7→ ∆ ∆2

A small amount of linear algebra shows thatβ−1
q (Fq(J (Kq)/φJ (Kq))) is

the same as the group generated by the images of [(i , 0) + (−i , 0) − 2∞] and
[(0, 1) − ∞]. So that is the Selmer group and those two divisor classes generate
J (K )/φJ (K ). We do not even needJ (K2)/φJ (K2). Thus, from Corollary 3.7,
the Mordell-Weil rank ofJ (K ) is 2. One can verify that the divisor classes
[(0, 1) − ∞] and [(0, ζ3) − ∞] have infinite order and are independent. From
Proposition 3.8, the Mordell-Weil rank ofJ (Q) is 1. �

Using a straightforward computation in the number field gotten by adjoining
to Q the root of the characteristic polynomial of Frobenius ofJ overF7, Michael
Stoll has shown thatJ is absolutely simple. This type of argument appears in
the proof of [PS, Proposition 14.4].

3.2 Examples with Mordell-Weil rank 0

In this section we find solutions of two diophantine equations over infinitely
many number fields. First let us state two propositions. Each follows from the
Riemann-Roch theorem and results in [Mi1, Sect. 5] and is well-known.

Proposition 3.10. Let f (x) be a polynomial of degree 5 or 6, defined over a field
K of characteristic other than 2 with distinct roots inK . Let C be the normaliza-
tion of the curve whose affine equation is y2 = f (x). Every element ofPic2(C) has
a unique representation by an effective divisor, with the exception of the canonical
class. In addition, every K -rational divisor class of degree 2 can be represented
by an effective K -rational divisor.

Proposition 3.11. Let C be a smooth plane quartic curve defined over a field
K . Every element ofPic3(C) has a unique representation by an effective divisor
unless the divisor class contains P1 +P2 +P3 where the three Pi ’s are collinear. In
the latter case[P1 + P2 + P3] = [Q1 + Q2 + Q3] if and only if there are lines L1 and
L2 and a point R such that L1.C = P1 + P2 + P3 + R and L2.C = Q1 + Q2 + Q3 + R.
Assume, in addition, that C has a K -rational point. Every K -rational divisor class
of degree 3 contains an effective K -rational divisor.
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From these follow special cases of the fact that whenC has aK -rational
point and the groupJ (K ) is finite, then we can describe all points onC over
fields of degree overK , less than or equal to the genus. Though we can describe
all such points, it is a more difficult problem to pick one of the fields and decide
which of those points are defined over that field. We present examples using each
of the previous propositions.

Proposition 3.12. The onlyQ-rational points on the curve C given by y2 = x5+1
are ∞, (0,±1) and (−1, 0). The only other points on C rational over quadratic
extensions are(1 + i ,±(1 − 2i )), (1 − i ,±(1 + 2i )) and those with x∈ Q.

Note that we could compute a 2-Selmer group or a (1− ζ5)-Selmer group. We
will do the latter, as there are already examples of the former in the literature.

Proof. We can rewrite the curve asx5 = (y +1)(y −1) and letK = Q(ζ5). We use
the endomorphismφ = 1 − ζ5 of J , the Jacobian ofC . The bad primes are the
single prime over 2, which we also denote by 2, and the single primep = 1− ζ5

over 5. The fieldK has class number 1 and unit rank 1, with fundamental unit
1 + ζ5. ThusK (S, 5) = 〈ζ5, 1 + ζ5, 2, 1 − ζ5〉 andH 1(K , J [φ]; S) is the kernel of
the norm fromL(S, 5) = K (S, 5)2 to K ∗/K ∗5.

We haveK ∗
p /K ∗5

p = 〈p, 1 + p, 1 + p2, 1 + p3, 1 + p4, 1 + p5〉. Let us rename
those elements ofKp by 〈a, b, c, d, e, f 〉. Any element that is 1 modulop6 is
a fifth power, as are the fourth roots of unity. The vectors [ζ5, 1 + ζ5, 2, 1 −
ζ5] ≡ [b4c4e4, b2c4d2e4, e3f , a] modK ∗5

p . Thus the kernel ofβp is trivial. From
Corollary 3.6,J (Kp)/φJ (Kp) has dimension 3. In the following table we list
generators ofJ (Kp)/φJ (Kp) and their images inL∗

p/L∗5
p .

y + 1 y − 1
[(x1, p

3) − ∞] 7→ d d4

[(x2, p
4) − ∞] 7→ e e4

[(x3, p
5) − ∞] 7→ f f 4

We see thatβ−1
p of the image ofJ (Kp)/φJ (Kp) is the group generated by the

image of [(0, 1)−∞]. So that is the Selmer group andJ (K )/φJ (K ) is generated
by that divisor class. We do not even needJ (K2)/φJ (K2). From Corollary 3.7,
we see thatJ (K ) has Mordell-Weil rank 0.

Now #J (Q) is at least 10 sinceJ (Q) contains [(0, 1) − ∞] of order 5 and
[(−1, 0)−∞] of order 2. By computing #J (Fp) for a few primes we can prove that
the order ofJ (Q) divides 10 so it is equal to 10. LetD = [(0, 1) + (−1, 0)−2∞].
Then 2D = [2(0, 1) − 2∞], 3D = [(1 + i , 1 − 2i ) + (1 − i , 1 + 2i ) − 2∞],
4D = [(0,−1) +∞ − 2∞], 5D = [(−1, 0) +∞ − 2∞], 6D = [(0, 1) +∞ − 2∞],
7D = [(1 + i ,−1 + 2i ) + (1 − i ,−1 − 2i ) − 2∞], 8D = [2(0,−1) − 2∞], 9D =
[(0,−1) + (−1, 0) − 2∞], 10D = [2∞ − 2∞] = 0.

We have a bijection of the setsJ (Q) and Pic2(C)(Q) by [P + Q − 2∞] 7→
[P+Q]. From Proposition 3.10, ifP is aQ-rational point ofC , then [P+∞−2∞]
must appear in the above list. IfP is defined over a quadratic extension ofQ
andP is its conjugate, then [P + P − 2∞] must appear in the above list, unless
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[P + P − 2∞] is the canonical class. A simple calculation shows that if that is
the case thenx(P) ∈ Q. �

Since J has complex multiplication by a cyclic, quartic, totally imaginary
field it is absolutely simple. See [St2] for more discussion of the Mordell-Weil
ranks of the Jacobians of curves of the formy2 = xl +k wherel is an odd prime.

Proposition 3.13. The onlyQ-rational points on the curve C given by y3 = x(x−
1)(x − 2)(x − 3) are ∞ and those on y= 0. The only other points over quadratic
extensions ofQ are those on y= −1 and y = 2. There are 12 conjugate triples
of points over cubic extensions that are not collinear. All other points over cubic
extensions can be obtained by finding the other three points of intersection of a
Q-rational line with a point of C(Q).

Proof. We can useφ = 1−ζ3 and the techniques in earlier examples, to show that
J has trivial Mordell-Weil rank overQ(ζ3) and hence overQ. Let us compute
J (Q). We already have all ofJ [φ] rational overQ. The liney = −1 is bitangent
to C and meets the curve at 2(x1,−1) + 2(x2,−1) where thexi are the roots of
x2 − 3x + 1. A line L is a bitangent ofC if the intersection divisor ofL with C
is L.C = 2P + 2Q for pointsP andQ of C (not necessarily distinct). We have a
bijection of the setsJ (Q) and Pic3(C)(Q) by [P + Q + R− 3∞] 7→ [P + Q + R].
From Proposition 3.11, the order of [(x1,−1) + (x2,−1) + ∞ − 3∞] is 2.

The primes of bad reduction overQ are 2 and 3. The characteristic polynomial
of the Frobenius ofJ over F5 is f5(t) = t6 − 3t4 − 15t2 + 125 which factors over
Q into irreducible quadratic and quartic factors. ThusJ is isogenous overQ
to the sum of the elliptic curveE given by y3 = (x̂ − 9/4)(x̂ − 1/4) (where
x̂ = (x − 3

2)2) and a 2-dimensional abelian variety which is simple overQ. In
addition #J (F5) = f5(1) = 4· 27. The divisor ofy + 1 is 4(−1,−1)− 4∞ over F5.
From Proposition 3.11, the order of [(−1,−1) + 2∞ − 3∞] is 4 in J (F5). So the
2-power part ofJ (F5) is a cyclic group of order 4.

We have #J (F19) = 16 · 27 · 13. The curve has 10 rational bitangents over
F19. They are the line at infinity,uy = −1, uy = 4x + 10 anduy = 10x + 2
whereu3 = 1. This gives us 9 divisor classes of the form [P1 + P2 + ∞ − 3∞]
where 2P1 + 2P2 is the intersection divisor ofC with one of theF19-rational
bitangents which is not the line at infinity. Each of these 9 divisor classes is
different and has order 2, from Proposition 3.11. The 2-power part ofJ (F19) has
16 elements and at least 9 have order 2. Thus the 2-power part has exponent
2. Putting together the information from the reductions at 5 and 19, we see that
J (Q) ∼= (Z/3Z)3 ⊕ Z/2Z. By comparisonE(Q) ∼= Z/3Z ⊕ Z/2Z.

We can find an effective representative of each divisor class in Pic3(C)(Q).
They are supported on the point∞, the four points ony = 0, the two points on
the bitangenty = −1, the four points ony = 2 (each is quadratic overQ), and
12 triples of non-collinear conjugate cubic points. The proposition then follows
from Proposition 3.11.

Of courseE(Q) gives us theQ-rational points. But it does not give the points
defined over quadratic and cubic extensions. �



468 E.F. Schaefer

4 A 2-descent for the Jacobian of a smooth plane quartic curve using
bitangents

Let C be the curve overQ defined by the equation 592900X4 + (−1609300Y +
1829520Z)X3 + (1253725Y2 − 244420ZY + 1648504Z2)X2 + (−219450Y3 −
220390ZY2 + 58564Z2Y + 365904Z3)X + (11025Y4 + 6510ZY3 − 31379Z2Y2 −
9548Z3Y + 23716Z4) = 0 and letJ be its Jacobian. The linesX = 0, Y = 0,
Z = 0, X + Y + Z = 0, X − Y − 2Z = 0, 2X − Y + Z = 0, andX − 3Y + 2Z = 0
are all bitangents ofC (see the proof of Proposition 3.13 for the definition of
bitangent). The curveC is a smooth plane quartic curve and so has genus 3. We
will work over K = Q and use the multiplication by 2 map fromJ to itself as
our isogeny. In this caseΨ = λ−1Ĵ [2̂] = J [2], whereλ is the canonical principal
polarization ofJ with respect toC . The curveC has the property that every
element ofJ [2] is defined overQ. This fact simplifies the example and makes
Assumption II hold.

Away from the lineZ = 0 we letx = X/Z and y = Y/Z and denote points
by their affine, (x, y)-coordinates. The divisors of the functionsx, y, x + y + 1,
y − x + 2, y − 2x − 1 andx − 3y + 2 are doubles of divisors, all of whose images
have order two inJ ; in fact they form a basis forJ [2]. Thus we can letL = Q6

andF = (x, y, x +y +1, y−x +2, y−2x −1, x −3y +2). The groupH 1(Q, J [2]) is
isomorphic toL∗/L∗2 ∼= (Q∗/Q∗2)6 by the mapk ◦w. The mapF is an injection
from J (Q)/2J (Q) to (Q∗/Q∗2)6. The setC(Q) contains (−7/5, 0) and (−1/7, 0)
(coming from the intersection withy = 0) and (1/5, 8/5) so Assumption I holds
from Proposition 2.7.

It is a straightforward exercise to show that this curve has nonsingular re-
duction at all finite primes greater than 17 and singular reduction at the oth-
ers; thus we can letS = {∞, 2, 3, 5, 7, 11, 13, 17}. The image ofJ (Q) un-
der F in (Q∗/Q∗2)6 is contained in the image ofH 1(Q, J [2]; S). Recall from
Step 5 thatQ(S, 2) = 〈−1, 2, 3, 5, 7, 11, 13, 17〉 ⊂ Q∗/Q∗2. Under the identi-
fication of H 1(Q, J [2]) with (Q∗/Q∗2)6, the groupH 1(Q, J [2]; S) gets sent to
L(S, 2) = Q(S, 2)6.

In the following table, we show the images inL(S, 2), underF , of the six
elements ofJ [2] and two other rational divisor classes. Along the top of the
table, we list the component functions ofF . When we write1

2(x), for example,
we mean the divisor whose double is the divisor ofx.

x y x + y + 1 y − x + 2 y − 2x − 1 x − 3y + 2

[ 1
2 (x)] 7→ 5 3 · 7 2 · 5 · 7 2 · 7 −2 · 3 · 5 · 7 3 · 7

[ 1
2 (y)] 7→ −3 · 7 2 · 5 · 11 2· 7 2 · 3 · 5 · 7 −7 −5 · 7

[ 1
2 (x + y + 1)] 7→ −2 · 5 · 7 −2 · 7 −2 · 5 7 −3 · 5 · 7 −7

[ 1
2 (y − x + 2)] 7→ −2 · 7 −2 · 3 · 5 · 7 −7 2 · 5 · 17 −2 · 7 −3 · 5 · 7

[ 1
2 (y − 2x − 1)] 7→ 2 · 3 · 5 · 7 7 3· 5 · 7 2 · 7 1 3· 5 · 7

[ 1
2 (x − 3y + 2)] 7→ −3 · 7 5 · 7 7 3· 5 · 7 −3 · 5 · 7 −13

[(−7/5, 0) − (−1/7, 0)] 7→ 5 −7 −3 · 5 · 7 3 · 7 · 17 −7 3 · 5 · 7 · 13

[(1/5, 8/5) − (−1/7, 0)] 7→ −5 · 7 3 · 11 3· 5 3 · 7 · 17 −7 −5 · 7
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The images of all eight divisor classes are independent. Since the images of the
six divisor classes of order two are independent, they form a basis forJ [2]. As
the images of the other two divisors are independent of the image ofJ [2], and
of each other inJ (Q)/2J (Q), they each have infinite order and are independent
in the Mordell-Weil group.

We can computeS2(Q, J ) in a manner similar to previous examples. The
only difference is that we need to compute the intersection of all eight groups
β−1

s (Fs(J (Qs)/2J (Qs))) for s ∈ S. The intersection has dimension 8 as anF2-
vector space and a basis is the image of the eight rational divisors in the table.
Thus dimF2J (Q)/2J (Q) = 8 and dimF2J (Q)[2] = 6 and so the Mordell-Weil rank
is exactly 2.

Proposition 4.1. The Mordell-Weil group overQ of the Jacobian of the smooth
plane quartic curve C , which is bitangent to X= 0, Y = 0, Z = 0, X + Y + Z = 0,
X − Y − 2Z = 0, 2X − Y + Z = 0, and X− 3Y + 2Z = 0, has rank 2.

Just computing the characteristic polynomial of Frobenius atp = 19 seemed
infeasible and so we do not know the splitting behavior ofJ .

5 Examples in the literature for genus higher than 1

In [Sc2], a 2-Selmer group is used to show that the Mordell-Weil rank overQ
of the Jacobian ofy2 = f (x), wheref (x) = x5 + 16x4 − 274x3 + 817x2 + 178x + 1,
is 7. Let L = Q[T]/(f (T)) and Cl(L) denote the class group of the fieldL. The
fact that dim C(L)/Cl(L)2 is 4 was exploited. In [Sc1], a 2-Selmer group is used
to show that the Mordell-Weil rank of the Jacobian ofy2 = x(x − 2)(x − 3)(x −
4)(x − 5)(x − 7)(x − 10) overQ is 2. In [St2], Stoll computed both 2-Selmer
groups and (1− ζ5)-Selmer groups for the Jacobians of some curves of the form
y2 = x5 + k. Using information from both, some were shown to have non-trivial
2-parts of their Tate-Shafarevich groups.

In each of these cases, the hyperelliptic curve is of the form described in
Sect. 3, namelyy2 = f (x) where f has odd degree. As discussed in Sect. 2.5,
there is a way of bounding the Mordell-Weil rank of the Jacobians of hyperelliptic
curves of the formy2 = f (x), wheref has even degree; see [Ca, FPS, PS]. The
author has used this to show that the Mordell-Weil rank overQ of the Jacobian
of a curve of Colin Stahlke’s given byy2 = f (x) wheref (x) = 121x6 − 138x5 +
183x4 + 370x3 + 104x2 − 112x + 1 is exactly 12. LetL = Q[T]/(f (T)) and
Cl(L) denote the class group of the fieldL. The fact that dim Cl(L)/Cl(L)2 is
9 was exploited. In [FPS], the Mordell-Weil rank overQ of the Jacobian of
y2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1 is shown to be 1. This is used to
show that there are noQ-rational quadratic polynomials with rational periodic
points of period 5. In [PS] the algorithm is extended further to curves of the form
yp = f (x) where the primep divides the degree off . In addition, the Mordell-
Weil rank overQ of the Jacobian ofy3 = (x2 − x + 6)2(x8 + 3x + 3) is shown to
be 2. This example required working in a number field of degree 16 overQ.
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Flynn has a technique for bounding the Mordell-Weil rank of the Jacobian
J of a hyperelliptic curveC of genus 2 over a number fieldK , that is the best
one available for certain cases (see [Fl, CF]). Let us describe how it fits into our
framework and how it can be extended. AssumeJ [2] has a rational subgroup of
order 4 which is isotropic with respect to the 2-Weil pairing. In most cases, the
quotient ofJ by that subgroup is again the JacobianJ ′ of a genus 2 curveC ′.
The induced isogeny is called a Richelot’s isogeny. We denote it byφ. There
is similarly a Richelot’s isogenyφ′ from J ′ to J such thatφ′ ◦ φ = 2. Because
of the isotropy,λ−1Ĵ [φ̂′] = J [φ] for the canonical principal polarizationλ of J
with respect toC (see [Mi2, prop. 16.8]). In [CF], Cassels and Flynn present
a method for computingSφ(K , J ) andSφ′

(K , J ′) assuming that all elements of
J [φ] are rational. They use the method described in Sect. 2. The kernel of a
Richelot’s isogeny is isomorphic toV4, the Klein-4 group. The groupH 1(G, V4)
is trivial for all G ⊆ Aut(V4). Thus for all possible Galois actions onJ [φ] or
J ′[φ′], Assumption II holds and we can do a descent using a Richelot’s isogeny.

There are a few examples in the literature like those in Sect. 3 wherep /= 2.
In [KS], the Mordell-Weil rank of the Jacobian ofy3 = x4 − 1 over Q(ζ12) is
shown to be 0. Fadeev and McCallum describe a mapF for quotients of thepth
Fermat curve given byyp = xa(1 − x)b with 0 < a, b < p; see [Fd, Mc].
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