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1 Preface

Read at your own risk!
These are my very rough, error prone notes of a second course on algebraic geometry

offered at U.C. Berkeley in the Spring of 1996. The instructor was Robin Hartshorne and the
students were Wayne Whitney, William Stein, Matt Baker, Janos Csirik, Nghi Nguyen, and
Amod. I wish to thank Robin Hartshorne for giving this course and to Nghi Nguyen for his
insightful suggestions and corrections. Of course all of the errors are solely my responsibility.

The remarks in brackets [[like this]] are notes that I wrote to myself. They are meant as
a warning or as a reminder of something I should have checked but did not have time for.
You may wish to view them as exercises.

If you have suggestions, questions, or comments feel free to write to me. My email
address is was@math.berkeley.edu.

2 Ample Invertible Sheaves

Let k be an algebraically closed field and let X be a scheme over k. Let φ : X → Pn
k be a

morphism. Then to give φ is equivalent to giving an invertible sheaf L on X and sections
s0, . . . , sn ∈ Γ(X,L) which generate L. If X is projective (that is, if there is some immersion
of X into some Pm

k ) then φ is a closed immersion iff s0, . . . , sn separate points and tangent
vectors.

Definition 2.1. Let X be a scheme and L an invertible sheaf on X. Then we say L is very
ample if there is an immersion i : X ↪→ Pn

k such that L ∼= i∗O(1).

Theorem 2.2. Let X be a closed subscheme of Pn
k and F a coherent sheaf on X, then F(n)

is generated by global sections for all n� 0.

Corollary 2.3. Let X be any scheme and L a very ample coherent sheaf on X, then for all
n� 0, F ⊗ L⊗n is generated by global sections.
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Definition 2.4. Let X be a Noetherian scheme and L be an invertible sheaf. We say that
L is ample if for every coherent sheaf F on X, there is n0 such that for all n ≥ n0, F ⊗L⊗n
is generated by its global sections.

Thus the previous corollary says that a very ample invertible sheaf is ample.

Proposition 2.5. Let X and L be as above. Then the following are equivalent.
1) L is ample,
2) Ln is ample for all n > 0,
3) Ln is ample for some n > 0.

Theorem 2.6. Let X be of finite type over a Noetherian ring A and suppose L is an
invertible sheaf on A. Then L is ample iff there exists n such that Ln is very ample over
SpecA.

Example 2.7. Let X = P1, L = O(`), some ` ∈ Z. If ` < 0 then Γ(L) = 0. If ` = 0 then
L = OX which is not ample since OX(−1)n ⊗ OX ∼= OX(−1)n is not generated by global
sections for any n. Note that OX itself is generated by global sections. Finally, if ell > 0
then L = OX(`) is very ample hence ample.

Example 2.8. Let C ⊆ P2 be a nonsingular cubic curve and L an invertible sheaf on C
defined by L = L(D), where D =

∑
niPi is a divisor on C. If degD < 0 then L has no

global sections so it can’t be ample.

3 Introduction to Cohomology

We first ask, what is cohomology and where does it arise in nature? Cohomology occurs in
commutative algebra, for example in the Ext and Tor functors, it occurs in group theory,
topology, differential geometry, and of course in algebraic geometry. There are several flavors
of cohomology which are studied by algebraic geometers. Serre’s coherent sheaf cohomology
has the advantage of being easy to define, but has the property that the cohomology groups
are vector spaces. Grothendieck introduced ètale cohomology and `-adic cohomology. See,
for example, Milne’s Ètale Cohomology and SGA 41

2
, 5 and 6. This cohomology theory arose

from the study of the Weil Conjectures (1949) which deal with a deep relationship between
the number of points on a variety over a finite field and the geometry of the complex analytic
variety cut out by the same equations in complex projective space. Deligne was finally able
to resolve these conjectures in the affirmative in 1974.

What is cohomology good for? Cohomology allows one to get numerical invariants of an
algebraic variety. For example, ifX is a projective scheme defined over an algebraically closed
field k then H i(X,F) is a finite dimensional k-vector space. Thus the hi = dimkH

i(X,F)
are a set of numbers associated to X. “Numbers are useful in all branches of mathematics.”

Example 3.1. Arithmetic Genus LetX be a nonsingular projective curve. Then dimH1(X,OX)
is the arithmetic genus of X. If X ⊆ Pn is a projective variety of dimension r then, if
pa = dimH1(X,OX), then 1 + (−1)rpa = the constant term of the Hilbert polynomial of X.

Example 3.2. Let X be a nonsingular projective surface, then

1 + pa = h0(OX)− h1(OX) + h2(Ox)

and 1 + (−1)rpa = χ(OX), the Euler characteristic of X.
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Example 3.3. Let X be an algebraic variety and PicX the group of Cartier divisors mod-
ular linear equivalence (which is isomorphic to the group of invertible sheaves under tensor
product modulo isomorphism). Then PicX ∼= H1(X,O∗X).

Example 3.4 (Deformation Theory). Let X0 be a nonsingular projective variety. Then the
first order infinitesimal deformations are classified by H1(X0, TX0) where TX0 is the tangent
bundle of X0. The obstructions are classified by H2(X0, TX0).

One can define Cohen-Macaulay rings in terms of cohomology. Let (A,m) be a local
Noetherian ring of dimension n, let X = SpecA, and let P = m ∈ X, then we have the
following.

Proposition 3.5. Let A be as above. Then A is Cohen-Macaulay iff
1) H0(X − P,OX−P ) = A and
2) H i(X − P,OX−P ) = 0 for 0 < i < n− 1.

A good place to get the necessary background for the cohomology we will study is in
Appendices 3 and 4 from Eisenbud’s Commutative Algebra.

4 Cohomology in Algebraic Geometry

For any scheme X and any sheaf F of OX-modules we want to define the groups H i(X,F).
We can either define cohomology by listing its properties, then later prove that we can
construct the H i(X,F) or we can skip the definition and just construct the H i(X,F). The
first method is more esthetically pleasing, but we will choose the second.

We first forget the scheme structure of X and regard X as a topological space and F as a
sheaf of abelian groups (by ignoring the ring multiplication). Let Ab(X) be the category of
sheaves of abelian groups on X. Let Γ = Γ(X, ·) be the global section functor from Ab(X)
into Ab, where Ab is the category of abelian groups. Recall that Γ is left exact so if

0→ F ′ → F → F ′′ → 0

is an exact sequence in Ab(X) then the following sequence is exact

0→ Γ(F ′)→ Γ(F)→ Γ(F ′′)

in Ab.

Definition 4.1. We define the cohomology groups H i(X,F) to be the right derived functors
of Γ.

5 Review of Derived Functors

The situation will often be as follows. Let A and B be abelian categories and

A F−→ B

a functor. Derived functors are the measure of the non-exactness of a functor. Let X be
a topological space, Ab(X) the category of sheaves of abelian groups on X and Ab the
category of abelian groups. Then Γ(X, ·) : Ab(X) → Ab is a left exact functor. Our
cohomology theory will turn out to be the right derived function of Γ(X, ·).
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5.1 Examples of Abelian Categories

Although we will not define an abelian category we will give several examples and note that
an abelian category is a category which has the same basic properties as these examples.

Example 5.1 (A-Modules). Let A be a fixed commutative ring and consider the category
Mod(A) of A-modules. Then if M,N are any two modules one has

1) Hom(M,N) is an abelian group,
2) Hom(M,N)× Hom(N,L)→ Hom(M,L) is a homomorphism of abelian groups.
3) there are kernels, cokernels, etc.
Mod(A) is an abelian category.

Example 5.2. Let A be a Noetherian ring and let our category be the collection of all finitely
generated A-modules. Then this category is abelian. Note that if the condition that A be
Noetherian is relaxed we may no longer have an abelian category because the kernel of a
morphism of finitely generated modules over an arbitrary ring need not be finitely generated
(for example, take the map from a ring to its quotient by an ideal which cannot be finitely
generated).

Example 5.3. Let X be a topological space, then Ab(X) is an abelian category. If (X,OX)
is a ringed space then the category Mod(OX) is abelian. If X is a scheme then the category
of quasi-coherent OX-modules is abelian, and if X is also Noetherian then the sub-category
of coherent OX-modules is abelian.

Example 5.4. The category of abelian varieties is not an abelian category since the kernel of
a morphism of abelian varieties might be reducible (for example an isogeny of degree n of
elliptic curves has kernel n points which is reducible). It may be the case that the category
of abelian group schemes is abelian but I don’t know at the moment.

Example 5.5. The category of compact Hausdorff abelian topological groups is an abelian
category.

5.2 Exactness

Definition 5.6. A functor F : A → B is additive if for all X, Y ∈ A, the map

F : HomA(X, Y )→ HomB(FX,FY )

is a homomorphism of abelian groups.

Definition 5.7. A sequence

A
f−→ B

g−→ C

is exact if Im(f) = ker(g).

Definition 5.8. Let F : A → B be a functor and

0→M ′ →M →M ′′ → 0

be an exact sequence and consider the sequence

0→ FM ′ → FM → FM ′′ → 0.

If the second sequence is exact in the middle, then F is a called half exact functor. If the
second sequence is exact on the left and the middle then F is called a left exact functor. If
the second sequence is exact on the right and in the middle then we call F a right exact
functor.
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Example 5.9. Let A be a commutative ring and N an A-module. Then N ⊗ − is a right
exact functor on the category of A-modules. To see that N ⊗− is not exact, suppose A,m
is a local ring and N = k = A/m. Then the sequence

0→ m→ A→ k → 0

is exact, but
0→ k ⊗m→ k ⊗ A→ k ⊗ k → 0

is right exact but not exact.

Example 5.10. The functor Tor1(N, ·) is neither left nor right exact.

Example 5.11. The contravarient hom functor, Hom(·, N) is left exact.

Often the following is useful in work.

Theorem 5.12. If
0→M ′ →M →M ′′

is exact and F is left exact, then

0→ FM ′ → FM → FM ′′

is exact.

5.3 Injective and Projective Objects

Let A be an abelian category. Then HomA(P,−) : A → Ab is left exact.

Definition 5.13. An A module P is said to be projective if the functor HomA(P,−) is exact.
An A module I is said to be injective if the functor HomA(−, I) is exact.

Definition 5.14. We say that an abelian category A has enough projectives if every X in A
is the surjective image of a projective P in A. A category is said to have enough injectives
if every X in A injects into an injective objective of A.

Example 5.15. Let A be a commutative ring, then Mod(A) has enough injectives because
every module is the quotient of a free module and every free module is projective. If X is a
topological space then Ab(X) has enough injectives. If X is a Noetherian scheme, then the
category of quasi-coherent sheaves has enough injectives (hard theorem). The category of
OX-modules has enough injectives but the category of coherent sheaves on X doesn’t have
enough injectives or projectives.

6 Derived Functors and Homological Algebra

Let F : A → B be an additive covariant left-exact functor between abelian categories, for
example F = Γ : Ab(X)→ Ab. Assume A has enough injectives, i.e., for all X in A there
is an injective object I in A such that 0→ X ↪→ I. We construct the right derived functors
of F . If

0→M ′ →M →M ′′ → 0

is exact in A then

0→ F (M ′)→ F (M)→ F (M ′′)→ R1F (M1)→ R1F (M)→ · · ·

is exact in B where RiF is the right derived functor of F .
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6.1 Construction of RiF

Take any M in A, then since A has enough injectives we can construct an exact sequence

0→M → I0 → I1 → I2 → · · ·

where each I i is an injective object. (This isn’t totally obvious, but is a straightforward
argument by putting together short exact sequences and composing maps.) The right part
of the above sequence I0 → I1 → · · · is called an injective resolution of M . Applying F we
get a complex

F (I0)
d0−→ F (I1)

d1−→ F (I2)
d2−→ · · ·

in B which may not be exact. The objects H i = ker(d2)/ Im(d1) measure the deviation of
this sequence from being exact. H i is called the ith cohomology object of the complex.

Definition 6.1. For each object in A fix an injective resolution. The ith right derived
functor of F is the functor which assigns to an object M the ith cohomology of the complex
F (I ·) where I · is the injective resolution of M .

6.2 Properties of Derived Functors

We should now prove the following:

1. If we fix different injective resolutions for all of our objects then the corresponding
derived functors are, in a suitable sense, isomorphic.

2. The RiF can also be defined on morphisms in such a way that they are really functors.

3. If 0 → M ′ → M → M ′′ is a short exact sequence then there is a long exact sequence
of cohomology:

0→ FM ′ → FM → FM ′′ →
R1FM ′ → R1FM → R1FM ′′ →

R2FM ′ → · · · .

4. If we have two short exact sequences then the induced maps on long exact sequences
are “δ-compatible”.

5. R0F ∼= F .

6. If I is injective, then for any i > 0 one has that RiF (I) = 0.

Theorem 6.2. The RiF and etc. are uniquely determined by properties 1-6 above.

Definition 6.3. A δ-functor is a collection of functors {RiF} which satisfy 3 and 4 above.
An augmented δ-functor is a δ-functor along with a natural transformation F → R0F . A
universal augmented δ-functor is an augmented δ-functor with some universal property which
I didn’t quite catch.

Theorem 6.4. If A has enough injectives then the collection of derived functors of F is a
universal augmented δ-functor.

To construct the RiF choose once and for all, for each object M in A an injective
resolution, then prove the above properties hold.
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7 Long Exact Sequence of Cohomology and Other Won-

ders

“Today I sat in awe as Hartshorne effortless drew hundreds of arrows and objects everywhere,
chased some elements and proved that there is a long exact sequence of cohomology in 30
seconds. Then he whipped out his colored chalk and things really got crazy. Vojta tried
to erase Hartshorne’s diagrams during the next class but only partially succeeded joking
that the functor was not ‘effaceable’. (The diagrams are still not quite gone 4 days later!)
Needless to say, I don’t feel like texing diagrams and element chases... it’s all trivial anyways,
right?”

8 Basic Properties of Cohomology

Let X be a topological space, Ab(X) the category of sheaves of abelian groups on X and

Γ(X, ·) : Ab(X)→ Ab

the covariant, left exact global sections functor. Then we have constructed the derived
functors H i(X, ·).

8.1 Cohomology of Schemes

Let (X,OX) be a scheme and F a sheaf of OX-modules. To compute H i(X,F) forget all
extra structure and use the above definitions. We may get some extra structure anyways.

Proposition 8.1. Let X and F be as above, then the groups H i(X,F) are naturally modules
over the ring A = Γ(X,OX).

Proof. Let A = H0(X,F) = Γ(X,OX) and let a ∈ A. Then because of the functoriality of
H i(X, ·) the map F → F induced by left multiplication by a induces a homomorphism

a : H i(X,F)→ H i(X,F).

8.2 Objective

Our objective is to compute H i(Pn
k ,O(`)) for all i, n, `. This is enough for most applications

because if one knows these groups one can, in principle at least, computer the cohomology
of any projective scheme. If X is any projective variety, we embed X in some Pn

k and push
forward the sheaf F on X. Then we construct a resolution of F by sheaves of the form
O(−`)n. Using Hilbert’s syzigy theorem one sees that the resolution so constructed is finite
and so we can put together our knowledge to get the cohomology of X.

Our plan of attack is as follows.

1. Define flasque sheaves which are acyclic for cohomology, i.e., the cohomology vanishes
for i > 0.

2. If X = SpecA, A Noetherian, and F is quasi-coherent, show that H i(X,F) = 0 for
i > 0.
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3. If X is any Noetherian scheme and U = (Ui) is an open affine cover, find a relationship
between the cohomology of X and that of each Ui. (The “Čech process”.)

4. Apply number 3 to Pn
k with Ui = {xi 6= 0}.

9 Flasque Sheaves

Definition 9.1. A flasque sheaf (also called flabby sheaf) is a sheaf F on X such that
whenever V ⊂ U are open sets then ρU,V : F(U)→ F(V ) is surjective.

Thus in a flasque sheaf, “every section extends”.

Example 9.2. Let X be a topological space, p ∈ X a point, not necessarily closed, and M an
abelian group. Let j : {P} ↪→ X be the inclusion, then F = j∗(M) is flasque. This follows
since

j∗(M)(U) =

{
M if p ∈ U
0 if p 6∈ U

.

Note that j∗(M) is none other than the skyscraper sheaf at p with sections M .

Example 9.3. If F is a flasque sheaf on Y and f : Y → X is a morphism then f∗F is a
flasque sheaf on X.

Example 9.4. If Fi are flasque then
⊕

iFi is flasque.

Lemma 9.5. If
0→ F ′ → F → F ′′ → 0

is exact and F ′ is flasque then
Γ(F)→ Γ(F ′′)→ 0

is exact.

Lemma 9.6. If
0→ F ′ → F → F ′′ → 0

is exact and F ′ and F are both flasque then F ′′ is flasque.

Proof. Suppose V ⊂ U are open subsets of X. Since F ′ is flasque and the restriction of a
flasque sheaf is flasque and restriction is exact, lemma 1 implies that the sequence

F(V )→ F ′′(V )→ 0

is exact. We thus have a commuting diagram

F(U) −−−→ F ′′(U)y y
F(V ) −−−→ F ′′(V ) −−−→ 0

which, since F(U)→ F(V ) is surjective, implies F ′′(U)→ F ′′(V ) is surjective.

Lemma 9.7. Injective sheaves (in the category of abelian sheaves) are flasque.
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Proof. Let I be an injective sheaf of abelian groups on X and let V ⊂ U be open subsets.
Let s ∈ I(V ), then we must find s′ ∈ I(U) which maps to s under the map I(U)→ I(V ).
Let ZV be the constant sheaf Z on V extended by 0 outside V (thus ZV (W ) = 0 if W 6⊂ V ).
Define a map ZV → I by sending the section 1 ∈ ZV (V ) to s ∈ I(V ). Then since ZV ↪→ ZU

and I is injective there is a map ZU → I which sends the section 1 ∈ ZU to a section
s′ ∈ I(U) whose restriction to V must be s.

Remark 9.8. The same proof also shows that injective sheaves in the category of OX-modules
are flasque.

Corollary 9.9. If F is flasque then H i(X,F) = 0 for all i > 0.

Proof. Page 208 of [Hartshorne].

Corollary 9.10. Let (X,OX) be a ringed space, then the derived functors of Γ : ModOX →
Ab are equal to H i(X,F).

Proof. If
0→ F → I0 → I1 → · · ·

is an injective resolution of F in ModOX then, by the above remark, it is a flasque resolution
in the category Ab(X) hence we get the regular cohomology.

Remark 9.11. Warning! If (X,OX) is a scheme and we choose an injective resolution in
the category of quasi-coherent OX-modules then we are only guaranteed to get the right
answer if X is Noetherian.

10 Examples

Example 10.1. Suppose C is a nonsingular projective curve over an algebraically closed field
k. Let K = K(C) be the function field of C and let KC denote the constant sheaf K. Then
we have an exact sequence

0→ OC → KC →
⊕
P∈C

P closed

K/OP → 0,

where the map KC →
⊕

K/OP has only finitely many components nonzero since a function
f ∈ K has only finitely many poles. Since C is irreducible KC is flasque and since K/OP
is a skyscraper sheaf it is flasque so since direct of flasque sheaves are flasque,

⊕
K/OP

is flasque. One checks that the sequence is exact and so this is a flasque resolution of
OC . Taking global sections and applying the exact sequence of cohomology gives an exact
sequence

K →
⊕

P closed

K/OP → H1(X,OC)→ 0,

and H i(X,OC) = 0 for i ≥ 2. Thus the only interesting information is dimkH
1(X,OC)

which is the geometric genus of C.

12



11 First Vanishing Theorem

“Anyone who studies algebraic geometry must read French... looking up the
more general version of this proof in EGA would be a good exercise.”

Theorem 11.1. Let A be a Noetherian ring, X = SpecA and F a quasi-coherent sheaf on
X, then H i(X,F) = 0 for i > 0.

Remark 11.2. The theorem is true without the Noetherian hypothesis on A, but the proof
uses spectral sequences.

Remark 11.3. The assumption that F is quasi-coherent is essential. For example, let X be
an affine algebraic curve over an infinite field k. Then X is homeomorphic as a topological
space to P1

k so the sheaf O(−2) on P1
k induces a sheaf F of abelian groups on X such that

H1(X,F) ∼= H1(P1
k,O(−2)) 6= 0.

Remark 11.4. If I is an injective A-module then Ĩ need not be injective in Mod(OX) or
Ab(X). For example, let A = k = Fp and X = SpecA, then I = k is an injective A-module
but Ĩ is the constant sheaf k. But k is a finite group hence not divisible so Ĩ is not injective.
(See Proposition A3.5 in Eisenbud’s Commutative Algebra.)

Proposition 11.5. Suppose A is Noetherian and I is an injective A-module, then Ĩ is
flasque on SpecA.

The proposition implies the theorem since if F is quasi-coherent then F = M̃ for some
A-module M . There is an injective resolution

0→M → I•

which, upon applying the exact functor ,̃ gives a flasque resolution

0→ M̃ = F → Ĩ•.

Now applying Γ gives us back the original resolution

Γ : 0→M → I•

which is exact so the cohomology groups vanish for i > 0.

Proof. Let A be a Noetherian ring and I an injective A, then Ĩ is a quasi-coherent sheaf on
X = SpecA. We must show that it is flasque. It is sufficient to show that for any open set
U , Γ(X)→ Γ(U) is surjective.

Case 1, special open affine: Suppose U = Xf is a special open affine. Then we have a
commutative diagram

Γ(X, Ĩ) −−−→ Γ(Xf , Ĩ)

=

y =

y
I

surjective?−−−−−−→ If

To see that the top map is surjective it is equivalent to show that I → If is surjective. This
is a tricky algebraic lemma (see Hartshorne for proof).

Case 2, any open set: Let U be any open set. See Hartshorne for the rest.

13



12 Čech Cohomology

Let X be a topological space, U = (Ui)i∈I an open cover and F a sheaf of abelian groups.

We will define groups Ȟ
i
(U,F) called Čech cohomology groups.

Warning: Ȟ
i
(U, ·) is a functor in F , but it is not a δ-functor.

Theorem 12.1. Let X be a Noetherian scheme, U an open cover and F a quasi-coherent

sheaf, then Ȟ
i
(U,F) = H i(X,F) for all i.

12.1 Construction

Totally order the index set I. Let

Ui0···ip = ∩pj=0Uij .

For any p ≥ 0 define

Cp(U,F) =
∏

i0<i1<···<ip

F(Ui0···ip).

Then we get a complex

C0(U,F)→ C1(U,F)→ · · · → Cp(U,F)→ · · ·

by defining a map
d : Cp(U,F)→ Cp+1(U,F)

by, for α ∈ Cp(U,F),

(dα)i0···ip+1 :=

p+1∑
0

(−1)jαi0···îj ···ip+1
|Ui0···ip+1

.

One checks that d2 = 0.

Lemma 12.2. Ȟ
0
(U,F) = Γ(X,F)

Proof. Applying the sheaf axioms to the exact sequence

0→ Γ(X,F)→ C0 =
∏
i∈I

F(Ui)
d−→ C1 =

∏
i<j

F(Uij)

we see that Ȟ
0
(U,F) = ker d = Γ(X,F).

12.2 Sheafify

Let X be a topological space, U an open cover and F a sheaf of abelian groups. Then we
define

Cp(U,F) =
∏

i0<···<ip

j∗(F|Ui0···ip )

and define
d : Cp(U,F)→ Cp+1(U,F)

in terms of the d defined above by, for V an open set,

Cp(U,F)(V ) = Cp(U|V ,F|V )
d−→ Cp+1(U|V ,F|V ) = Cp+1(U,F)(V ).

14



Remark 12.3. Cp(U,F) = Γ(X, Cp(U,F)

Lemma 12.4. The sequence

0→ F → C0(U,F)→ C1(U,F)→ · · ·

is a resolution of F , i.e., it is exact.

Proof. We define the map F → C0 by taking the product of the natural maps F → f∗(F|Ui),
exactness then follows from the sheaf axioms.

To show the rest of the sequence is exact it suffices to show exactness at the stalks. So let
x ∈ X, and suppose x ∈ Uj. Given αx ∈ Cpx it is represented by a section α ∈ Γ(V, Cp(U,F)),
over a neighborhood V of x, which we may choose so small that V ⊂ Uj. Now for any p-tuple
i0 < . . . < ip−1, we set

(kα)i0,...,ip−1 = αj,i0,...,ip−1 .

This makes sense because

V ∩ Ui0,...,ip−1 = V ∩ Uj,i0,...,ip−1 .

Then take the stalk of kα at x to get the required map k.
Now we check that for any p ≥ 1 and α ∈ Cpx,

(dk + kd)(α) = α.

First note that

(dkα)i0,...,ip =

p∑
`=0

(−1)`(kα)i0,...,î`,...,ip

=
∑

(−1)`αj,i0,...,î`,...,ip

Whereas, on the other hand,

(kdα)i0,...,ip = (dα)j,i0,...,ip

= (−1)0αi0,...,ip +

p∑
`=1

(−1)`+1αj,i0,...,î`,...,ip

Adding these two expressions yields αi0,...,ip as claimed.
Thus k is a homotopy operator for the complex C•x, showing that the identity map is

homotopic to the zero map. It follows that the cohomology groups Hp(C•x) of this complex
are 0 for p ≥ 1.

Lemma 12.5. If F is flasque then Cp(U,F) is also flasque.

Proof. If F is flasque then F|Ui0,...,ip is flasque so j∗(F|Ui0,...,ip ) is flasque so
∏
j∗(F|Ui0,...,ip )

is flasque.

Proposition 12.6. If F is flasque then Ȟ
p
(U,F) = 0.

Proof. Consider the resolution
0→ F → C•(U,F).

By the above lemma it is flasque, so we can use it to compute the usual cohomology groups
of F . But F is flasque, so Hp(X,F) = 0 for p > 0. On the other hand, the answer given by
this resolution is

Hp(Γ(X, C•(U,F))) = Ȟ
p
(U,F).

So we conclude that Ȟ
p
(U,F) = 0 for p > 0.
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Lemma 12.7. Let X be a topological space, and U an open covering. Then for each p ≥ 0
there is a natural map, functorial in F ,

Ȟ
p
(U,F)→ Hp(X,F).

Theorem 12.8. Let X be a Noetherian separated scheme, let U be an open affine cover of
X, and let F be a quasi-coherent sheaf on X. Then for all p ≥ 0 the natural maps give
isomorphisms

Ȟ
p
(U,F) ∼= Hp(X,F).

13 Čech Cohomology and Derived Functor Cohomol-

ogy

Today we prove

Theorem 13.1. Let X be a Noetherian, separated scheme, U an open cover and F a quasi-
coherent sheaf on X. Then

Ȟ
i
(U,F) = H i(X,F).

To do this we introduce a condition (*):
Condition *: Let F be a sheaf of abelian groups and U = (Ui)i∈I an open cover. Then

the pair F and U satisfy condition (*) if for all i0, . . . , ip ∈ I,

H(Ui0,...,ip ,F) = 0, alli > 0.

Lemma 13.2. If 0 → F ′ → F → F ′′ → 0 is an exact sequence in Ab(X) and F ′ satisfies

(*) then there is a long exact sequence for Ȟ
i
(U, ·).

Proof. Since the global sections functor is left exact and cohomology commutes with prod-
ucts, we have an exact sequence

0→ Cp(U,F ′) =
∏

i0<···<ip

F ′(Ui0,...,ip)→ Cp(U,F) =
∏

i0<···<ip

F(Ui0,...,ip)

→ Cp(U,F ′′) =
∏

i0<···<ip

F ′′(Ui0,...,ip)→
∏

i0<···<ip

H1(Ui0,...,ip ,F ′) = 0

where the last term is 0 because F ′ satisfies condition (*). Replacing p by · gives an exact

sequence of complexes. Applying Ȟ
i
(U, ·) then gives the desired result.

Theorem 13.3. Let X be a topological space, U an open cover and F ∈ Ab(X). Suppose
F and U satisfy (*). Then the maps

ϕi : Ȟ
i
(U,F)→ H i(X,F)

are isomorphisms.

Proof. The proof is a clever induction.

Lemma 13.4. If 0 → F ′ → F → F ′′ → 0 is exact and F ′ and F satisfy (*) then F ′′
satisfies (*).
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To prove the main theorem of the section use the fact that X separated implies any
finite intersection of affines is affine and then use the vanishing theorem for cohomology of a
quasi-coherent sheaf on an affine scheme. The above theorem then implies the main result.
From now on we will always assume our schemes are separated unless otherwise stated.

Corollary 13.5. If X is a (separated) Noetherian scheme and X can be covered by n + 1
open affines for some n > 0 then H i(X,F) = 0 for i > n.

Example 13.6. Let X = Pn
k , then the existence of the standard affine cover U0, . . . , Un implies

that H i(X,F) = 0 for i > n.

Example 13.7. Let X be a projective curve embedded in Pk
n. Let U0 ⊂ X be open affine,

then X − U0 is finite. Thus U0 ⊂ X ⊂ Pn and X − U0 = {P1, . . . , Pr}. In Pn there is
a hyperplane H such that P1, . . . , Pr 6∈ H. Then P1, . . . , Pr ∈ Pn − H = An = V . Then
U1 = V ∩X is closed in the affine set V , hence affine. Then X = U0 ∪ U1 with U0 and U1

both affine. Thus H i(X,F) = 0 for all i ≥ 2.

Exercise 13.8. If X is any projective scheme of dimension n then X can be covered by n+ 1
open affines so

H i(X,F) = 0 for all i > n.

[Hint: Use induction.]

Hartshorne was unaware of the answer to the following question today.

Question 13.9. If X is a Noetherian scheme of dimension n do there exist n + 1 open
affines covering X.

Theorem 13.10 (Grothendieck). If F ∈ Ab(X) then H i(X,F) = 0 for all i > n = dimX.

Example 13.11. Let k be an algebraically closed field. Then X = A2
k − {(0, 0)} is not affine

since it has global sections k[x, y]. We compute H1(X,OX) by Čechcohomology. Write
X = U1 ∪ U2 where U1 = {x 6= 0} and U2 = {y 6= 0}. Then the Čechcomplex is

C ·(U,OX) : k[x, y, x−1]⊕ k[x, y, y−1]
d−→ k[x, x−1, y, y−1].

Thus one sees with a little thought that H0 = ker d = k[x, y] and H1 = {
∑

i,j<0 aijx
ixj :

aij ∈ k} = E as k-vector spaces (all sums are finite).

13.1 History of this Module E

E = {
∑
i,j<0

aijx
ixj : aij ∈ k}

1. Macaulay’s “Inverse System” (1921?)

2. E is an injective A-module, in fact, the indecomposable injective associated to the
prime (x, y)

3. E is the dualizing module of A, thus D = HomA(·, E) is a dualizing functor for finite
length modules (so doing D twice gives you back what you started with).

4. Local duality theorem: this is the module you “hom into”.

17



14 Cohomology of Pn
k

Today we begin to compute H i(X,OX(`)) for all i and all `.
a) H0(X,OX(`)) is the vector space of forms of degree ` in S = k[x0, . . . , xn], thus

⊕`∈ZH0(OX(`)) = H0
∗ (OX) = Γ∗(OX) = S.

Proposition 14.1. There is a natural map

H0(OX(`))×H i(OX(m))→ H i(OX(`+m)).

Proof. α ∈ H0(OX(`)) defines a map OX → OX(`) given by 1 7→ α. This defines a map

OX ⊗OX(m)
α(m)−−−→ OX(`)⊗OX(m)

which gives a map OX(m) → OX(` + m). This induces the desired map H i(OX(m)) →
H i(OX(`+m)).

b) H i(OX(`)) = 0 when 0 < i < n and for all `. (This doesn’t hold for arbitrary
quasi-coherent sheaves!)

c) Hn
∗ (X,OX) is a graded S-module which is 0 in degrees ≥ −n, but is nonzero in degrees

≤ n− 1. As a k-vector space it is equal to

{
∑
ij<0

ai0,...,inx
i0
0 · · ·xinn : sum is finite}.

d) For ` ≥ 0 the map

H0(OX(`))×Hn(OX(−`− n− 1))→ Hn(OX(−n− 1)) ∼= k

is a perfect pairing so we have a duality (which is in fact a special case of Serre Duality).

15 Serre’s Finite Generation Theorem

We relax the hypothesis from the last lecture and claim that the same results are still true.

Theorem 15.1. Let A be a Noetherian ring and X = Pn
A. Then

1. H0
∗ (OX) = ⊕`H0

` (OX(`)) = S = A[x0, . . . , xn]

2. H i
∗(OX) = 0 for all 0 < i < n

3. Hn
∗ (OX) = {

∑
I=i0,...,in

aIx
i0
0 · · ·xinn : aI ∈ A}

4. H0(OX(`))×Hn(OX(−`− n− 1))→ Hn(OX(−n− 1)) is a perfect pairing of free A-
modules. Notice that Hn(OX(−n−1)) is a free A-module of rank 1 so it is isomorphic
to A, but not in a canonical way!

Although pairing is in general not functorial as a map into A, there is a special situation
in which it is. Let Ω1

X/k be the sheaf of differentials on X = Pn
k . Let ω = Ωn

X/k = ΛnΩ1 be

the top level differentials (or “dualizing module”). Then some map is functorial (??)
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“Is ω more important than Ω?” – Janos Csirik

“That’s a value judgment... you can make your own decision on that... I won’t.”
– Hartshorne

Theorem 15.2 (Serre). Let X be a projective scheme over a Noetherian ring A. Let F be
any coherent sheaf on X. Then

1. H i(X,F) is a finitely generated A-module for all i

2. for all F there exists n0 such that for all i > 0 and for all n ≥ n0, H i(X,F(n)) = 0.

The following was difficult to prove last semester and we were only able to prove it under
somewhat restrictive hypothesis on A (namely, that A is a finitely generated k-algebra).

Corollary 15.3. Γ(X,F) is a finitely generated A-module.

Proof. Set i = 0 in 1.

Proof. (of theorem)
I. Reduce to the case X = Pr

A. Use the fact that the push forward of a closed subscheme
has the same cohomology to replace F by i∗(F).

II. Special case, F = OPr(`) any ` ∈ Z. 1. and 2. both follow immediately from the
previous theorem. This is where we have done the work in explicit calculations.

III. Cranking the Machine of Cohomology

15.1 Application: The Arithmetic Genus

Let k be an algebraically closed field and V ⊂ X = Pn
k a projective variety. The arithmetic

genus of V is
pa = (−1)dimV (pV (0)− 1)

where pV is the Hilbert polynomial of V , thus pV (`) = dimk(S/IV )` for all ` � 0. The
Hilbert polynomial depends on the projective embedding of V .

Proposition 15.4. pV (`) =
∑∞

i=0(−1)i dimkH
i(OV (`)) for all ` ∈ Z.

This redefines the Hilbert polynomial. Furthermore,

pa = (−1)dimV (pV (0)− 1) = (−1)dimV

∞∑
i=0

(−1)i dimk(H
i(OV ))

which shows that pa is intrinsic, i.e., it doesn’t depend on the embedding of V in projective
space.

16 Euler Characteristic

Fix an algebraically closed field k, let X = Pn
k . Suppose F is a coherent sheaf on X. Then

by Serre’s theorem H i(X,F) is a finite dimensional k-vector space. Let

hi(X,F) = dimkH
i(X,F).
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Definition 16.1. The Euler characteristic of F is

χ(F) =
n∑
i=0

(−1)ihi(X,F).

Thus χ is a function Coh(X)→ Z.

Lemma 16.2. If k is a field and

0→ V1 → V2 → · · · → VN → 0

is an exact sequence of finite dimensional vector spaces, then
∑N

i=1(−1)i dimVi = 0.

Proof. Since every short exact sequence of vector spaces splits, the statement is true when
N = 3. If the statement is true for an exact sequence of length N − 1 then, applying it to
the exact sequence

0→ V2/V1 → V3 → · · · → VN → 0,

shows that dimV2/V1 − dimV3 + · · · ± dimVn = 0 from which the result follows.

Lemma 16.3. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of coherent sheaves on X,
then

χ(F) = χ(F ′) + χ(F ′′).

Proof. Apply the above lemma to the long exact sequence of cohomology taking into account
that Hn(F ′′) = 0 by Serre’s vanishing theorem.

More generally, any map χ from an abelian category to Z is called additive if, whenever

0→ F0 → F1 → · · · → Fn → 0

is exact, then
n∑
i=0

(−1)iχ(F i) = 0.

Question. Given an abelian category A find an abelian group A and a map X : A → A

such that every additive function χ : A → G factor through A X−→ A. In the category of
coherent sheaves the Grothendieck group solves this problem.

Let X = Pn
k and suppose F is a coherent sheaf on X. The Euler characteristic induces

a map
Z→ Z : n 7→ χ(F(n)).

Theorem 16.4. There is a polynomial pF ∈ Q[z] such that pF(n) = χ(F(n)) for all n ∈ Z.

The polynomial pF(n) is called the Hilbert polynomial of F . Last semester we defined
the Hilbert polynomial of a graded module M over the ring S = k[x0, . . . , xn]. Define
ϕM : Z → Z by ϕM(n) = dimkMn. Then we showed that there is a unique polynomial pM
such that pM(n) = ϕM(n) for all n� 0.

Proof. We induct on dim(suppF). If dim(suppF) = 0 then suppF is a union of closed
points so F = ⊕ki=1Fpi . Since each Fpi is a finite dimensional k-vector space and OX(n) is
locally free, there is a non-canonical isomorphism F(n) = F ⊗OX(n) ∼= F . Thus

χF(n) = h0(F(n)) = h0(F) =
k∑
i=1

dimk Fpi
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which is a constant function, hence a polynomial.
Next suppose dim(suppF) = s. Let x ∈ S1 = H0(OX(1)) be such that the hyperplane

H := {x = 0} doesn’t contain any irreducible component of suppF . Multiplication by x
defines a map OX(−1)

x−→ OX which is an isomorphism outside of H. Tensoring with F
gives a map F(−1)→ F . Let R be the kernel and Q be the cokernel, then there is an exact
sequence

0→ R→ F(−1)
x−→ F → Q→ 0.

Now suppR∪suppQ ⊂ suppF∩H so dim(suppR) ≤ dim(suppF)∩H < dim(suppF) and
dim(suppQ) ≤ dim(suppF) ∩ H < dim(suppF) so by our induction hypothesis χ(Q(n))
and χ(R(n)) are polynomials. Twisting the above exact sequence by n and applying χ yields

χ(F(n))− χ(F(n− 1)) = χ(Q(n))− χ(R(n)) = PQ(n)− PR(N).

Thus the first difference function of χ(F(n)) is a polynomial so χ(F(n)) is a polynomial.

Example 16.5. Let X = P1 and F = OX . Then S = k[x0, x1], M = S and dimSn = n + 1.
Thus pM(z) = z + 1 and pM(n) = ϕ(n) for n ≥ −1. Computing the Hilbert polynomial in
terms of the Euler characteristic gives

χ(F(n)) = h0(OX(n))− h1(OX(n)) =

{
(n+ 1)− 0 n ≥ −1

0− (−n− 1) = n+ 1 n ≤ −2

Thus pF(n) = n+ 1.

The higher cohomology corrects the failure of the Hilbert polynomial in lower degrees.

17 Correspondence between Analytic and Algebraic

Cohomology

Homework. Chapter III, 4.8, 4.9, 5.6.
Look at Serre’s 1956 paper Geometrie Algebraique et Geometrie Analytique (GAGA).

“What are the prerequisites?” asks Janos. “French,” answers Nghi. “Is there an English
translation” asks the class. “Translation? ... What for? It’s so beautiful in the French,”
retorts Hartshorne.

Let F be a coherent sheaf on Pn
C with its Zariski topology. Then we can associate to F

a sheaf Fan on Pn
C with its analytic topology. F is locally a cokernel of a morphism of free

sheaves so we can define Fan by defining Oan
X . The map

Coh(Pn
C)

an−−→ Cohan(Pn
C)

is an equivalence of categories and

H i(X,F)
∼−→ H i(Xan,Fan)

for all i. If X/C is affine the corresponding object Xan
C is a Stein manifold.
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18 Arithmetic Genus

Let X ↪→ Pn
k be a projective variety with k algebraically closed and suppose F is a coherent

sheaf on X. Then
χ(F) =

∑
(−1)ihi(F)

is the Euler characteristic of F ,
PF(n) = χ(F(n))

gives the Hilbert polynomial of F on X, and

pa(X) = (−1)dimX(POX (0)− 1)

is the arithmetic genus of X. The arithmetic genus is independent of the choice of embedding
of X into Pn

k .
If X is a curve then

1− pa(X) = h0(OX)− h1(OX)

. Thus if X is an integral projective curve then h0(OX) = 1 so pa(X) = h1(OX). If X is a
nonsingular projective curve then pa(X) = h1(OX) is called the genus of X.

Let V1 and V2 be varieties, thus they are projective integral schemes over an algebraically
closed field k. Then V1 and V2 are birationally equivalent if and only if K(V1) ∼= K(V2)
over k, where K(Vi) is the function field of Vi. V is rational if V is bironational to Pn

k

for some n. Since a rational map on a nonsingular projective curve always extends, two
nonsingular projective curves are birational if and only if they are isomorphic. Thus for
nonsingular projective curves the genus g is a birational invariant.

18.1 The Genus of Plane Curve of Degree d

Let C ⊂ P2
k be a curve of degree d. Then C is a closed subscheme defined by a single

homogeneous polynomial f(x0, x1, x2) of degree d, thus

C = Proj(S/(f)).

Some possibilities when d = 3 are:

• f : Y 2 −X(X2 − 1), a nonsingular elliptic curve

• f : Y 2 −X2(X − 1), a nodal cubic

• f : Y 3, a tripled x-axis

• f : Y (X2 + Y 2 − 1), the union of a circle and the x-axis

Now we compute pa(C). Let I = (f) with deg f = d. Then

1− pa = h0(OC)− h1(OC) + h2(OC) = χ(OC).

We have an exact sequence
0→ IC → OP2 → OC → 0.

Now IC ∼= OP2(−d) since OP2(−d) can be thought of as being generated by 1/f on
D+(f) and by something else elsewhere, and then multiplication by f gives an inclusion
soP2(−d)|D+(f) → OP2|D+(f), etc. Therefore

χ(OC) = χ(OP2)− χ(OP2(−d)).
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Now
χ(OP2) = h0(OP2)− h1(OP2) + h2(OP2) = 1 + 0 + 0

and

χ(OP2(−d)) = h0(OP2(−d))− h1(OP2(−d)) + h2(OP2(−d)) = 0 + 0 +
1

2
(d− 1)(d− 2).

For the last computation we used duality (14.1) to see that

h2(OP2(−d)) = h0(OP2(d− 3) = dimSd−3 =
1

2
(d− 1)(d− 2).

Thus χ(OC) = 1− 1
2
(d− 1)(d− 2) so

pa(C) =
1

2
(d− 1)(d− 2).

19 Not Enough Projectives

Exercise 19.1. Prove that the category of quasi-coherent sheaves on X = P1
k doesn’t have

enough projectives.

Proof. We show that there is no projective object P ∈ Qco(X) along with a surjection
P → OX → 0.

Lemma 19.2. If P
ϕ−→ OX is surjective and P is quasi-coherent, then there exists ` such

that H0(P(`))→ H0(OX(`)) is surjective.

The false proof of this lemma is to write down an exact sequence 0→ R→ P → OX → 0
then use the “fact” that H1(R(`)) = 0 for sufficiently large `. This doesn’t work because R
might not be coherent since it is only the quotient of quasi-coherent sheaves. A valid way to
proceed is to use (II, Ex. 5.15) to write P as an ascending union of its coherent subsheaves,
P = ∪iPi. Then since ϕ is surjective, OX = ∪iϕ(Pi), where ϕ(Pi) is the sheaf image. Using
the fact that ϕ(Pi) is the sheaf image, that OX is coherent and that the union is ascending,
this implies OX = ϕ(Pi) for some i. We now have an exact sequence

0→ Ri → Pi → OX → 0

with Ri coherent since Pi and OX are both coherent. Thus H i(Ri(`)) = 0 for l� 0 which,
upon computing the long exact sequence of cohomology, gives the lemma.

Now fix such an `. We have a commutative diagram

P −−−→ OX −−−→ 0

∃
y y

OX(−`− 1) −−−→ k(p) −−−→ 0

Twisting by ` gives a commutative diagram

P(`) −−−→ OX(`) −−−→ 0y y
OX(−1) −−−→ k(p) −−−→ 0

Let s ∈ Γ(OX(`)) be a global section which is nonzero at p, then there is t ∈ Γ(P(`)) which
maps to s. But then by commutativity t must map to some element of Γ(OX(−1)) = 0
which maps to a nonzero element of k(p), which is absurd.
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20 Some Special Cases of Serre Duality

20.1 Example: OX on Projective Space

Suppose X = Pn
k , then there is a perfect pairing

H0(OX(`))×Hn(OX(−`− n− 1))→ Hn(OX(−n− 1)) ∼= k.

For this section let
ωX = OX(−n− 1).

Because the pairing is perfect we have a non-canonical but functorial isomorphism

H0(OX(`)) ∼= Hn(OX(−`− n− 1))′.

(If V is a vector space then V ′ denotes its dual.)

20.2 Example: Coherent sheaf on Projective Space

Suppose F is any coherent sheaf on X = Pr
k. View Hom(F , ω) as a k-vector space.

By functoriality and since Hn(ω) = k there is a map

ϕ : Hom(F , ω)→ Hom(Hn(F), Hn(ω)) = Hn(F)′.

Proposition 20.1. ϕ is an isomorphism for all coherent sheaves F .

Proof. Case 1. If F = OX(`) for some ` ∈ Z then this is just a restatement of the previous
example.

Case 2. If E = ⊕ki=1O(`i) is a finite direct sum, then the statement follows from the
commutativity of the following diagram.

Hom(⊕ki=1O(`i), ω) −−−→ Hn(⊕ki=1O(`i))
′y∼= y∼=

⊕ki=1 Hom(O(`i), ω) −−−→
∼

⊕ki=1H
n(O(`i))

′

Case 3. Now let F be an arbitrary coherent sheaf. View ϕ as a morphism of functors

Hom(·, ω)→ Hn(·)′.

The functor Hom(·, ω) is contravarient left exact. Hn(·) is covariant right exact since X = Pn
k

so Hn+1(F) = 0 for any coherent sheaf F . Thus Hn(·)′ is contravarient left exact.

Lemma 20.2. Let F be any coherent sheaf. Then there exists a partial resolution

E1 → E0 → F → 0

by sheaves of the form ⊕iOX(`i).

By (II, 5.17) for `� 0, F(`) is generated by its global sections. Thus there is a surjection

OmX → F(`)→ 0

which upon twisting by −` becomes

E0 = OX(−`)m → F → 0.
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Let R be the kernel so
0→ R→ E → F

is exact. Since R is coherent, we can repeat the argument above to find E1 surjecting onto
R. This yields the desired exact sequence.

Now we apply the functors Hom(·, ω) and Hn(·)′. This results in a commutative diagram

0 −−−→ Hom(F , ω) −−−→ Hom(E0, ω) −−−→ Hom(E1, ω)y ϕ(F)

y ϕ(E0)

y yϕ(E1)

0 −−−→ Hn(F)′ −−−→ Hn(E0)′ −−−→ Hn(E1)′

From cases 1 and 2, the maps ϕ(E0) and ϕ(E1) are isomorphisms so ϕ(F) must also be an
isomorphism.

20.3 Example: Serre Duality on Pn
k

Let X = Pn
k and F be a coherent sheaf. Then for each i there is an isomorphism

ϕi : ExtiOX (F , ω)→ Hn−i(F)′.

21 The Functor Ext

Let (X,OX) be a scheme and F ,G ∈Mod(OX). Then Hom(F ,G) ∈ Ab. View Hom(F , •)
as a functor Mod(OX) → Ab. Note that Hom(F , •) is left exact and covariant. Since
Mod(OX) has enough injectives we can take derived functors.

Definition 21.1. The Ext functors ExtiOX (F , •) are the right derived functors of HomOX (F , •)
in the category Mod(OX).

Thus to compute ExtiOX (F ,G), take an injective resolution

0→ G → I0 → I1 → · · ·

then
ExtiOX (F ,G) = H i(HomOX(F ,I•)).

Remark 21.2. Warning! If i : X ↪→ Pn is a closed subscheme of P n then ExtiOX (F ,G) need

not equal ExtiPn(i∗(F), i∗(G)). With cohomology these are the same, but not with Ext!

Example 21.3. Suppose F = OX , then HomOX (OX ,G) = Γ(X,G). Thus ExtiOX (OX , •) are
the derived functors of Γ(X, •) in Mod(OX). Since we can computer cohomology using
flasque sheaves this implies ExtiOX (OX , •) = H i(X, •). Thus Ext generalizes H i but we get
a lot more besides.

21.1 Sheaf Ext

Now we define a new kind of Ext. The sheaf hom functor

HomOX (F , •) : Mod(OX)→Mod(OX)

is covariant and left exact. Since Mod(OX) has enough injectives we can defined the derived
functors ExtiOX (F , •).

25



Example 21.4. Consider the functor ExtiOX (OX , •). Since HomOX (OX ,G) = G this is the
identity functor which is exact so

ExtiOX (OX ,G) =

{
G i = 0

0 i > 0

What if we have a short exact sequence in the first variables, do we get a long exact
sequence?

Proposition 21.5. The functors Exti and Exti are δ-functors in the first variable. Thus if

0→ F ′ → F → F ′′ → 0

is exact then there is a long exact sequence

0→Hom(F ′′,G)→ Hom(F ,G)→ Hom(F ′,G)→ Ext1(F ′′,G)→ Ext1(F ,G)→ Ext1(F ,G)→ · · ·

The conclusion of this proposition is not obvious because we the Exti as derived functors
in the second variable, not the first.

Proof. Suppose we are given 0→ F ′ → F → F ′′ → 0 and G. Choose an injective resolution
0→ G → I• of G. Since Hom(•, In) is exact (by definition of injective object), the sequence

0→ Hom(F ′′, I•)→ Hom(F , I•)→ Hom(F ′, I•)→ 0

is exact. By general homological algebra these give rise a long exact sequence of cohomology
of these complexes. For Exti simply scriptify everything!

21.2 Locally Free Sheaves

Proposition 21.6. Suppose E is a locally free OX-module of finite rank. Let E∨ = Hom(E ,O).
For any sheaves F , G,

Exti(F ⊗ E ,G) ∼= Exti(F ,G ⊗ E∨)

and
Exti(F ⊗ E ,G) ∼= Exti(F ,G ⊗ E∨) ∼= Exti(F ,G)⊗ E∨.

Lemma 21.7. If E is locally free of finite rank and I ∈Mod(OX) is injective then I ⊗ E
is injective.

Proof. Suppose 0 → F → G is an injection and there is a map ϕ : F → I ⊗ E . Tensor
everything with E∨. Then we have an injection 0 → F ⊗ E∨ → G ⊗ E∨ and a map ϕ′ :
F ⊗ E∨ → I. Since I is injective there is a map G ⊗ E∨ → I which makes the appropriate
diagram commute. Tensoring everything with E gives a map making the original diagram
commute.

of proposition. Let 0→ G → I• by an injective resolution of G. Since

Hom(F ⊗ E , I•) = Hom(F , I• ⊗ E∨),

we see that
0→ G ⊗ E∨ → I · ⊗ E∨

is an injective resolution of G ⊗ E∨. Thus Hom(F , I• ⊗ E∨) computes Ext(F ⊗ E , •).
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Proposition 21.8. If F has a locally free resolution E· → F → 0 then

ExtiOX (F ,G) = H i(Hom(E•,G)).

Remark 21.9. Notice that when i > 0 and E is locally free,

Exti(E ,G) = Exti(OX ,G ⊗ E∨) = 0.

Proof. Regard both sides as functors in G. The left hand side is a δ-functor and vanishes for
G injective. I claim that that right hand side is also a δ-functor and vanishes for G-injective.

Lemma 21.10. If E is locally free, then Hom(E , •) is exact.

22 More Technical Results on Ext

Let (X,OX) be a scheme and F ,G be sheaves in the category Mod(OX). Then Ext(F ,G)
and Ext(F ,G) are the derived functors of Hom, resp. Hom, in the second variable.

Lemma 22.1. If F and G are coherent over a Noetherian scheme X, then Exti(F ,G) is
coherent.

This lemma would follow immediately from the following fact which we haven’t proved
yet.

Fact 22.2. Let X = SpecA with A Noetherian and let M be an A-module. Then

ExtiOX (M̃, Ñ) = ExtiA(M,N)

and
ExtiOX (M̃, Ñ) = (ExtiA(M,N))˜.

Instead of using the fact we can prove the lemma using a proposition from yesterday.

Proof. Choose a locally free resolution

L• → F → 0

of F . Then
Exti(F ,G) = H i(Hom(L•,G)).

But all of the kernels and cokernels in Hom(L•,G) are coherent, so the cohomology is. (We
can’t just choose an injective resolution of F and apply the definitions because there is no
guarantee that we can find an injective resolution by coherent sheaves.)

Proposition 22.3. Let X be a Noetherian projective scheme over k and let F and G be
coherent on X. Then for each i there exists an n0, depending on i, such that for all n ≥ n0,

ExtiOX (F ,G(n)) = Γ(ExtiOX (F ,G(n))).
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Proof. When i = 0 the assertion is that

Hom(F ,G(n)) = Γ(Hom(F ,G(n)))

which is obvious.
Claim. Both sides are δ-functors in F . We have already showed this for the left hand

side. [I don’t understand why the right hand side is, but it is not trivial and it caused much
consternation with the audience.]

To show the functors are isomorphic we just need to show both sides are coeffaceable.
That is, for every coherent sheaf F there is a coherent sheaf E and a surjection E → F → 0
such that ExtiOX (E) = 0 and similarly for the right hand side. Thus every coherent sheaf is
a quotient of an acyclic sheaf.

Suppose F is coherent. Then for `� 0, F(`) is generated by its global sections, so there
is a surjection

OaX → F(`)→ 0.

Untwisting gives a surjection
OX(−`)a → F → 0.

Let E = OX(−`)a, then I claim that E is acyclic for both sides. First consider the left hand
side. Then

Exti(⊕O(−`),G(n)) = ⊕Exti(OX(−`),G(n))

= ⊕Exti(OX ,G(`+ n))

= H i(X,G(`+ n))

By Serre (theorem 5.2 of the book) this is zero for n sufficiently large. For the right hand
side the statement is just that

Exti(E ,G(n)) = 0

which we have already done since E is a locally free sheaf.
Thus both functors are universal since they are coeffaceable. Since universal functors

are completely determined by their zeroth one they must be equal.

Example 22.4. One might ask if Exti necessarily vanishes for sufficiently large i. The answer
is no. Here is an algebraic example which can be converted to a geometric example. Let
A = k[ε]/(ε2), then a projective resolution L• of k is

· · · ε−→ A
ε−→ A

ε−→ A
ε−→ k → 0.

Then Hom(L•, k) is the complex

k
0−→ k

0−→ k
0−→ k

0−→ · · ·

Thus ExtiA(k, k) = k for all i ≥ 0.

23 Serre Duality

We are now done with technical results on Ext’s so we can get back to Serre duality on Pn.
Let X = Pn

k and let ω = OX(−n − 1). Note that this is an ad hoc definition of ω which
just happens to work since X = Pn

k . In the more general situation it will be an interesting
problem just to show the so called dualizing sheaf ω actually exists. When our variety is
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nonsingular, ω will be the canonical sheaf. We have shown that for any coherent sheaf F
there is a map

Hom(F , ω)
∼−→ Hn(F)∨.

The map is constructed by using the fact that Hn is a functor:

Hom(F , ω)→ Homk(H
n(F), Hn(ω)) = Homk(H

n(F), k) = Hn(F)∨.

We shall use satellite functors to prove the following theorem.

Theorem 23.1. Let F be a coherent sheaf on Pn
k . Then there is an isomorphism

Exti(F , ω)
∼−→ Hn−i(F)∨.

Proof. Regard both sides as functors in F .
1. Both sides are δ-functors in F . We have already checked this for Exti. Since Hn−i is

a delta functor in F , so is (Hn−i)∨. Note that both sides are contravarient.
2. They agree for i = 0. This was proved last time.
3. Now we just need to show both sides are coeffaceable. Suppose E → F → 0 with

E = O(−`)⊕a. For some reason we can assume ` � 0. We just need to show both sides
vanish on this E . First computing the left hand side gives

⊕Exti(O(−`), ω) = H i(ω(`)) = 0

for `� 0. Next computing the right hand side we get

Hn−i(O(−`)) = 0

by the explicit computations of cohomology of projective space (in particular, note that
i > 0).

Next time we will generalize Serre duality to an arbitrary projective scheme X of dimen-
sion n. We will proceed in two steps. The first is to ask, what is ωX? Although the answer
to this question is easy on Pn

k it is not obvious what the suitable analogy should be for an
arbitrary projective variety. Second we will define natural maps

ExtiOX (F , ω)
ϕi−→ Hn−i(F)∨

where n = dimX. Unlike in the case when X = Pn
k , these maps are not necessarily

isomorphisms unless X is locally Cohen-Macaulay (the local rings at each point are Cohen-
Macaulay).

Definition 23.2. Let A be a nonzero Noetherian local ring with residue field k. Then the
depth of A is

depthA = inf{i : ExtiA(k,A) 6= 0}.

A is said to be Cohen-Macaulay if depthA = dimA.
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24 Serre Duality for Arbitrary Projective Schemes

Today we will talk about Serre duality for an arbitrary projective scheme. We have already
talked about Serre duality in the special case X = Pn

k . Let F be a locally free sheaf. We
showed there is an isomorphism

Exti(F , ωX)
∼−→ Hn−i(F)∨.

This was established by noting that

Exti(F , ωX) = Exti(OX ,F∨ ⊗ ωX) = H i(F∨ ⊗ ωX).

Another thing to keep in mind is that locally free sheaves correspond to what, in other
branches of mathematics, are vector bundles. They aren’t the same object, but there is a
correspondence.

We would like to generalize this to an arbitrary projective scheme X. There are two
things we must do.

1. Figure out what ωX is.

2. Prove a suitable duality theorem.

When X = Pn
k it is easy to find a suitable ωX = OPnk

(−n − 1) because of the explicit
computations we did before. We now define ωX to be a sheaf which will do what we hope
it will do. Of course existence is another matter.

Definition 24.1. Let X be a Noetherian scheme of finite type over a field k and let n =
dimX. Then a dualizing sheaf forX is a coherent sheaf ωX along with a map t : Hn(ωX)→
k, such that for all coherent sheaves F on X, the map HomOX (F , ωX) → Hn(F)∨ is an
isomorphism. The latter map is defined by the diagram

HomOX (F , ωX)
↓

Hom(Hn(F), Hn(ωX))
t−→ Hom(Hn(F), k) = Hn(F)∨

Strictly speaking, a dualizing sheaf is a pair (ωX , t). Note that on Pn we had Hn(ωPn) ∼=
k, but on an arbitrary scheme X we only have a map from Hn(ωX) to k which need not be
an isomorphism. The definition never mentions existence.

Proposition 24.2. If X admits a dualizing sheaf (ωX , t) then the pair (ωX , t) is unique up
to unique isomorphism, i.e., if (η, s) is another dualizing sheaf for X then there is a unique
isomorphism ϕ : ωX → η such that

Hn(ωX)
Hn(ϕ)−−−→ Hn(η)

t ↓ ↓ s
k = k

commutes.

Before we prove the proposition we make a short digression to introduce representable
functors which give a proof of the uniqueness part of the above proposition.
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Definition 24.3. Let C be a category and D a category whose objects happen to be sets.
Suppose T : C → D is a contravarient functor. Then T is representable if there exists
an object ω ∈ Ob(C) and an element t ∈ T (ω) such that for all F ∈ Ob(C) the map
HomC(F, ω)→ T (F ) is a bijection of sets. The latter map is defined by the diagram

HomC(F, ω)
bijection of sets−−−−−−−−→ T (F )

↘ ↗ evaluation at t
HomD(Γ(ω), T (F ))

Thus there is an isomorphism of functors Hom(•, ω) = T (•). The pair (t, ω) is said
to represent the functor T . The relevant application of this definition is to the case when
C = Coh(X), D = { k-vector spaces}, T is the functor F 7→ Hn(F)∨. Then ω = ωX and

t = t ∈ Hom(Hn(ω), k) = Hn(ω)∨ = T (ω).

Proposition 24.4. If T is a representable functor, then the pair (ω, t) representing it is
unique.

Proof. Suppose (ω, t) and (η, s) both represent the functor T . Consider the diagram

Hom(η, ω)
T−→ Hom(T (ω), T (η))

↘ ↙ eval. at t
T (η)

By definition the map Hom(η, ω)→ T (η) is bijective. Since s ∈ T (η), there is ϕ ∈ Hom(η, ω)
such that ϕ 7→ s ∈ T (η). Thus ϕ has the property that T (ϕ)(t) = s. This argument uses
the fact that (ω, t) represents T . Using the fact that (η, s) represents T implies that there
exists ψ ∈ Hom(ω, η) such that T (ψ)(s) = t. We have the following pictures

ψ−−−−−→
ω η

φ←−−−−−

T (ψ)=ψ∗←−−−−−−−−−
t ∈ T (ω) T (η) 3 s

T (φ)=φ∗−−−−−−−−−→
I claim that

ψ ◦ ϕ = Id ∈ Hom(η, η).

In diagram form we have

η
ϕ−→ ω

ψ−→ η

which upon applying T gives

T (η)
ψ∗−→ T (ω)

ϕ∗−→ T (η)

s 7→ t 7→ s

Where does ψ ◦ ϕ go to under the map Hom(η, η)
∼−→ T (η)? By definition ψ ◦ ϕ goes to the

evaluation of T (ψ ◦ ϕ) at s ∈ T (η). But, as indicated above, the evaluation of T (ψ ◦ ϕ) at
s is just s again. But the identity morphism 1η ∈ Hom(η, η) also maps to s under the map
Hom(η, η)

∼−→ T (η). Since this map is a bijection this implies that ψ ◦ ϕ = 1η, as desired.
Similarly ϕ ◦ ψ = 1ω. Thus ψ and ϕ are both isomorphisms.
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“When you define something and it is unique up to unique isomorphism, you
know it must be good.”

We return to the question of existence.

Proposition 24.5. If X is a projective scheme over a field k then (ωX , t) exists.

Lemma 24.6. If X is an n dimensional projective scheme over a field k, then there is a
finite morphism f : X → Pn

k .

Proof. Embed X in PN then choose a linear projection down to Pn which is sufficiently
general.

X ↪→ PN

f ↘ ↓
Pn

Let L be a linear space of dimension N −n−1 not meeting X. Let the map from PN → Pn

be projection through L. By construction f is quasi-finite, i.e., for all Q ∈ Pn, f−1(Q)
is finite. It is a standard QUALIFYING EXAM problem to show that if a morphism is
quasi-finite and projective then it is finite. This can be done by applying (II, Ex. 4.6) by
covering X by subtracting off hyperplanes and noting that the correct things are affine by
construction. See also (III, Ex. 11.2) for the more general case when f is quasi-finite and
proper, but not necessarily projective.

25 Existence of the Dualizing Sheaf on a Projective

Scheme

Let X be a scheme over k. Recall that a dualizing sheaf is a pair (ω, t) where ω is a coherent
sheaf on X and

t : Hn(X,ω)→ k

is a homomorphism such that for all coherent sheaves F the natural map

HomX(F , ω)→ Hn(F)∨

is an isomorphism. We know that such a dualizing sheaf exists on Pn
k .

Theorem 25.1. If X is a projective scheme of dimension n over k, then X has a dualizing
sheaf.

The book’s proof takes an embedding j : X ↪→ PN
k and works on X as a subscheme of

PN
k . Then the book’s proof shows that

ωX = ExtN−nO
PN
k

(OX , ωPNk
).

Today we will use a different method.

Definition 25.2. A finite morphism is a morphism f : X → Y of Noetherian schemes
such that for any open affine U = SpecA ⊂ X, the preimage f−1(U) ⊂ Y is affine, say
f−1(U) = SpecB, and the natural map A→ B turns B into a finitely generated A-module.
We call f an affine morphism if we just require that f−1(U) is affine but not that B is a
finitely generated A-module. A morphism f : X → Y is quasi-finite if for all y ∈ Y the
set f−1(y) is finite.
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Example 25.3. Consider the morphism

j : P1 − {pt} ↪→ P1.

Since P1 minus any nonempty finite set of points is affine j is affine. But it is not finite.
Indeed, let a be a point different from pt and let U = P1 − {a}. Then U = Spec k[x] and

j−1(U) = P1 − {pt, a} = Spec k[x, x−1],

but k[x, x−1] is not a finitely generated k[x]-module.

Exercise 25.4. A morphism can be affine but not finite or even quasi-finite. For example,
let f be the natural map

f : An+1 − {0} → Pn

then show that f is affine. This is the fiber bundle associated to the invertible sheaf O(1)
[[or is it O(−1)?]]

25.1 Relative Gamma and Twiddle

We will now define relative versions of global sections and˜analogous to the absolute versions.
It is not a generalization of the absolute notion, but a relativization. Suppose X is a scheme
over Y with structure map f : X → Y and assume f is affine. Then the map sending a
sheaf F on X to the sheaf f∗F on Y is the analog of taking global sections. Since f is a
morphism there is a map OY → f∗OX so f∗OX is a sheaf of OY -modules. Note that f∗F is
a sheaf of f∗OX-modules. Thus we have set up a map

Qco(X)→ { quasicoherent f∗OX-modules on Y }.

The next natural thing to do is define a map analogous to˜which goes the other direction.
Suppose G is a quasi coherent sheaf of f∗OX-modules on Y . Let U ⊂ Y be an affine open
subset of Y . Let G = Γ(U,G) and write U = SpecA. Then since f is an affine morphism,
f−1(U) = SpecB where B = Γ(f−1(U),OX). Since G is an f∗OX-module, and f∗OX over
U is just B thought of as an A-module, we see that G is a B-module. Thus we can form the
sheaf G̃ on SpecB = f−1(U). Patching the various sheaves G̃ together as U runs through
an affine open cover of Y gives a sheaf G̃ in Qco(X).

Let G be a quasi-coherent sheaf of OY -modules. We can’t take˜of G because G might
not be a sheaf of f∗OX-modules. But HomOY (f∗OX ,G) is a sheaf of f∗OX-modules, so we
can form (HomOY (f∗OX ,G))˜. This is a quasi-coherent sheaf on X which we denote f !(G).

Proposition 25.5. Suppose f : X → Y is an affine morphism of Noetherian schemes, F
is coherent on X, and G is quasi-coherent on Y . Then

f∗HomOX (F , f !G) ∼= HomOY (f∗F ,G)

and passing to global sections gives an isomorphism

Hom(F , f !G) ∼= Hom(f∗F ,G).

Thus f ! is a right adjoint for f∗.

33



Proof. The natural map is

f∗HomOX (F , f !G)→ HomOY (f∗F , f∗f !G)

= HomOY (f∗F ,HomOY (f∗OX ,G))→ HomOY (f∗F ,G)

where the map HomOY (f∗OX ,G) → G is obtained obtained by evaluation at 1. Since the
question is local we may assume Y = SpecA and X = SpecB. Then F corresponds to a
finitely generated module M over the Noetherian ring B and G corresponds to a module N
over A. We must show that

HomB(M,HomA(B,N)) ∼= HomA(M,N).

When M is free over B so that M = B⊕n the equality holds. As functors in M , both sides are
contravarient and left exact. Now suppose M is an arbitrary finitely generated B-module.
Write M as a quotient F0/F1 where F0 and F1 are both free of finite rank. Applying each
of the contravarient left-exact functors to the exact sequence

F1 → F0 →M → 0

and using the fact that equality holds for finite free modules yields a diagram

0 → HomB(M,HomA(B,N)) → HomB(F0,HomA(B,N)) → HomB(F1,HomA(B,N))
|| ||

0 → HomA(M,N) → HomA(F0, N) → HomA(F1, N)

The 5-lemma then yields an isomorphism

HomB(M,HomA(B,N)) ∼= HomA(M,N).

Lemma 25.6. Suppose f : X → Y is affine and F is a quasi-coherent sheaf on X. Then

H i(X,F) ∼= H i(Y, f∗F).

Proof. The lemma is proved using Čech cohomology. If {Ui} is an open affine cover of Y
then {f−1(Ui)} is an open affine cover of X. But

Γ(Ui, f∗F) = Γ(f−1(Ui),F)

so the Čech cohomology of f∗F on Y is the same as the Čech cohomology of F on X.

Theorem 25.7 (Duality for a finite flat morphism). Suppose f : X → Y is a finite morphism
with X and Y Noetherian and assume every coherent sheaf on X is the quotient of a locally
free sheaf (this is true for almost every scheme arising naturally in this course). Assume that
f∗OX is a locally free OY -module. Let F be a coherent sheaf on X and G be a quasi-coherent
sheaf on Y . Then for all i ≥ 0 there is an isomorphism

ExtiOX (F , f !G)
∼−→ ExtiOY (f∗F ,G).

Proof. The proposition shows that the theorem is true when i = 0. We next show that the
statement is true when F = OX . Applying the above lemma we see that

ExtiOX (OX , f !G) = H i(X, f !G) = H i(Y, f∗f
!G)

= H i(Y,HomOY (f∗OX ,G))
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Since f∗OX is a locally free OY -module,

ExtiOY (f∗OX ,G) = ExtiOY (OY , (f∗OX)∨ ⊗ G)

= H i(Y, (f∗OX)∨ ⊗ G))

Putting these two computations together by using the fact that

(f∗OX)∨ ⊗ G = HomOY (f∗OX ,G)

then gives the desired result.
A clever application of the 5-lemma can be used to obtain the general case. This will be

done in a subsequent lecture.

26 Generalized Grothendieck Duality Theory

If X is a projective scheme over k, then

Exti(F , ωX)
∼−→ Hn−i(F)∨.

This is a special type of duality. If X is an affine scheme over Y with structure morphism
f : X → Y , then

ExtiX(F , f !G)
∼−→ ExtiY (f∗F ,G).

This is another duality.
At Harvard, Hartshorne was the scribe [Lecture Notes in Math Vol ???] for Grothendieck’s

seminar on his duality theory. Suppose X is proper over Y with structure morphism
f : X → Y . Assume furthermore that f satisfies hypothesis (*):

(*) f∗OX is a locally free OY -module

Note that hypothesis start implies Hom(f∗OX ,G) is an exact functor in G. We have defined
functors f∗ : Coh(X) → Coh(Y ) and f ! : Qco(Y ) → Qco(X). Grothendieck’s duality
compares HomX(F , f !G) and its derived functors to HomY (f∗F ,G) and its derived functors.
The two families of functors are essentially equal. We are composing functors here. This
often gives rise to spectral sequences.

It is possible to obtain the duality mentioned above as a special case of the more general
Grothendieck duality. Suppose X is a projective scheme over Y = Spec k with morphism
f : X → Y . Then f∗(F) = Γ(X,F) which has derived functors H i(X, •). A coherent sheaf
on Y is a finite dimensional k-vector space. Let ωX be the sheaf f !(k). Substituting this
into

ExtiX(F , f !G)
∼−→ ExtiY (f∗F ,G)

with G = k gives
ExtiX(F , ωX)

∼−→ ExtiY (f∗F , k) = Hn−i(F)∨

[[Do we obtainHn−i instead ofH i since we are considering the derived functors of Hom(f ∗(•), •)?]]
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Theorem 27.1 (Duality for a projective scheme). Suppose X is a projective scheme. Then
X has a dualizing sheaf ωX and their is an isomorphism

ExtiX(F , ωX) ∼= Hn−i(X,F)∨.
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Proof. Using linear projections find a finite morphism f : X → Pn. Let ωX = f !ωPn where

f !ωPn = HomPn(f∗OX , ωPn)˜

and ωPn = OPn(−n− 1). Then for any F ,

HomX(F , ωX) = HomPn(f∗F , ωPn)
∼−→ Hn(Pn, f∗F)∨ = Hn(X,F)∨

The last equality holds since f is finite and hence affine. The second isomorphism comes
from the fact that ωX is a dualizing sheaf for X.

Next we obtain the duality theorem for X. By duality for a finite (*) morphism

ExtiX(F , ωX) ∼= ExtiPn(f∗F , ωPn).

By Serre duality on Pn

ExtiPn(f∗F , ωPn)
∼−→ Hn−i(Pn, f∗F)∨.

But f is affine so
Hn−i(Pn, f∗F)∨ = Hn−i(X,F)∨.

Thus
ExtiX(F , ωX) ∼= Hn−i(X,F)∨.

Under what conditions does a finite map f : X → Pn satisfy (*)?

Definition 27.2. A scheme X is Cohen-Macaulay if for all x ∈ X the local ring OX,x is
Cohen-Macaulay.

Definition 27.3. The homological dimension of a module M over a ring A is the min-
imum possible length of a projective resolution of M in the category of A-modules. We
denote this number by hdM .

We will need the following theorem from pure algebra.

Theorem 27.4. If A is a regular local ring and M a finitely generated A-module, then

hdM + depthM = dimA.

Theorem 27.5. Suppose f : X → Y is a finite morphism of Noetherian schemes and
assume Y is nonsingular. Then f satisfies (*) iff X is Cohen-Macaulay.

Proof. The question is local on Y . Suppose y ∈ Y , then A = OY,y is a regular local ring and
f−1(y) ⊂ X is a finite set. Let B be the semi local ring of f−1(y). Thus B = lim−→U

F(U)

where the injective limit is taken over all open sets U containing f−1(y). B has only finitely
many maximal ideals so we call B semi local. Since f is a finite morphism B is a finite A-
module. Now B is free as an A-module iff hdAB = 0, where hdAB denotes the homological
dimension of B as an A-module. This is clear because hdAB is the shortest possible length
of a free resolution of B. (Since A is local we need only consider free resolutions and not the
more general projective resolutions.) Now (f∗OX)y = B so condition (*) is that B is a free
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A-module. Thus if f satisfies (*) then hdB = 0. By the theorem from pure algebra and the
fact that f is finite we see that

depthB = dimA = dimB.

This implies B is a Cohen-Macaulay ring and therefore X is Cohen-Macaulay. Conversely, if
X is Cohen-Macaulay then B is Cohen-Macaulay so depthB = dimB. The purely algebraic
theorem then implies that hdB = 0 so B is a free A-module and hence f satisfies condition
(*). [[We are tacitly assuming that B is Cohen-Macaulay iff it’s localizations at maximal
ideals are. It would be nice to know this is true.]]

Now we finish up the proof of duality for a finite morphism.

Proof (of duality, continued). Suppose f : X → Y is a finite morphism of Noetherian
schemes which satisfies (*), and assume that X has enough locally free sheaves (i.e. ev-
ery coherent sheaf is a quotient of a locally free sheaf). We showed that

HomX(F , f !G) ∼= HomY (f∗F ,G).

This is the i = 0 case of the theorem and is true even if we drop the assumption that f
satisfies (*). It can be shown by taking an injective resolution of f !G and computing ExtiX
using it that there are natural maps

ϕi : ExtiX(F , f !G)→ ExtiY (f∗F ,G).

We have already shown that this is an isomorphism when sF = OX . By the same argument
one shows that this is an isomorphism when F is just locally free. The key point to notice
is that if F is locally free then F is locally free over f∗OX which is locally free over OY
by condition (*). Finally suppose F is an arbitrary coherent sheaf on X. Writing F as a
quotient of of a locally free sheaf E gives an exact sequence

0→ R→ E → F → 0

with R coherent. The long exact sequence of Ext’s gives a diagram

HomX(E , f !G) → HomX(R, f !G) → Ext1
X(F , f !G) → Ext1(E , f !G) → Ext1

X(R, f !G)
↓∼= ↓∼= ↓ ?? ↓∼= ↓??

HomX(f∗E ,G) → HomX(f∗R,G) → Ext1
X(f∗F ,G) → Ext1(f∗E ,G) → Ext1

X(f∗R,G)

Now apply the subtle 5-lemma to show that the map

ϕ1 : Ext1
X(F , f !G)→ Ext1

X(f∗F ,G)

is injective. Another diagram chase shows that he map

Ext1
X(R, f !G)→ Ext1

X(f∗R,G)

is injective. Then [[I guess??]] the 5-lemma shows that ϕi is an isomorphism. Climbing the
sequence inductively shows that ϕi is an isomorphism for all i.

Exercise 27.6. Give an example of a scheme X which does not have enough locally free
sheaves. [Hints: By (III, 6.8) X has enough locally free sheaves if X is quasi-projective
or nonsingular. Hartshorne intimated that this problem is hard, but suggested one might
search for a counterexample by looking for an appropriate non-projective 3-fold with 2
singular points.]
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28 Review of Differentials

Definition 28.1. Let B be a ring and M a B-module. Then a map d : B → M is a
derivation if

d(b1 + b2) = db1 + db2

d(b1b2) = b1db2 + b2db1

If B is an A-algebra, then d is a derivation over A if in addition da = 0 for all a ∈ A.

Note that a derivation over A is linear since d(ab) = adb+ bda = adb+ 0 = adb.

Example 28.2. Let k be a field and let B = k[x]. Let d : B → B be the differentian map
f(x) 7→ f ′(x). Then d is a derivation.

Definition 28.3. Let B be an A-algebra. Then the module of differentials of B over A
is a pair (ΩB/A, d : B → ΩB/A), where ΩB/A is a B-module and d is a derivation of B into
ΩB/A over A, which satisfies the following universal property: if d′ : B →M is a derivation
over A then there exists a unique B-linear map ϕ : ΩB/A →M such that d′ = ϕ ◦ d.

If (ΩB/A, d) exists it is unique as a pair up to unique isomorphism.
We first construct ΩB/A by brute force. Let ΩB/A be the free module on symbols db (all

b ∈ B) modulo the submodule generated by the relations d(b1 + b2) − db1 − db2, d(b1b2) −
b2db1 − b1db2, and da for all b1, b2 ∈ B in a ∈ A. This is obviously a module of differentials.

Example 28.4. Suppose A = B, then ΩB/A = 0.

Example 28.5. Suppose k is a field of characteristic p > 0. Let B = k[x] and let A = k[xp].
Then ΩB/A is the free B-module of rank 1 generated by dx.

Example 28.6. Let B = Q[
√

2] and A = Q. Then 0 = d(2) = d(
√

2
√

2) = 2
√

2d(
√

2) so
d(
√

2) = 0. Thus ΩQ[
√

2]/Q = 0.

Corollary 28.7. The module of differentials ΩB/A is generated by {db : b ∈ B, b 6∈ A}.
Now we will construct ΩB/A in a more eloquent manner. Suppose B is an A-algebra.

Consider the exact sequence of A-modules

0→ I → B ⊗A B
∆−→ B → 0

where ∆ is the diagonal map b1 ⊗ b2 7→ b1b2 and I is the kernel of ∆. Make I/I2 into a
B-module by letting B act on the first factor (thus b(x ⊗ y) = (bx) ⊗ y) and define a map
d : B → I/I2 by db = 1⊗ b− b⊗ 1.

Proposition 28.8. The module I/I2 along with the map d is the module of differentials for
B over A.

Proof. Suppose b1, b2 ∈ B, then

d(b1b2) = 1⊗ b1b2 − b1b2 ⊗ 1.

One the other hand,

b1db2 + b2db1 = b1(1⊗ b2 − b2 ⊗ 1) + b2(1⊗ b1 − b1 ⊗ 1)

= b1 ⊗ b2 − b1b2 ⊗ 1 + b2 ⊗ b1 − b1b2 ⊗ 1

Now taking the difference gives

1⊗ b1b2 − b1b2 ⊗ 1− b1 ⊗ b2 + b1b2 ⊗ 1− b2 ⊗ b1 + b1b2 ⊗ 1

= (1⊗ b1 − b1 ⊗ 1)(1⊗ b2 − b2 ⊗ 1) ∈ I2

For the universal property see Matsumura.
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Corollary 28.9. If B is a finitely generated A-algebra and A is Noetherian then ΩB/A is a
finitely generated B-module.

Proof. If B is a finitely generated A-algebra then B is a Noetherian ring. Since I is a
kernel of a ring homomorphism I is an ideal so I is finitely generated. Thus I/I2 is finitely
generated as a B-module.

Example 28.10. Let A be any ring and let B = A[x1, . . . , xn]. Then ΩB/A is the free B-

module generated by dx1, . . . , dxn. The derivation d : B → ΩB/A is the map f 7→
∑ ∂f

∂xi
dxi.

Since B is generated as an A-algebra by the xi, ΩB/A is generated as a B-module by the dxi
and there is an epimorphism Br → ΩB/A taking the ith basis vector to dxi.

On the other hand, the partial derivative ∂/∂xi is an A-linear derivation from B to B,
and thus induces a B-module map ∂i : ΩB/A → B carrying dxi to 1 and all the other xj to
0. Putting these maps together we get the inverse map. This proof is lifted from Eisenbud’s
Commutative Algebra.

There are a few nice exact sequences.

Proposition 28.11. Suppose A, B, and C are three rings and

A→ B
g−→ C

is a sequence of maps between them (it needn’t be exact – in fact it wouldn’t make sense to
stipulate that it is exact because kernels don’t exist in the category of commutative rings with
1). Then there is an exact sequence of C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

If d : B → ΩB/A is the derivation associated with ΩB/A then the first map is db ⊗B c 7→
cd(g(b)).

We won’t prove this here, but note that exactness in the middle is the most interesting.
The functors T i comes next on the left. See the work of Schlesinger and Lichenbaum, or
Illusi and André.

Proposition 28.12. Suppose A, B, and C are rings and

A→ B → C

is a sequence of maps. Assume furthermore I ⊂ B is an ideal, that C = B/I, and the map
from B → C is the natural surjection. Then there is an exact sequence of C-modules

I/I2 d−→ ΩB/A ⊗B C → ΩC/A → ΩC/B = 0

Next we consider what happens for a local ring.

Proposition 28.13. Suppose B,m is a local ring with residue field k = B/m and there is
an injection k ↪→ B. Then there is an exact sequence

m/m2 d−→ ΩB/k ⊗B k → 0

and d is actually an isomorphism.
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The exact sequence is obtained from the previous proposition by letting A = C = k.
The fact that d is an isomorphism is supposed to be tricky. The proposition implies that a
lower bound on the number of generators of ΩB/k is dimk m/m2. If B is regular and local,
then dimB = dimk m/m2 which implies ΩB/k can be generated by dimk B elements.

Proposition 28.14. Let B be a localization of an algebra of finite type over a perfect field,
let m be the maximal ideal and let k = B/m. Then B is a regular local ring iff ΩB/k is a
free B-module of rank equal to the dimension of B over k.

Proof. (←) If ΩB/k is free of rank n = dimk B then the minimum number of generators of
ΩB/k is n, so dim ΩB/k ⊗ k = n = dimk m/m2. Thus dimB = dim m/m2 whence B is
regular. (→)

28.1 The Sheaf of Differentials on a Scheme

Suppose f : X → Y is a morphism of schemes. Let V = SpecB be an open affine subset of
X and U = SpecA an open affine subset of Y such that f(V ) ⊂ U . Then B is an algebra
over A so we may consider the module ΩB/A. Put ˜ΩB/A on V and glue to get a sheaf ΩX/Y .
We can glue because localization commutes with forming Ω and the universal property of Ω
makes gluing isomorphisms canonical and unique.

If X/k is a nonsingular variety of dimension n then ΩX/k is locally free of rank n. If X
is a curve, then ΩX/k is locally free of rank 1 so it is a line bundle.

The sheaf ΩX/k is important because it is intrinsically defined and canonically associated

to X
f−→ Y .

29 Differentials on Pn

Remark 29.1. Suppose X is a scheme over Y then one could also define ΩX/Y as follows.
Let ∆ : X → X ×Y X be the diagonal morphism and let I∆ be the ideal sheaf of the image
of ∆. Define ΩX/Y = ∆∗(I∆/I2

∆).

Proposition 29.2. Let X, Y , and Z be schemes along with maps X
f−→ Y

g−→ Z. Then there
is an exact sequence of OX-modules

f ∗(ΩY/Z)→ ΩX/Z → ΩX/Y → 0.

Proposition 29.3. Let Y be a closed subscheme of a scheme X over S. Let IY be the ideal
sheaf of Y on X. Then there is an exact sequence of sheaves of OX-modules

IY /I2
Y → ΩX/S ⊗OY → ΩY/S → 0.

Example 29.4. Let S be a scheme and let X = An
S be affine n-space over S. Then ΩX/S is

the free OX-module generated by dx1, . . . , dxn.

Projective space is more interesting.

Theorem 29.5. Let X = Pn
k , then there is an exact sequence

0→ ΩX/k → OX(−1)n+1 → OX → 0.

The proof in the book is too computational and nobody understands it therefore we
present an “explanation” even though it doesn’t quite have the force of proof.
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Explanation. Since Ui = {xi 6= 0} is affine, ΩX |Ui = ΩUi is free of rank n thus ΩX is locally
free of rank n. Let W = An+1 − {0} and let f : W → X be the natural quotient map. The

sequence W
f−→ X → k gives rise to an exact sequence

f ∗ΩX → ΩW → ΩW/X → 0.

Since the open subset W ⊂ An+1 is a nonsingular variety, ΩW is free of rank n+1, generated
by dx0, . . . , dxn.

The affine subset U0 = {x0 6= 0} ⊂ X can be represented as

U0 = Spec k[
x1

x0

, . . . ,
xn
x0

] = Spec k[y1, . . . , yn].

The inverse image is

f−1(U0) = An+1 − {x0 = 0} = Spec(k[x0, . . . , xn,
1

x0

])

= Spec(k[y1, . . . , yn][x0,
1

x0

])

Thus f−1(U0) ∼= U0 × (A1 − {0}) which is affine. Therefore ΩW/X |f−1(U0) is locally free of
rank 1 generated by dx0. Consider again the exact sequence

f ∗ΩX → ΩW → ΩW/X → 0.

Since ΩW is free of rank n + 1, ΩW/X is locally free of rank 1, and f ∗ΩX is locally free of
rank n (pullback preserves rank locally), we conclude that the map f ∗ΩX → ΩW must be
injective. We thus obtain an exact sequence of sheaves on W

0→ f ∗ΩX → ΩW → ΩW/X → 0.

Passing to global sections and using the fact that W is affine we obtain an exact sequence
of modules over S = k[x0, . . . , xn]

0→ Γ(f ∗ΩX)→ Sn+1 ψ−→ S.

The last term is S because any invertible sheaf on W = An−{0} is isomorphic to OW . This
follows from the exact sequence (II, 6.5)

0→ Pic An ∼−→ PicW → 0

and the fact that Pic An = 0. Take generators e0, . . . , en of Sn+1. Then ψ is the map ei 7→ xi,
i.e. the multiplication by x map.

To finish the proof we need to know that if F is a coherent sheaf on Pn, then Γ(W, f ∗F)˜ =
F . This assertion is completely natural but doesn’t carry the force of proof, i.e., Hartshorne
gave no proof. Taking global sections and applying this to the above sequence yields the
exact sequence of sheaves on X

0→ ΩX/k → ΩX(−1)n+1 → OX → 0

which is just what we want.

Proposition 29.6. If X is a nonsingular variety over a field k, then ΩX is locally free of
rank n = dimX.
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The proof can be found in the book.

Example 29.7. Let C be a nonsingular curve in P2
k defined by an equation f of degree d.

Then ΩC/k is a locally free sheaf of rank 1 so it corresponds to a divisor. Which divisor
class will ΩC/k correspond to? Let I be the ideal sheaf of C ⊂ P2. Then we have an exact
sequence

0→ I/I2 → ΩP2 ⊗OC → ΩC/k → 0.

The left map is injective since I/I2 ∼= OC(−d) so I/I2 is locally free of rank 1. [[Why is
I/I2 ∼= OC(−d)?]] Taking the second exterior power gives an isomorphism

Λ2(ΩP2 ⊗OC) ∼= (I/I2)⊗ ΩC/k.

This is a fact from the general theory of locally free sheaves. We have an exact sequence

0→ ΩP2 → O(−1)3 → O → 0

thus
Λ3(O(−1)3) ∼= Λ2ΩP2 ⊗ Λ1OP2

so O(−3) ∼= Λ2ΩP2 . Thus

O(−3) ∼= I/I2 ⊗ ΩC/k
∼= OC(−d)⊗ ΩC/k.

Tensoring with O(3) gives OC ∼= OC(3− d)⊗ ΩC/k so ΩC/k
∼= OC(d− 3).

If C is a cubic then
ΩC/k = OC(3− 3) = OC(0) = OC .

Furthermore
ΩP1 = O(−2) 6∼= O(0) = ΩC/k

so a nonsingular plane cubic is not rational.

Proposition 29.8. Suppose 0 → E ′ → E → E ′′ → 0 is an exact sequence of locally free
sheaves of ranks r′, r, and r′′. Then

ΛrE ∼= Λr′E ′ ⊗ Λr′′E ′′.

30 Sheaf of Differentials and Canonical Divisor

Theorem 30.1. Let X be a nonsingular projective variety of dimension n. Then Ωn
X/k
∼= ωX

where ωX is the dualizing sheaf on X. Furthermore, ΩX/k is locally free of rank n and so
Ωn
X/k is locally free of rank 1. Thus Ωn

X/k is an invertible sheaf on X.

Note that Ωn
X/k is an (abusive) shorthand notation for ΛnΩX/k and that Ωn

X/k is not the
direct sum of n copies of ΩX/k.

Recall the construction of the dualizing sheaf ωX . Let f : X → Pn be a finite morphism.
Let ωPn = OPn(−1). Then

ωX = f !OPn(−1) = f !ωPn = Hom(f∗OX , ωPn)˜.

Since X is Cohen-Macaulay, f∗OX is locally free so f !ωPn is locally free of rank 1.
First we show that the theorem holds when X = Pn. From last time we have an exact

sequence
0→ ΩPn → O(−1)n+1 → O → 0
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so taking highest exterior powers gives an isomorphism

Λn+1(O(−1)n+1) ∼= ΛnΩPn ⊗ Λ1O ∼= ΛnΩPn .

For the last isomorphism we used the fact that Λ1O ∼−→ O. But since the highest exterior
power changes a direct sum into a tensor product

Λn+1(O(−1)n+1) = O(−1)⊗n+1 = O(−n− 1) = ωPn .

so Combining these shows that ΛnΩPn = ωPn .
Now suppose X is an arbitrary nonsingular projective variety of dimension n. As we

have done before let f : X → Pn be a finite morphism (do this using suitable linear
projections). To prove the theorem it is enough to show that f !(Ωn

Pn/k)
∼= Ωn

X/k since

f !(Ωn
Pn/k) = f !(ωPn) = ωX . This is just a statement about differentials.

More generally suppose f : X → Y is a finite map and that both X and Y are nonsingular
projective varieties of dimension n. Then we have the duality

HomX(F , f !G) = HomY (f∗F ,G).

Thus to give a map ϕ : Ωn
X → f !Ωn

Y is equivalent to giving a map ϕ : f∗Ω
n
X → Ωn

Y .
It is an open problem to find a natural yet elementary way to define a map f∗Ω

n
X → Ωn

Y

which corresponds to an isomorphism Ωn
X → f !Ωn

Y . Because the map sends differentials
“above” to differentials “below” it should be called a “trace” map. In Hartshorne’s book
the existence of such a map is proved by embedding X in some large PN , showing that
ΩX = ExtN−n(OX , ωPn) and then applying the “fundamental local isomorphism”. The
approach is certainly not elementary because it involves the higher Ext groups.

Continue to assume f : X → Y is a finite morphism of nonsingular varieties of dimension
n. Assume f is separable so that the field extension K(X)/K(Y ) is finite and separable. A
theorem proved last time gives an exact sequence

f ∗ΩY → ΩX → ΩX/Y → 0.

SinceX is nonsingular of dimension n, ΩX is locally free of rank n. Similarly ΩY is locally free
of rank n so f ∗ΩY is locally free of rank n. (Locally this is just the fact that An⊗AB ∼= Bn.)
Since localization commutes with taking the module of differentials the stalk at the generic
point of ΩX/Y is ΩK(X)/K(Y ). This is 0 since K(X)/K(Y ) is finite separable, thus ΩX/Y is
a torsion sheaf. By general facts about free modules this implies the map f ∗ΩY → ΩX is
injective, i.e., the sequence

0→ f ∗ΩY → ΩX → ΩX/Y → 0

is exact.
We pause to consider the simplest illustrative example, namely the case when X is a

parabola and Y is the line.

Example 30.2. Let A = k[x] and let B = k[x, y]/(x − y2) ∼= k[y] where k is a field of
characteristic not equal to 2. Let X = SpecB and let Y = SpecA. Let f : X → Y be the
morphism induced by the inclusion A ↪→ B (thus x 7→ y2). Since B ∼= k[y] it follows that
ΩX = Bdy, the free B-module generated by dy. Similarly ΩY = Adx. The exact sequence
above becomes

0 → ΩY ⊗A B → ΩX → ΩX/Y → 0
|| || o|

Bdx → Bdy → Bdy/B(2ydy)
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The point is that ΩX/Y = (k[y]/(2y))dy is a torsion sheaf supported on the ramification
locus of the map f : X → Y . (The only ramification point is above 0.) Note that ΩX/Y

is the quotient of ΩX by the submodule generated by the image of dx in ΩX = Bdy. The
image of dx is 2ydy.

More generally we define the ramification divisor as follows.

Definition 30.3. Let f : X → Y be a finite separable morphism of nonsingular varieties of
dimension n. Then the ramification divisor of X/Y is

R =
∑

ζ∈Z⊂X

lengthOζ((ΩX/Y )ζ) · Z

where the sum is taken over all closed irreducible subsets Z ⊂ X of codimension 1 and ζ is
the generic point of Z.

Since the sequence
0→ f ∗ΩY → ΩX → ΩX/Y → 0

is exact it will follow that
Ωn
X
∼= f ∗Ωn

Y ⊗ L(R)

where R is the ramification divisor of X/Y and L(R) denotes the corresponding invertible
sheaf. [[This is some linear algebra over modules.]]

The next part of the argument is to study f !. As usual let f : X → Y be a finite
morphism of nonsingular varieties of dimension n and assume furthermore that f∗OX is a
locally free OY -module. Define a trace map Tr : f∗OX → OY locally as follows. Let SpecA
be an open affine subset of Y and let SpecB = f−1(SpecA). Then B is a free A-module of
rank d = deg f . Choose a basis e1, . . . , ed for B/A. Let b ∈ B, and suppose bei =

∑
j aijej.

Define Tr(b) =
∑

i aii. Let Tr ∈ HomX(OX , f !OY ) correspond to Tr ∈ HomY (f∗OX ,OY )
under the isomorphism between these Hom groups.

Claim. f !OY ∼= L(R).
Once we have proved the claim, the theorem will follow. To see this tensor both sides

by f ∗Ωn
Y . Then

f !Ωn
Y = f !OY ⊗ f ∗Ωn

Y = L(R)⊗ f ∗Ωn
Y = Ωn

X/Y .

We look what happens locally. Let SpecA ⊂ Y and SpecB = f−1(SpecA) ⊂ X.
We want to show that f !(OY ) = L(R). Since f !OY = HomOY (f∗OX ,OY )˜ we look at
B∗ = HomA(B,A). First consider the special case of the parabola investigated above. Then
B has a basis 1, y over A and B∗ is spanned by e0 and e1 where e0(1) = 1, e0(y) = 0, and
e1(1) = 0, e1(y) = 1. Thus ye0(1) = e0(y) = 0, ye0(y) = e0(y2) = e0(x) = xe0(1) = x,
and ye1(1) = e1(y) = 1, ye1(y) = e1(y2) = e1(x) = xe1(1) = 0. Therefore ye1 = e0 so e1

generates B∗ over A. The trace Tr : B → A is an element of B∗. We determine it. We see
that Tr(1) = 2 and Tr(y) = 0 since

1↔
(1 0

0 1

)
and y ↔

(0 x
1 0

)
Thus Tr = 2e0 = 2ye1 since ye1 = e0 as shown above. We have shown that the map

Tr : B → B∗ : 1 7→ Tr

has image generated by 2ye1. More generally suppose B = A[y]/(f(y)) where f(y) =
yd+a1y

d−1 + · · ·+ad is a monic polynomial of degree d. Then B has A-basis 1, y, y2, . . . , yd−1
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and B∗ is spanned by e0, e1, . . . , ed−1. By a similar argument to the one above, we can show
that Tr = f ′(y)ed−1. Thus locally f !OY is a freeOX-module of rank 1 generated by f ′(y)ed−1.
But this is really what we defined L(R) to be (where this derivative is zero is where there is
ramification). Thus f !OY = L(R) and we are done.

Curves

31 Definitions

Definition 31.1. A curve is a connected nonsingular projective 1-dimensional scheme over
an algebraically closed field k.

We have proved that if C1 and C2 are curves then C1
∼= C2 iff C1 is birational to C2

(i.e., they have isomorphic open subsets) iff K(C1) ∼= K(C2). Here K(C1) = OC,ζ where ζ
is the generic point of C1. If any of the hypothesis nonsingular, connected, projective, or
one-dimensional is removed then these equivalences can fail to hold.

32 Genus

Let X ↪→ Pn be an embedded projective variety. Let PX(n) be its Hilbert polynomial. The
arithmetic genus of X is the quantity pa defined by the equation PX(0) = 1+(−1)dimXpa.
Thus if C is a curve then pa = 1− PX(0). For a nonsingular projective curve we also define
the quantity g = h1(OC) and call it the genus. The geometric genus pg = h0(ωX) is a
third notion of genus for a nonsingular projective variety X. For curves all types of genus
coincide.

Theorem 32.1. If C is a curve then

pa = g = pg.

Proof. PC(n) =
∑

(−1)ihi(OX(n)) so PC(0) =
∑

(−1)ihi(OX). But C has dimension 1 so
by Grothendieck vanishing

1− pa = PC(0) = h0(OC)− h1(OC) = 1− h1(OC) = 1− g

so pa = g.
Serre duality says that if X is nonsingular of dimension n then ExtiX(F , ωX) is linearly

dual to Hn−i(X,F). Thus when X = C, F = OC , i = 0, and n = 1 we see that

H0(ωC) = Ext0
C(OC , ωC)

is dual to H1(OC). Thus pg = h1(OC) = h0(ωC) = g.

Thus we may speak of the genus of a curve. For more general varieties the concepts
diverge.

The classification problem is to describe all curves up to isomorphism. The set of curves
is a disjoint union C =

∐
g≥0 Cg where Cg consists of all curves of genus g.

Theorem 32.2. Any curve of genus 0 is isomorphic to P1.
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Proof. Let C be a curve of genus 0 and let P ∈ C be a closed point. There is an exact
sequence

0→ OC → L(P )→ κ(P )→ 0.

AS a divisor P corresponds to the invertible sheaf L(P ). Let s ∈ Γ(L(P )) be a global section
which generates L(P ) as an OC-module. Thus s has a pole of order 1 at P and no other
poles. Then s defines a morphism

OC → L(P ) : 1 7→ s

which has cokernel κ(P ). Taking cohomology yields

0→ H0(OC)→ H0(L(P ))→ H0(κ(P ))→ H1(OC) = 0.

Since H0(OC) = k and H0(κ(P )) = k it follows that H0(L(P )) = k⊕k. View OC ⊂ L(P ) ⊂
K where K = K(X) is the constant function field sheaf. Then

H0(OC) ↪→ H0(L(P )) ↪→ K.

Since dimH0(L(P )) > dimH0(OC), there is f ∈ H0(L(P ))−H0(OC) and f is non constant.
Thus f ∈ K = K(X) and f 6∈ k. So f defines a morphism C → P1 as follows. If Q ∈ C and
f ∈ OQ send Q to f ∈ OQ/mQ = k ⊂ P1

k. If Q 6∈ C so that f has a pole at Q, send Q to
∞ ∈ P1

k. Since f lies in H0(L(P )) which has dimension 1 over k = H0(OC), vP (f) = −1.
Thus∞ does not ramify so the degree of the morphism defined by f is the number of points
lying over ∞ which is 1. Thus P1

k
∼= C.

Remark 32.3. This result is false if k is not algebraically closed. But it is true if C has a
rational point, i.e., a point P ∈ C so that κ(P ) = OP/mP = k.

Example 32.4. Let k = R and let C be the curve x2 + y2 + z2 = 0 on P2
R. C is nonsingular

of degree 2 so g = 0. But C is not isomorphic over R to P1
R since C has no rational points

whereas P1
R does. Let P = (1, i, 0) ∈ CC and P = (1,−i, 0) ∈ CC. Let P ∗ ∈ CR be the

Galois conjugacy class {P, P}. Then κ(P ∗) = C is of degree 2 over R.

Exercise 32.5. Over R an curve of genus 0 not isomorphic to P1
R is isomorphic to

C : x2 + y2 + z2 = 0

.

[[If the curve is planar this follows from diagonalizability of quadratic forms.]]

33 Riemann-Roch Theorem

The Riemann-Roch theorem is the cornerstone of all of curve theory.

Theorem 33.1 (Riemann-Roch). Let C be a curve and D =
∑t

i=1 niPi be a divisor on C.
Then

h0(L(D))− h1(L(D)) = degD + 1− g

where degD =
∑t

i=1 ni.
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Proof. When D = 0 the assertion is that

h0(OC)− h1(OC) = 1− g

which is easily checked. Next suppose D is any divisor and P any point. Compare D and
D + P as follows. The statement of the theorem for D is

h0(L(D))− h1(L(D)) = degD + 1− g

and for D + P the theorem is

h0(L(D + P ))− h1(L(D + P )) = degD + 1 + 1− g.

Use the exact sequence

0→ L(D)→ L(D + P )→ κ(P )→ 0

to compute the Euler characteristic χ = h0 − h1 of L(D + P ). This yields

χ(L(D + P )) = χ(L(D)) + χ(κ(P ))

so
h0(L(D + P ))− h1(L(D + P )) = h0(L(D))− h1(L(D)) + 1.

The theorem is thus true for D + P iff it is true for D. Since the theorem is true for D = 0
and we can obtain any divisor by adding or subtracting points starting with D = 0 the
theorem follows.

34 Serre Duality

By Serre Duality H1(L(D)) is dual to

Ext0(L(D), ωC) = Ext0(OC , ωC ⊗ L(D)∨)

= H0(ωC ⊗ L(−D)) = H0(L(K −D))

Thus h1(L(D)) = h0(L(K − D)) where K is some divisor so that L(K) = ω. K is often
called the canonical divisor. Thus we can restate the Riemann-Roch theorem as

h0(L(D))− h0(L(K −D)) = degD + 1− g.

Sometimes one abbreviates h0(L(D)) as `(D) and then Riemann-Roch becomes

L(D)− L(K −D) = degD + 1− g.

Corollary 34.1. degK = 2g − 2.

Proof. By Riemann-Roch,

h0(L(K))− h0(L(0)) = degK + 1− g

but h0(L(K)) = g and h0(L(0)) = 1. Thus degK = 2g − 2.

Homework II, Exercise 8.4; III, Exercise 6.8, 7.1, 7.3
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35 A Bird’s Eye View of Curves

3g − 3 + g + 4(d+ 1− g − 4) + 15 = 4d

1. 3g − 3 is the dimension of the moduli space Mg of curves of genus g.

2. g is the dimension of PicdC.

3. 4(d+ 1− g − 4) is the number of ways to choose a linear system W in W 0(L).

4. 15 is the dimension of Aut P3 ∼= PGL(4, k).

5. 4d is the dimension of the Hilbert scheme H0
d,g of nonsingular curves of genus g and

degree d.

36 Moduli Space

As a set Mg is the set of curves of genus g modulo isomorphism. Mg can be made into a
variety in a natural way. As a variety Mg is irreducible and

dimMg =


0 if g = 0

1 if g = 1

3g − 3 if g ≥ 2

Mg is not a projective variety, but its closure Mg is. The points of Mg not in Mg are
called stable curves.

37 Embeddings in Projective Space

38 Elementary Curve Theory

38.1 Definitions

Let C be a curve thus C is a nonsingular connected projective variety of dimension 1 over
an algebraically closed field k. Let g be the genus of C. A divisor D is a sum

∑k
i=1 niPi

where ni ∈ Z and Pi is a closed point of C. Let degD =
∑k

i=1 ni. A divisor D corresponds
to an invertible sheaf L(D) = I∨D where ID is the ideal sheaf of D and I∨D = HomC(ID,OC)
is the dual of ID. Note that L(nD) = L(D)⊗n since ⊗ and ∨ commute.

Notation: O(D) := L(D), M(D) =M⊗L(D).
We say a divisor

∑
niDi is effective if all ni ≥ 0. Let |D| denote the complete linear

system associated to D. Thus

|D| = {D′ : D′ is effective and D′ ∼ D}.

Here ∼ denotes linear equivalence. Two divisors D and D′ are linearly equivalent if there
exists f ∈ K = K(C) (the function field of C) so that D − D′ = (f) where (f) =∑

P∈C closed vP (f)P .
Since the condition D+(f) ≥ 0 is exactly the condition that f ∈ H0(C,L(D)), it follows

that there is a bijection
|D| ∼−→ H0(C,L(D))/k∗
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D′ = D + (f) 7→ f.

Two functions f , g which differ by an element of k∗ give the same divisor. Note that |D|
may be empty.

If s ∈ H0(L) then there is an injection 0 → O s−→ L(D) given by multiplication by s.
Dualizing we obtain

L(−D) = ID = L∨ s∨−→ O → OD → 0.

Thus D 6= 0 is effective iff D corresponds to a closed subscheme defined locally by (tniPi ⊂ OPi
where tPi ∈mPi ⊂ OPi is a uniformizing parameter at mPi .
|D| can be regarded as a projective space and as such

dim |D| = h0(`(D))− 1 = `(D)− 1,

where `(D) = h0(L(D)). We can generalize the notion of a complete linear system by
considering linear subspaces of |D|. A (general) linear system is a linear subspace D ⊂ |D|.
Thus D corresponds to a vector subspace W ⊂ H0(C,L(D)).

38.2 Maps to Projective Space

39 Low Genus Projective Embeddings

Let C be a curve of genus g, let K be the canonical divisor (which corresponds to the
invertible sheaf Ω = ω of differentials) and let D be a divisor.

Theorem 39.1 (Riemann-Roch). `(D)− `(K −D) = deg(D) + 1− g

Proposition 39.2. A divisor D is ample iff degD > 0.

Proposition 39.3. If degD ≥ 2g + 1 then D is very ample.

39.1 Genus 0 curves

Suppose C is a curve of genus g = 0. If degD ≥ 1 then D is very ample. Suppose D = P
is a point. Then D gives rise (after a choice of basis for the corresponding invertible sheaf)
to an embedding C ↪→ Pn where n = `(D) − 1 = 1. When D = 2P we obtain the 2-uple
embedding C ↪→ P2 which is a conic since g = 0. When D = 3P , C ↪→ P2 is the twisted
cubic. More generally D = dP gives the rational normal curve C ↪→ Pd of degree d (which
is in fact projectively normal).

39.2 Genus 1 curves

If C is a curve of genus g = 1 then degD ≥ 2g + 1 = 3 iff D is very ample. Thus the
converse to proposition 2 holds when g = 1. Suppose D is a very ample divisor of degree 2.
(For degree 1 or 0 a similar argument works.) Then D gives rise to an embedding C ↪→ P1

since `(D)− 1 = 2− 1 = 1 which is absurd since C has genus 1 but P1 has genus 0. To see
that `(D) = 2 apply Riemann-Roch to obtain `(D)− `(K −D) = 2 + 1− 1 = 2. Then since
degK = 2g − 2 = 0 we see that deg(K −D) < 0 and hence `(K −D) = 0 so `(D) = 2 as
desired.

Suppose D is a divisor of degree 3 on a genus 1 curve C. Then D gives rise to an
embedding C ↪→ P2 since `(D) − 1 = (degD + 1 − g) − 1 = 3 − 1 = 2. Thus any curve
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of genus 1 can be embedded as a nonsingular cubic curve in P2. This embedding also
allows us to show that K ∼ 0. We showed before that if C ⊂ P2 is of degree d then
ωC ∼= OC(d − 3). Thus choosing an embedding arising from a divisor of degree 3 as above
we see that ωC ∼= OC(0), thus the canonical sheaf corresponds to the trivial divisor class so
K ∼ 0. Alternatively, we can prove this by using Riemann-Roch to see that

`(K) = `(0) + deg(K) + 1− g = 1 + 0 + 1− 1 = 1

and thus K is linearly equivalent to an effective divisor of degree 2g − 2 = 0.

39.3 Moduli Space

The moduli spaces of curves of low genus are

M0 = { curves of genus 0 } = {P1}

M1 = { curves of genus 1 } = A1

A curve C of genus g = 1 can be given by a degree 3 embedding C ↪→ P2. We will
show [[in nice characteristic only?]] that two embedded curves C1 ↪→ P2 and C2 ↪→ P2 are
isomorphic as abstract curves iff there is an automorphism in Aut P2 = PGL(3) sending C1

to C2. Note that Aut P2 is a 32 − 1 = 8 dimensional family. A degree 3 curve C ↪→ P2 is
given by a degree 3 polynomial

F = a0x
3 + · · · ∈ H0(OP2(3)).

Since dimH0(OP2(3)) = 10 we obtain a 10 − 1 = 9 dimensional projective space of such
curves (including the singular ones). The nonsingular ones form an open subset ∆ 6= 0. The
moduli space Mg has dimension 9− 8 = 1. [[Not clear.]]

How can degree 3 embedded curves C1, C2 ⊂ P2 be isomorphic? We generalize to
arbitrary degree and ask the following question.

Question 39.4. Suppose C1, C2 ⊂ P2 are both nonsingular curves of degree d and suppose
C1
∼= C2 as abstract curves. Does is necessarily follow that there is an automorphism g of

P2 sending C1 to C2, i.e., such that g(C1) = C2?

Suppose d = 1. Then C1 and C2 are both lines in P2 so the answer is yes.
Suppose d = 2. Then C1 and C2 are both conics. If k is algebraically closed and

char k 6= 2 the defining equations C1 and C2 can be transformed into x2 + y2 + z2 = 0 by
an automorphism of P2 (by “completing the square”). Thus in this case the answer to the
question is yes. When char k = 2 the answer is no. [[give an easy counterexample here.]]

Suppose d = 3. Thus C1 and C2 are both cubic curves in P2 and C1
∼= C2 as abstract

curves. Equivalently we are given an abstract curve C and two embeddings

ϕ1 : C ↪→ P2

ϕ2 : C ↪→ P2

The question is then: does there exist an automorphism g of P2 such that g(ϕ1(C)) =
ϕ2(C)? The embedding data giving ϕ1 is a divisor D along with a basis of global sections
s0, s1, s2 ∈ H0(OC(D)). An automorphism of P2 induces a map on C which preserves D
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but changes the basis s0, s1, s2. Suppose ϕ1 is given by D1 and global sections s0, s1, s2, and
that ϕ2 is given by D2 and t0, t1, t2. The automorphism g induces a map

g′ : C ∼= ϕ1(C)
g−→ ϕ2(C) ∼= C.

Then g′(D1) = D2 and g′ : s0, s1, s2 7→ t0, t1, t2.
This generalizes so that in degree d ≥ 3 a necessary condition for a yes answer to the

above question is that for any two divisors D1 and D2 of degree d on C there is g ∈ Aut P2

such that g′(D1) = D2.

40 Curves of Genus 3

Today we will study curves of genus 3.

Example 40.1. A plane curve C ⊂ P2 of degree d = 4 has genus 1
2
(d− 1)(d− 2) = 3.

Example 40.2. A curve C on the quadric surface Q in P3 of type (2,4) has degree 6 and
genus 3.

These two examples are qualitatively different. The curves in the first example are “canon-
ical” whereas the curves in the second class are “hyperelliptic”.

We consider the first example in more detail. Let C ⊂ P2 be a genus 3 plane curve (so
C has degree d = 4). Then

ωC = OC(d− 3) = OC(1)

so ωC is very ample. Thus the canonical embedding arising from the canonical divisor is
exactly the given embedding C ↪→ P2.

Next we consider example 2 in more detail. Let C be a genus three curve of type (2,4) on
the quadric surface Q ∼= P1×P1 ⊂ P3. The projections p1, p2 : Q→ P1 give rise to a degree
2 and a degree 4 morphism of C to P1. Thus there exists a 2-to-1 morphism f : C → P1. f
corresponds to a base point free linear system on C of degree 2 and dimension 1. This linear
system in turn corresponds to an effective divisor D of degree 2 with `(D) = 2 so |D| = 1.
The existence of such a divisor means there exists P , Q such that |P +Q| has dimension 1.

Definition 40.3. A curve C is hyperelliptic if g ≥ 2 and there is a base point free linear
system of degree 2 and dimension 1.

It is classical notation that a base point free linear system of degree d and dimension r
is called a grd. To say that a curve is hyperelliptic is to say that it has a g1

2.

• If g = 0 then there is always a g2
2.

• If g = 1 any divisor of degree 2 gives a g1
2 by Riemann-Roch. Indeed, if D has degree

2 then
dim |D| − dim |K −D| = 2 + 1− g = 2

and deg(K −D) = −2 so dim |D| − (−1) = 2 and hence dim |D| ≤ 1.

• If g = 2 every curve is hyperelliptic since |K| is a g1
2. Indeed, applying Riemann-Roch

we see that
dim |K| = dim |K| − dim |0| = 2− 1 = 1.

Lemma 40.4. Let C be any curve and D any divisor of degree d > 0. Then dim |D| ≤ d
with equality iff C is a rational curve.
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Proof. This is (IV, Ex. 1.5) in Hartshorne. Although one might guess that this lemma
follows from Riemann-Roch this is not the case. Riemann-Roch gives a different sort of
relationship between the dimension and degree of a divisor. We induct on d.

First suppose d = 1. First note that

dim |P | = `(P )− 1 = h0(OC(P ))− 1.

There is an exact sequence

0→ OC → OC(P )→ k(P )→ 0.

Now h0(OC) = 1 and h0(k(P )) = 1 therefore h0(OC(P )) ≤ 2 so dim |P | ≤ 1. If dim |P | = 1
then |P | has no base points so we obtain a morphism C → P1 of degree degP = 1 which
must be an isomorphism so C is rational.

Next suppose D = P1 + · · ·+ Pd. Let D′ = P1 + · · ·+ Pd−1. There is an exact sequence

0→ OC(D′)→ OC(D)→ k(Pd)→ 0.

Now h0(OC(D′)) ≤ d by induction and h0(k(Pd)) = 1 so h0(OC(D)) ≤ d + 1, therefore
dim |D| ≤ d with equality iff h0(OC(D′)) = d. By induction h0(OC(D′)) = d iff C is
rational.

Theorem 40.5. Suppose C is a curve of genus g ≥ 2. Then ωC is very ample iff C is not
hyperelliptic.

Proof. Let K be the canonical divisor. Then by a previous result K is very ample iff for all
points P , Q, dim |K − P −Q| = dim |K| − 2. By Riemann-Roch,

dim |P +Q| − dim |K − P −Q| = 2 + 1− g = 3− g.

Now K is very ample iff dim |K − P −Q| = dim |K| − 2 = (g − 1)− 2 = g − 3 so when K
is very ample the above becomes

dim |P +Q| − (g − 3) = 3− g.

Thus K is very ample iff for all P and Q, dim |P + Q| = 0. Thus K is not very ample iff
there exists P and Q so that dim |P + Q| = 1. But the latter condition occurs precisely
when C is hyperelliptic. (We can exclude the case dim |P + Q| ≥ 2 by using the previous
lemma and the fact that C is not rational.)

Corollary 40.6. If C is a curve of genus g ≥ 1 then |K| has no base points.

Proof. If g = 1 then K = 0 so |K| = {0} and we are done. If g ≥ 2 then |K| is base point
free iff

dim |K − P | = dim |K| − 1

for all P . (If |K| has a base point P then every effective divisor D linearly equivalent to K
is such that D − P is effective and linearly equivalent to K − P . If |K| has no base points
then the dimension of the space of effective divisors equivalent to K − P must go down for
ever P .) Since

dim |P | = dim |K − P |+ 1 + 1− g

and
dim |K| = 2g − 2 + 1− g = g − 1
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we see that
dim |K − P | = dim |K| − 1 + dim |P |

so |K| is base point free iff dim |P | = 1 for all P . But dim |P | ≤ 1 for every P and we have
equality iff C is rational (i.e., g=0). Since C is not rational it follows that |K| is base point
free.

Suppose given an abstract curve C of genus 3. Then C belongs to one of two disjoint
classes. If the canonical sheaf ωC is very ample then we obtain an embedding of C into
Pg−1 = P2 as a nonsingular quartic curve. If ωC is not very ample then C is hyperelliptic
(since the map induced by ωC is 2-to-1). Does every hyperelliptic curve arise as a curve of
type (2,4) on Q ⊂ P3? Hartshorne claims to have three-fourths of a proof.

Lemma 40.7. If C is any curve of genus 3 then there exists a very ample divisor of degree
6 = 2g.

Proof. Let D be a divisor of degree 6. We have shown that D is very ample iff

dim |D − P −Q| = dim |D| − 2

for all P and Q. Since degK = 2g − 2 = 4 Riemann-Roch asserts that

dim |D| = dim |K −D|+ 6 + 1− g = −1 + 6 + 1− g = 6− g = 3

dim |D − P | = dim |K − (D − P )|+ 5 + 1− g = 5− g = 2

dim |D − P −Q| = dim |K − (D − P −Q)|+ 4 + 1− g.
Thus for D to be very ample it must be the case that

dim |K − (D − P −Q)| = −1.

Since deg(K − (D − P −Q)) = 0 it follows that dim |K − (D − P −Q)| = −1 iff K is not
linearly equivalent to D − P −Q. The assertion is thus reduced to showing that among all
divisors of degree 6 the set with D − P −Q ∼ K is a proper closed subset.

[[I do not understand Hartshorne’s proof of this. He says D − P − Q ∼ K iff D ∼
K + P +Q. He then claims that the family of D of degree 6 is a 6 dimensional family and
that the family of divisor K + P +Q is a 5 dimensional family.]]

What about the converse? If C is hyperelliptic must C then have to lie on a quadric
surface?

41 Curves of Genus 4

Recall that curves of genus g ≥ 2 split up into two disjoint classes.

(a) hyperelliptic

(b) ωX is very ample

If g = 3 and C is of type (2, 4) on Q ⊂ P3 then C is hyperelliptic. Also, if g = 3 then ωX
is very ample iff C is a degree 4 curve in P2. Any curve of genus g = 3 can be embedded
as a curve of degree 6 in P3. We do not know whether any such curve can actually be put
on a quadric surface. “This would make a great homework problem — I do not know the
answer.”

Next we consider curves of genus 4.
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Example 41.1. Consider a type (2, 5) curve C on Q ⊂ P3. Then C has degree 7 = 2 + 5
and C is hyperelliptic (because of the degree 2 map coming from projection onto the first
fact p1 : Q → P1). A type (3, 3) curve on Q is also of genus 4. It is a degree 6 complete
intersection of Q and a cubic surface. Curves of type (3, 3) have at least two g1

3’s.

41.1 Aside: existence of g1
d’s in general

Assume for this discussion that g1
d’s are allowed to have base points. Call such g1

d’s trivial.
Given a g1

d adding a point p trivially gives a (trivial) g1
d+1.

Question 41.2. Given any curve C what is the least d for which there exists a g1
d?

• g = 0 there is a g1
1 coming from the embedding P1 ↪→ P1,

• g = 1 there are infinitely many g1
2’s,

• g = 2 there is a g1
2 namely ωC ,

• g ≥ 2] if there is a g1
2 then C is hyperelliptic,

• g > 2 there exists nonhyperelliptic curves.

If a curve C has a g1
3 it is called trigonal. If g ≤ 2 then there exists a trivial g1

3 (just add a
point to a g1

2). If g = 3 and C is hyperelliptic then it is trivial that there is a g1
3. If C is not

hyperelliptic it is not trivial. But projection through a point P ∈ C gives a 3-to-1 map to
P1. This corresponds to a g1

3. Thus a curve of genus 3 has infinitely many g1
3’s (one for each

point, coming from projection). If g = 4 and C is hyperelliptic then it is trivial that there
is a g1

3. In general given any genus 4 curve one can always construct a g1
3. When g ≥ 5 in

general there will not be a g1
3. This pattern repeats itself.

41.2 Classifying curves of genus 4

Start with an abstract curve C of genus 4. We do not deal with the case C hyperelliptic
now. A related question is the following.

Question 41.3. Does every hyperelliptic curve live on the quadric surface?

We postpone this question or maybe put it on an upcoming homework assignment.
[Everyone shudders.]

If C is not hyperelliptic then ωC is very ample. Therefore we have the canonical embed-
ding C ↪→ Pg−1 = P3. The degree of the embedded curve is degωC = 2g − 2 = 6. Thus
view C as a degree 6 genus 4 curve in P3. What does C lie on? There is an exact sequence

0→ H0(IC(2))→ H0(OP3(2))→ H0(OC(2))→ · · ·

Since Riemann-Roch states that `(D) = degD+ 1− g+h1(O(D)) we see that h0(OC(2)) =
12 + 1− 4 + 0 = 9. [[This is not quite clear.]] Since h0(OP3(2)) = 10 it follows that the map
H0(OP3(2))→ H0(OC(2)) must have a nontrivial kernel so h0(IC(2)) > 0. Therefore C lies
in some surface of degree 2. Can the surface be twice a hyperplane? No. Can the surface
be the union of two planes? No. Could the surface by the singular quadric cone Qone? Yes.
Could the surface be the nonsingular quadric surface Qns? Yes.

If C lies on Qns then it must have a type (a, b) which must satisfy a + b = 6 and
(a− 1)(b− 1) = 4. The only solution is a = b = 3.
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The other possibility is that C lies on Qone. One way to understand C is to figure out all
divisors on Q. Another way is to compute an exact sequence like the one above. We obtain

0→ H0(IC(3))→ H0(OP3(3))→ H0(OC(3))→ · · ·

As before one sees that h0(OC(3)) = 15 and h0(OP3(3)) = 20. Thus h0(IC(3)) ≥ 5. Let
q ∈ H0(IC(2)) be the defining equation of Qone. Then xq, yq, zq, wq ∈ H0(IC(3)). But
h0(IC(3)) ≥ 5 so there exists an f ∈ H0(IC(3)) so that the global sections xq, yq, zq, wq, f
are independent. Thus there is an f not in (q). Since f 6∈ (q) we see that F3 = Z(f) 6⊃ Q
so C ′ = F3 ∩Q is a degree 6 not necessarily nonsingular or irreducible curve. Since C ⊂ F3

and C ⊂ Q it follows that C ⊂ C ′. Since degC = 6 = degC ′ it follows by an easy exercise
that C = C ′.

Lemma 41.4. Suppose C ⊂ C ′ are both closed subschemes of Pn with the same Hilbert
polynomial. Then C = C ′.

Thus in the case that C lies on Qone we see that C is also a complete intersection
C = Qone ∩ F3.

Next we comment on the g1
3 question in this situation. Projection from the cone point

to the conic (the base of the cone) induces a g1
3 on C. So in genus g = 4 there is a g1

3. There
is one in the case that C lies on Qone (it is not clear that there is just one), there are two in
the case that C lies on Qns, and there is a trivial one in the case that C is hyperelliptic.

Proposition 41.5. Suppose C is a genus 4 nonsingular complete intersection Q∩ F3 ⊂ P3

with Q of degree 2 and F3 of degree 3. Then ωC ∼= OC(1).

Recall that if C is of degree d in P2 then ωC ∼= OC(d − 3). This can be seen from an
analysis of the exact sequence

0→ I/I2 → ΩP2|C → ΩC → 0

together with the exact sequence

0→ ΩP2| → OC(−1)3 → OP2 |C → 0.

We could do the same thing for C ⊂ P3.

Proposition 41.6. Suppose C = Fe · Ff ⊂ P3 with Fe and Ff nonsingular of degree e, f ,
respectively. Then ωC = OC(e+ f − 4).

This was (II, Ex. 8.4 e) and it can be found in my homework solutions.

42 Curves of Genus 5

There are hyperelliptic curves of genus 5. For example a curve of type (2, 6) on the quadric
surface Q ⊂ P3. Are there any more curves of genus 5?

If C is a curve of genus 5 which is not hyperelliptic then ωC is very ample so there is a
canonical embedding C ↪→ P4 in which C has degree 8. How many quadric hypersurfaces
does such a C lie on?
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42.1 The space of quadrics containing an embedded genus 5 curve.

There is an exact sequence

0→ H0(IC(2))→ H0(OP4(2))→ H0(OC(2))→ · · ·

Riemann-Roch implies h0(OC(2)) = deg(OC(2)) + 1− g = 16 + 1− 5 = 12. Here OC(2) has
degree 16 since the degree is additive on the class group and C has degree 8 so the divisor
OC(1) has degree 8. Also OC(2) is superspecial since the canonical divisor has degree
2g − 2 = 8. Combining this with the fact that h0(OP4(2)) = 15 implies h0(IC(2)) ≥ 3.
Thus C lies on a 3 dimensional space of quadric hypersurfaces. Let F2, F

′
2, F

′′
2 be linearly

independent quadric hypersurfaces containing C. In the genus 4 case F2∩F3 was a curve C ′

which we were able to show was equal to C. But in our situation it might be possible that

F2 ∩ F ′2 = H ∼= P3.

But in that case C ⊂ F2 ∩ F ′2 would be contained in P3. But this is not true since C is not
contained in any linear subspace since the embedding comes from the complete linear system
|ωC |. (If C were contained in a linear subspace then there would be a dependence relation
between the linearly independent global sections of ωC giving rise to the embedding.)

If F2 ∩ F ′2 is a hypersurface then it is defined by a single polynomial equation f = 0.
Then f divides the quadratic defining F2 and the quadratic defining F ′2 so f must be linear.
But this case was ruled out above. Thus S = F2 ∩F ′2 is a surface. We cannot conclude that
F2∩F ′2∩F ′′2 is the curve C. It could happen that S ⊂ F ′′2 and so S = F2∩F ′2∩F ′′2 . It could
also happen that F2 ∩ F ′2 ∩ F ′′2 is just a part S1 of the surface S. But this gives us a hint as
to how to construct curves of genus 5.

42.2 Genus 5 curves with very ample canonical divisor

In P4 take F2, F
′
2, F

′′
2 three quadric hypersurfaces which are sufficiently general so that

C = F2 ∩ F ′2 ∩ F ′′2 is a nonsingular curve. (That this can be done appeals to Bertini’s
theorem.) Given such a curve C then degC = 23 = 8 and ωC = OC(2+2+2−4−1) = OC(1).
Therefore C is the canonical embedding of the abstract curve hiding in the shadows behind
C. The genus of C is 5 since 2g−2 = degC = 8. This construction gives examples of curves
of genus 5 for which ωC is very ample, i.e., curves of genus 5 which are not hyperelliptic.

Does this type of curve have a g1
3, i.e., a complete linear system of degree 3 and dimension

1?
Suppose C is an abstract curve of genus 5 which is not hyperelliptic. Embed C in P4 by

its canonical embedding C ↪→ P4. There are two possibilities:

1. C = F2 ∩ F ′2 ∩ F ′′2

2. C ⊂ S = F2 ∩ F ′2 ∩ F ′′2

As seen above case 1 can occur. In case 2, S is a surface of degree 8 [[I missed the proof.]]
We do not yet know if case 2 can occur.

Is C trigonal, that is, does C have a g1
3? To study this question we introduce a new

technique. Suppose C ↪→ P4 is the canonical embedding of C into P4 as a degree 8 curve.
Then there is a g1

3 iff there exists three points P,Q,R ∈ C such that dim |P + Q + R| = 1.
Given three points P,Q,R Riemann-Roch implies

dim |P +Q+R| = 3 + 1− 5 + dim |K − P −Q−R| = −1 + dim |K − P −Q−R|
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so dim |P+Q+R| = 1 iff dim |K−P−Q−R| = 2. The condition that dim |K−P−Q−R| = 2
is that there is a 2 dimensional linear system of effective canonical divisors K which contain
P,Q,R.

The technique is to translate the condition dim |K − P − Q − R| = 2 into a geometric
criterion involving the embedding C ↪→ P4. Since the embedding C ↪→ P4 is canonical every
effective divisor in the canonical divisor class is the intersection of C with a hyperplane in
P4. We obtain every effective divisor because |K| has dimension 4 and the dimension of the
space of lines in P4 is 4. Thus an effective canonical divisor contains P,Q,R iff there is a
hyperplane in P4 containing P,Q,R. Hence there is a 2 dimensional linear system in P4

containing P,Q,R iff P,Q,R are collinear in P4. We have thus interpreted dim |P +Q+R|
in terms of the geometry of where P,Q,R lie on C in the canonical embedding. The upshot
of this is

Proposition 42.1. Suppose C is a not a hyperelliptic curve. Then C has a g1
3 iff there are

3 points P,Q,R ∈ C which are collinear in the canonical embedding.

Notice that the proposition is even true without the assumption that C has genus 5.
We return to our situation. Suppose C ↪→ P4 is the degree 8 canonical embedding of

some nonhyperelliptic curve C of genus 5. Suppose P,Q,R ∈ C are collinear so they all lie
on some line L.

First suppose C is the complete intersection C = F2 ∩ F ′2 ∩ F ′′2 . Then P,Q,R ∈ F2 and
P,Q,R ∈ L so L∩F2 contains at least 3 points. If L is not contained in F2 then L∩F2 has
(degL) · (degF2) = 2 points so it must be the case that L ⊂ F2. By similar reasoning we
conclude that L ⊂ F ′2 and L ⊂ F ′′2 so L ⊂ C, a contradiction. So C does not have a g1

3.
Next suppose C ⊂ S = F2 ∩ F ′2 ∩ F ′′2 . Then it is possible that L ⊂ S since this leads to

no contradiction. So maybe there could be a g1
3 on C, we still do not know.

Next we show that there do exist genus 5 trigonal curves. We construct directly a genus
5 curve C with nontrivial g1

3. The things to do is look in P2 for a curve D of degree 5 which
has one node and no other singularities.

As an aside we consider a more general problem. Consider singular irreducible curves C
of degree d in P2 containing r nodes and k cusps. A node looks locally like xy = 0 and a
cusp looks like y2 = x3. What are the possible triples (d, r, k) which can occur? The answer
for small d is

d (d, r, k)

1 (1,0,0)
2 (2,0,0)
3 (3,1,0), (3,0,1)
4 (4,3,0),. . .

In general this is an open problem. Solving it is a guaranteed thesis, seven years of good
luck, and an... academic position! The complete answer is probably known up to degree 10.
One constraint comes from the fact that if C̃ is the normalization of C then

g(C̃) =
1

2
(d− 1)(d− 2)− r − k ≥ 0

so r + k ≤ 1
2
(d− 1)(d− 2).

Finding a D as above means finding a (5, 1, 0). Suppose char k 6= 3, 5. Let

f = xyz3 + x5 + y5.
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The point x = y = 0 is a nodal singularity. There are no other singularities. See this by
computing fx = yz3 + 5x4, fy = xz3 + 5y4, and fz = 3xyz2. For these to all vanish it must
be the case that x, y, or z is 0. If x or y is 0 then both x and y are 0 so we recover the
nodal singularity. If x and y are nonzero then z = 0 so from fx = 0 and fy = 0 it follows
that x = y = 0, but x = y = z = 0 is not a point.

Let C = D̃ be the normalization of C. Then C is a genus 5 nonsingular curve. (That
the normalization of a curve is nonsingular is a fact from commutative algebra.) Pick a
node P on D. Then lines through P in P2 give a map D − {P} → P1. A point Q in P1

corresponds to a line L through P . Since P is a double point and D has degree 5, we see
that L intersects D in 3 other points. These three points map to Q ∈ P1. This map extends
to a map on C which corresponds to a g1

3.
We can now say something about the 3g − 3 = 12 dimensional space of genus 5 curves.

They can be divided into 3 nonempty classes: trigonal, hyperelliptic and general ones with
no g1

3. The hyperelliptic curves form a 2g − 1 = 9 dimensional family. [[The trigonal curves
might form an 11 dimensional family??]] It might be the case that every hyperelliptic curve
is trigonal.

Next time we will do the case of genus 6 since a new phenomenon appears.

43 Homework Assignment

Do the following from the book: IV Ex. 3.6, 3.12, 5.4.
Do any one of the following problems (and try to do one that someone else is not doing!)
1. If C is a hyperelliptic curve of genus g ≥ 2, find the least possible degree of a very

ample divisor on C. Is it independent of the particular hyperelliptic curve chosen?
2. Can every hyperelliptic curve of genus g ≥ 2 be embedded in P3, so as to be a curve

of bidegree (2, g + 1) on a non-singular quadric surface Q?
3. If C is hyperelliptic of genus g ≥ 3, then C does not have a g1

3 (without base points).
4. If C is a non-hyperelliptic curve of genus g ≥ 4 show that C has at most a finite

number of g1
3’s.

5. If C is a non-hyperelliptic curve of genus g ≥ 3, then it admits a very ample divisor
of degree d ≤ g + 2.

44 Curves of genus 6

Examples of curves of genus 6.

(a) degree 5 curve in P2,

(b) a type (2, 7) curve (of degree 9) on the quadric surface Q in P3,

(c) a type (3, 4) curve (of degree 7) on the quadric surface Q in P3.

Claim 44.1. The abstract curves C which can be realized in types (a), (b), and (c) are
mutually disjoint.

Since (b) is hyperelliptic it has a g1
2. Since (c) is trigonal (i.e. it has a g1

3) by exercise 3
it does not have a g1

2. Thus (b) and (c) are disjoint classes.
I will next show that (a) has no overlap with (b) and (c). First note that (a) has infinitely

many g1
4’s, one for each point. This is because projection through a point gives a degree 4

map to P1. I will prove that (a) has no g1
2 or g1

3.
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Lemma 44.2. If C is a nonsingular curve of deg 5 in P2 then C does not have a g1
2 or a

g1
3.

The lemma is a special case of a result of Max Noether:

“On a plane curve, the only linear systems grd of maximal dimension (so r is
maximal with respect to d) are the obvious ones.”

The obvious linear systems are the ones arising in a natural way by intersecting the curve
with a straight line, or with a conic section, or a conic section but fixing one point, and so
on. Suppose C has degree 5 in P2. Then cutting with a line gives a g2

5 since the lines in P2

form a 2 parameter family and they intersect C in 5 points. Cutting with a conic gives a g5
10

since the conics form a 5 parameter family. By fixing two points one obtains a g4
9, by fixing

three points a g3
8 and similarly a g2

7 and g1
6. All lines with 1 fixed point gives a g2

6. More
generally, if C has degree n in P2 then there exists a g1

n−1 but Noether’s result implies that
there does not exist a g1

d for d < n− 1.

Proof. Now we prove the lemma. Let C be a nonsingular curve of degree 5 in P2. Then
ωC = OC(d−3) = OC(2). This curve is subcanonical, i.e., ωC = OC(`) for some ` > 0. Thus
the canonical embedding is obtained by following C ↪→ P2 by the 2-uple embedding.

From last time we know that there exists a g1
3 on C iff there exists points P,Q,R ∈ C

such that P,Q,R are collinear in the canonical embedding. This might lead to a proof but
I can not think of it right now, so forget it!

C is hyperelliptic iff there exists P,Q such that dim |P +Q| = 1. By Riemann-Roch

dim |P +Q| = 2 + 1− 6 + dim |K − P −Q|

so in this situation dim |K − P − Q| = 4. Since C has degree 5 and the canonical divisor
has degree 10, the canonical divisor is cut by conics. To see this note that |K| = g − 1 = 5
and the dimension of the space of conics in P2 is also 5. If dim |K − P −Q| = 4 then there
exists P,Q ∈ C such that the family

{ conics containing P,Q }

has dimension 4. But the family of all conics in P2 has dimension 5, the family of conics
through one fixed point has dimension 4, and the family of conics through two fixed points
has dimension 3. Thus C can not be hyperelliptic.

C is trigonal iff there exists points P,Q,R such that dim |P +Q+R| = 1. By Riemann-
Roch this latter condition implies that dim |K − P − Q − R| = 3. This would mean that
we could find three points P,Q,R in C such that the dimension of the family of conics
containing P,Q,R is 3. But the family of conics through P and Q has dimension 3 and
there are conics passing through P and Q but not through R so the family of conics through
all of P,Q,R must have dimension less than 3. Thus C is not trigonal and the lemma is
proved.

Can every curve of genus 6 be realized as one of type (a), (b), or (c)? The answer is no.

g grd’s

g = 2 ∃g1
2

g = 3 ∃g1
3

g = 4 ∃ finitely many g1
3

g = 5 ∃ infinitely many g1
4 (not shown in class)

g = 6 we should expect that the general curve
has only finitely many g1

4’s
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Kleiman-Lacksov prove that what we expect is actually the case in general. Our examples
(a), (b), and (c) all have infinitely many g1

4’s so we suspect that our examples do not cover
all genus 6 curves.

There exists a curve of a fourth type (d)=none of the above, and this will be the general
curve. It is hard to get our hands on a general curve since any time we explicitly make a
curve it has special properties and is thus not general.

We want to find a plane curve of degree 6 with 4 nodes and no other singularities. The
space of all curves of degree 6 has dimension 1

2
d(d+ 3) = 27. It takes 3 linear conditions to

force a node at a particular point, thus it takes 12 linear conditions to get 4 nodes. Since
12 < 27 there exist such curves. The curve could have weird singularities, but there is a way
to get the curve we want. This is like homework IV.5.4. Thus suppose C0 ⊂ P2 is a curve of
degree 6 with exactly 4 singularities which are all nodes. Let C = C̃0 be the normalization
of C0. Then

g = g(C) =
1

2
(d− 1)(d− 2)− 4 = 10− 4 = 6.

There are five obvious g1
4’s. Four come from projecting away from any of the double points.

To get the fifth consider conics passing through all four double points. Thus C has g1
4’s but

none of our previous curves did and so the class (d) is nonempty.
Another question is the following.

Question 44.3. When g is even there are only finitely many g1
g−1’s. For example when

g = 4 there are two g1
3’s, and when g = 6 there are five g1

4’s. In general how many g1
g−1’s

are there?

We could have also approached showing classes (a), (b), (c), and (d) are disjoint by
asking: what is the least degree of a very ample divisor? For (a) the least degree is 5, for
(b) it is 9, for (c) it is 7, and for (d) it is 8. We give no proof of this here. This type of
classification method should generalize to arbitrary genus.

45 Oral Report Topics

During the week of the 29th of April oral reports will be presented by the students. The
suggested topics are

• Curves /k where k is not necessarily algebraically closed and rational points on curves
over finite fields.

• The variety of moduli Mg.

• Duality for a finite smooth morphism X → Y .

• Jacobian variety of a curve. (“what does it really mean?”)

• Curves on a nonsingular cubic surface in P3 (ch 5, sec 4).

• Flat families of curves in P3 (ch 3, sec 9).

Your oral reports must be 20 minutes in length. They should contain precise definitions,
statements of the main theorems, some examples, and maybe some proofs if there is time.
You should consult with me before you begin.

For the rest of the semester we will be studying curves of genus g, g general and elliptic
curves.
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46 Curves of general genus

Today’s lecture contains hints for some of the homework problems.

Proposition 46.1. If C is hyperelliptic of genus g ≥ 2, then the g1
2 is unique. Furthermore,

K ∼ (g − 1)D for any D ∈ g1
2.

Proof. The complete linear system |K| has no base points iff dim |K − P | = dim |K| − 1
for any point P on C. By Riemann-Roch dim |K| = 2g − 2 + 1− g = g − 1 and dim |P | −
dim |K − P | = 2 − g so dim |K − P | = dim |P | + g − 2. Thus dim |K − P | = dim |K| − 1
for all P iff dim |P | = 0 for all P which is true since g ≥ 1. (If there were a one dimensional
space of points linearly equivalent to a given point P then C would have genus 0.) Thus K
defines a morphism (which is not necessarily an embedding)

C → Pg−1.

The map is into Pg−1 since dim |K| = g − 1. We saw before that if C is not hyperelliptic
then this is an embedding. If C is hyperelliptic then the canonical divisor can not be very
ample so this map will not be an embedding.

First consider the special case g = 1. Then we have a map C → P0 = { point } which
is not interesting.

Next suppose g = 2. Then the canonical divisor induces a map

C → P1

and K is the pullback of O(1). Since degK = 2g − 2 = 2 the map C → P1 has degree 2,
and the complete linear system |K| is a g1

2. In fact, any |D| is a g1
2 then D ∼ K. To see this

suppose P,Q are two points and dim |P +Q| = 1. By Riemann-Roch,

1 = dim |P +Q| = 2 + 1− 2 + dim |K − P −Q|

so dim |K − P −Q| = 0. Thus there is an effective divisor linearly equivalent to the degree
0 divisor K − P − Q. But the only effective divisor of degree 0 is the 0 divisor. Thus
K ∼ P + Q. Thus in genus 2 any g1

2 is given by K since any effective D giving a g1
2 is

linearly equivalent to K.
Suppose now that g ≥ 3. The complete linear system |K| gives a morphism

ϕ : C → Pg−1.

Since K is not very ample, ϕ is not a closed immersion. Now assume C is hyperelliptic.
Suppose P and Q are two points on C such that P +Q lies in some g1

2. Then by Riemann-
Roch,

1 = dim |P +Q| = 2 + 1− g + dim |K − P −Q|.
Thus dim |K − P − Q| = g − 2. But dim |K| = g − 1 and |K| has no base points so
dim |K −P | = g− 2. Thus dim |K −P | = dim |K −P −Q| so Q is a base point of |K −P |.
This means that any canonical divisor containing P also contains Q. Therefore ϕ(P ) = ϕ(Q)
if we look at this in terms of the morphism. Thus if P +Q is in some g1

2 then ϕ(P ) = ϕ(Q).
Thus ϕ is at least two-to-one. Let C0 = ϕ(C) ⊂ Pg−1 be the image curve. Pulling back

O(1) on Pg−1 gives OC0(1) on C0 which pulls back to the canonical divisor OC(1) = K
which has degree 2g − 2. There are two numbers to consider. First the degree of the curve
C0, call it d. Let e be the degree of the finite morphism ϕ. Then

2g − 2 = deg |K| = de.
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See this by noting that OC0(1) is obtained by cutting C0 with a hyperplane and seeing that
it intersects in d points then pulling these points back to their de preimages to obtain the
de degree divisor OC = K.

Since e ≥ 2 the equality de = 2(g−1) implies d ≤ g−1. Consider C0 which is a (possibly
singular) integral curve. Let D0 = OC0(1), then D0 has degree d and since |D0| gives the
embedding of C0 into Pg−1 and C0 lies in no linear subspace, dim |D0| ≥ g−1. By a previous
proposition (IV, Ex. 1.5), we know that dim |D0| ≤ degD0 with equality iff C0

∼= P1. But

g − 1 ≤ dim |D0| ≤ degD0 = d ≤ g − 1

so we do have equality and C0
∼= P1 is nonsingular and is in fact the d− 1-uple embedding

of P1 into Pg−1. Furthermore, since d = g − 1 we also see that e = 2.
The upshot of all this is that if C is hyperelliptic and g ≥ 3 then |K| gives an embedding

ϕ : C → Pg−1 which factors through the g − 1-uple embedding of P1. Thus ϕ : C → Pg−1

can be written as a composition

C
g12−→ C0 = P1 ↪→ Pg−1.

[[One shows that the g1
2 is uniquely determined, etc. as on page 343 of the book. WRITE

THIS UP HERE!]]

I thought of another proof of the uniqueness of g1
2’s. It is not in the book. This technique

is useful for the exercises. The drawback is that it does not explicitly give K.

Theorem 46.2. If C is a curve of genus g ≥ 2 then C can not have two distinct g1
2’s.

Proof. The proof is by contradiction. Suppose C has non-linearly equivalent divisors D and
D′ such that |D| and |D′| are g1

2’s. Then |D| and |D′| give morphisms p and p′ to P1 Taking
the product gives a morphism ϕ = p× p′ : C → P1×P1. Since |D| and |D′| do not contain
any of the same divisors the morphisms p and p′ collapse different points and so they are
different. Let

C0 = ϕ(C) ⊂ P1 ×P1 = Q ⊂ P3

then C0 is a possibly singular but still integral curve on the quadric surface Q. By construc-
tion each ruling gives a g1

2 on C.
Let (a, b) be the bidegree of C0 on Q. It is clear that C0 is not a point since p and p′ are

not constant. Let e be the degree of ϕ : C → C0. A divisor of type (1, 0) on Q pulls back to
a divisor on C0 of degree a. Since the morphism C → C0 has degree e this divisor of degree
a pulls back to a degree ea divisor on C. On the other hand a divisor of type (1, 0) on Q
pulls back to a divisor of degree 2 since it gives rise to p. Thus 2 = ae and similarly 2 = be.

Case 1: First suppose e = 2 and hence a = b = 1. Then C0 is of type (1, 1) so the
normalization of C0 is of genus 0. But the arithmetic genus of C0 is (1 − 1)(1 − 1) = 0
so, since the genus can only go now upon normalization, we see that C0 must already be
nonsingular. Thus ϕ maps C into P1. But p is just the composition of ϕ with the first
projection Q → P1 and this projection is the identity C0 = P1 ⊂ Q → P1. Thus p and p′

collapse the same points, a contradiction.
Case 2: Next suppose e = 1 and hence a = b = 2. Then ϕ : C → C0 induces a birational

morphism to the normalization of C0. But the normalization of C0 has genus less than or
equal to pa(C0) = (2− 1)(2− 1) = 1 so the genus of C is less than or equal to 1. In fact, if
the genus of C is one then there are two distinct g1

2’s. But under our assumption that g ≥ 2
we have the desired contradiction.
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The above proof probably can be generalized to show that, for large enough genus, C
can not have any g1

d’s.
As in case 1 we saw that a type (1,1) curve C0 can not be singular since the normalization

would then have negative genus. This might help with problems 3 and 4.
Next we give a statement of the theorem which will be proved next time.

Theorem 46.3 (Halphen). Let C be a curve of genus g ≥ 2. Then there exists a very ample
nonspecial divisor D of degree d iff d ≥ g + 3.

The existence is actually very strong in the sense that a Zariski open subset has the
property.

This generalizes our proof that g = 3 implies that there exists a very ample divisor of
degree 6. Note that 2g + 1 = 7.

There can be very ample special divisors of degree less than g + 3.

47 Halphen’s Theorem

Today we will give one more general result about curves.

Theorem 47.1 (Halphen). Suppose C is a curve of genus g ≥ 2. Then there exists a very
ample nonspecial divisor D of degree d iff d ≥ g + 3.

Proof. (⇒) Suppose D is a very ample nonspecial divisor of degree d. We will show that
d ≥ g + 3. By Riemann-Roch `(D) ≥ d + 1 − g. Since D is very ample D gives rise to an
embedding C ↪→ Pn. If n = 1 then C has genus 0, a contradiction. If n = 2 then somehow
[I can not figure this out from my notes], this implies g < 2, a contradiction. Thus D gives
an embedding C ↪→ Pn with n ≥ 3. Thus `(D) ≥ 4 and so d + 1 − g ≥ 4 so d ≥ g + 3 as
claimed.

(⇐) This direction is a little harder. Assume d ≥ g + 3 and look for a very ample
nonspecial divisor D. Remember our criterion for when a divisor is very ample? A divisor
D is very ample iff dim |D − P − Q| = dim |D| − 2 for all points P,Q. By Riemann-Roch
this is equivalent to the assertion that for all points P,Q,

dim |K −D| = dim |K −D + P +Q|.

As a “warm-up exercise” we fix d and ask the following. Does there exist a nonspecial
effective divisor D of degree d?

Recall:

• For D to be nonspecial means that dim |K −D| = −1.

• For D to be special means that K − D is linearly equivalent to an effective divisor.
Thus D is special iff there exists an effective divisor E such that D + E ∼ K, i.e.,
D + E is a canonical divisor.

The last condition shows that D is special iff D is “inside” some canonical divisor.
Since dim |K| = g − 1 there is a g − 1 dimensional family of effective canonical divisors.

From each one there are only finitely many ways to get a special divisor. Thus the dimension
of the family of all special divisors of degree d is at most g − 1. This shows that if d ≥ g
then there exists nonspecial divisors of degree d. In fact, most are nonspecial.
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Next we prove something which is more difficult. We want to show that there exists a
nonspecial very ample divisor of any given degree d ≥ g + 3. It is enough to prove that the
collection of nonspecial not very ample divisors has dimension ≤ g + 2.

Suppose D is nonspecial. Then for D to be not very ample means that there exists points
P and Q so that

dim |D − P −Q| > dim |D| − 2.

A straightforward check using Riemann-Roch shows that this is equivalent to

dim |K −D| < dim |K −D + P +Q|.

Since D is assumed nonspecial dim |K −D| = −1 thus

dim |K −D + P +Q| ≥ 0.

So there exists an effective divisor E which is special and has degree d − 2 such that E ∼
D − P −Q. [[I thought I saw this yesterday but not even this makes any sense today.]]

By the above work the dimension of the set of effective special divisors is ≤ g− 1. Thus
the set

{ E + P +Q : E is effective, special, degree d− 2, P,Q any points }

has dimension ≤ g + 1. But there is another wrinkle. We must count all divisors linearly
equivalent to any such E + P +Q.

Somehow [[and I haven’t figured out how!!]] Hartshorne counts this and concludes that
it has dimension ≤ g + 2. [[I thought sort of hard about this and can not see it, but I got
confused at this point in class when I was taking notes so that may be why my notes do not
reveal the truth.]]

48 Hurwitz’s Theorem

Suppose X and Y are curves (nonsingular, projective, over an algebraically closed field
k). Suppose f : X → Y is a finite morphism. Then f induces a map of function fields
K(Y ) ↪→ K(X) which makes K(X) into a finite extension of K(Y ). The degree of f is the
degree of the corresponding extension of function fields K(Y )/K(X). We say f is separable
(not to be confused with separated) if K(X) is a separable field extension of K(Y ).

Suppose P ∈ X maps to Q ∈ Y . Then there is an induced map of local rings f# : OQ ↪→
OP . Since X and Y are nonsingular curves this is an extension of discrete valuation rings.
Let t ∈ OQ be a uniformizing parameter for OQ and let u ∈ OP be a uniformizing parameter
forOP . Then f#(t) ∈mP ⊂ OP . The ramification index of P over Q is eP := vP (f#(t)) ≥ 1.

We say that a point P lying over a point Q is wildly ramified if char k = p > 0 and p|e.
Otherwise the ramification is called tame, i.e., when char k = 0 or char k = p 6|e. Note that
we do not, as in some definitions, need to worry about the extension of residue fields being
separable because k is algebraically closed.

Theorem 48.1 (Hurwitz). Suppose f : X → Y is a finite separable morphism of curves
which is at most tamely ramified. Then

2g(X)− 2 = (degf)(2g(Y )− 2) +
∑
P∈X

(eP − 1).
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Note that as a consequence of this theorem, a finite separable tamely ramified mor-
phism of curves has at most finitely many points of ramification. “Any good theorem has a
counterexample.”

Example 48.2 (Frobenius map). If the morphism f is not separable then there can be in-
finitely many points of ramification. For example, let k be a field of characteristic p. The
divisor corresponding to the invertible sheaf OP1 gives a map from P1 → P1. It is given
explicitly simply by

(x : y) 7→ (xp : yp).

[[Is this true, or do I just want it to be true?]] For any point P ∈ P1 we have that eP = p
since the map corresponds to the map

k(t)→ k(t) : t 7→ tp.

Thus this map is widely ramified everywhere.

Hurwitz’s theorem. [[First part omitted.]]
Thus we have the exact sequence

0→ f ∗ΩY/k → ΩX/k → ΩX/Y → 0

and ΩX/Y is a torsion sheaf so it equals ⊕P∈X(ΩX/Y )P . Next we study ΩX/Y locally. Let P
be a point in X lying over Q in Y . Then there is an exact sequence

0→ f ∗ΩQ → ΩP → ΩP/Q → 0.

Here ΩP/Q is the module of differentials of the local ring OP over OQ. Let t be a uniformizing
parameter for OQ and let u be a uniformizing parameter for OP . Then ΩQ is a free OQ-
module of rank 1 locally generated by dt.

Next let e = eP = vP (t), thus t = aue in OP (with a a unit in OP ). Differentiate to see
that

dt = aeue−1du+ ueda.

The term ueda is some mysterious element of ΩP . We do not know anything about what a
looks like so da can be very strange. If e = 0 in k this means that dt would be wild in the
sense that we have no real control over da. Since we are assuming that the ramification is
tame, char k 6|e, so e 6= 0 in k. Thus aeue−1du 6= 0. Define b ∈ OQ by ueda = bdu. Since
vp(b) ≥ e and vp(aeu

e−1) = e − 1 we see that if dt = Adu then vp(A) = e − 1. This means
that ue−1du is zero in ΩP/Q [[but why is no lower power of u times du also 0.]] Thus ΩP/Q

is a principal module generated by du of length e− 1. Thus noncanonically

ΩP/Q
∼= OP/ue−1.

We thus have an exact sequence

0→ f ∗(ΩY )→ ΩX → R→ 0

where R = ⊕POP/ueP−1
P . LetKX denote the canonical divisor onX andKY be the canonical

divisor on Y . Then ΩX = L(KX) and ΩY = L(KY ).

Example 48.3. Assume char k 6= 2. Let C be the cubic curve in P2 defined by y2 = x(x +
1)(x−1). Let π by the degree 2 projection of C from∞ onto P1 (i.e., the x-axis). There are
4 points of ramification, namely (−1, 0), (0, 0), (1, 0), and ∞. Hurwitz’s theorem is satisfied
since

2 · 1− 2 = 2(2 · 0− 2) +
∑

4 points

(2− 1).
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Example 48.4. Let C be a cubic curve in P2. Let O be a point not on C and fix a copy
of P1 ⊂ P2. Then projection from O onto P1 defines a degree 3 map C → P1. This map
is ramified at a point P ∈ C exactly when the line from O to P is tangent to C. Assume
there are no inflectional tangents so that the ramification degree of ramified points is 2. By
Hurwitz’s theorem,

0 = 3(−2) +
∑

(eP − 1)

so there are 6 points of ramification 2. This means that from O one can draw 6 tangent
lines to C.

Example 48.5. Let C be a cubic curve in P2. Define a map ϕ : C → P1 by sending a point
P to the intersection of the tangent space to C at P with P1 ⊂ P2. By the above example
this map has degree 6. By Hurwitz’s theorem,

0 = 6(−2) +
∑

(eP − 1)

so there are 12 points of ramification. [[Of course one must show (or set things up so) that
the ramification of a point is at most 2.]] There are 3 ramification points where P1 intersects
C. The other 9 ramification points are inflection points. Thus Hurwitz’s theorem implies
that there are 9 inflections on a cubic.

49 Elliptic Curves

Definition 49.1. An elliptic curve C is a nonsingular projective curve of genus 1.

We know that any divisor of degree d ≥ 3 is very ample. Thus there is an embedding
C ↪→ P2 of C into P2 as a degree 3 curve.

Theorem 49.2. Suppose char k 6= 2 and k is algebraically closed. If C is an elliptic curve
then there is an embedding C ↪→ P2 with equation

y2 = x(x− 1)(x− λ)

for some λ ∈ k, λ 6= 1, 0.

Proof. Fix a point P0 ∈ C and let D = 3P0. Then, after choosing section x0, x1, x2 ∈
H0(L(3P0)) we obtain an embedding C ↪→ P2. Construct basis for the global sections of
L(nP0) for various n.

OC L(P0) L(2P0) L(3P0) L(4P0) L(5P0) L(6P0)
h0 1 1 2 3 4 5 6
basis of H0 1 1 1, x 1, x, y 1, x, y, x2 1, x, y, x2, xy 1, x, y, x2, xy, x3, y2

Since the seven function 1, x, y, x2, xy, x3, y2 lie in a six dimensional space there must be a
dependence relation

ay2 + bx3 + cxy + dx2 + ey + fx+ g = 0

for some a, b, c, d, e, f, g ∈ k. Furthermore, both x3 and y2 occur with coefficient not equal
to zero, because they are the only functions with a 6-fold pole at P0. So replacing y be a
suitable scalar multiple we may assume a = 1. Preparing to complete the square we rewrite
the relation as

y2 + (cxy + ey) + (
1

2
cx+

1

2
e)2 − (

1

2
cx+

1

2
e)2 + bx3 + dx2 + fx+ g = 0.
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Replacing y by 1
2
cx+ 1

2
e transforms the equation into

y2 = e(x− a)(x− b)(x− c)

where a, b, c, e ∈ k are new constants. Next absorb e to obtain

y2 = (x− a)(x− b)(x− c).

Now translate x by a to obtain an equation of the form

y2 = x(x− a)(x− b).

Multiply and divide by a3 to obtain

y2 = a3x

a
(
x

a
− 1)(

x

a
− b

a
).

Replace x by x
a

and absorb a3 to get

y2 = x(x− 1)(x− λ)

where λ 6= 0, 1 since C is nonsingular.

In this proof we definitely used that k is algebraically closed to absorb constants and
that the characteristic is not 2 in order to complete the square.

Remark 49.3. Since A = k[x, y]/(y2− x(x− 1)(x− λ)) is not a UFD the class group of C is
nontrivial.

How unique is the representation y2 = x(x − 1)(x − λ)? The answer is that it is not
unique. For example, replace x by x+ 1 to obtain

y2 = (x+ 1)x(x+ 1− λ)

then divide by −(1− λ) to obtain

y2 = −(
x

1− λ
+

1

−λ
x

1− λ
(

x

1− λ
+ 1).

Next replace x by − x
1−λ and absorb the minus sign to obtain

y2 = x(x− 1)(x− 1

1− λ
).

By similar methods we get any of six choices:

λ 7→ λ,
1

λ
, 1− λ, 1

1− λ
,

λ

λ− 1
, 1− 1

λ
.

Proposition 49.4. In the representation C in the form

y2 = x(x− 1)(x− λ)

, λ up to the group S3 depends only on C.

The first thing to struggle with is the dependency on the choice of P0.
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50 Automorphisms of Elliptic Curves

Let C be an elliptic curve so C has genus 1. Suppose char k 6= 2. Fix a point P0 on C. Then
the linear system |3P0| gives an embedding

|3P0| : C ↪→ P2.

(The divisor 3P0 is very ample by (3.3.3) and Riemann-Roch implies dim |3P0| = 2.) For
suitable choice of coordinates C is given by

y2 = x(x− 1)(x− λ), λ ∈ k, λ 6= 0, 1.

The choice of λ is not unique since S3 acts by

λ 7→ λ,
1

λ
, 1− λ, 1− 1

λ
,

1

1− λ
,

λ

λ− 1
.

Except for this ambiguity, λ is uniquely determined. Define

j(λ) =
28(λ2 − λ+ 1)3

λ2(1− λ)2
.

Then

Theorem 50.1. The j-invariant has the following properties.

• j ∈ k,

• j depends only on C,

• C1
∼= C2 iff j(C1) = j(C2), and

• for all j ∈ k there is a curve C such that j(C) = j.

The theorem implies that there is a bijection of sets{
isomorphism classes of elliptic curves / k

}
∼−→
{

elements of k
}
.

This can be given a moduli theoretic interpretation.

Example 50.2. Let E be the elliptic curve defined by

y2 = x(x− 1)(x+ 1) = x3 − x.

Thus λ = −1 so

j =
28(3)3

1 · 22
= 26 · 33 = 123 = 1728.

If C is an elliptic curve then AutC is transitive. So to study the automorphisms of C we
need to cut down the number under consideration. To do this fix a point P0 and consider

Aut(C,P0) = { automorphisms of C fixing P0 }.

Suppose C is given by the equation

y2 = x(x− 1)(x− λ)
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and P0 = (0 : 1 : 0) is the point at infinity. Then the map σ defined by y 7→ −y and x 7→ x
is an element of Aut(C,P0). Note that σ is the covering transformation of some 2-to-1 map
C → P1.

Is σ unique? Let P be any point on C such that Q = σ(P ) 6= P . Then σ is a covering
transformation of the morphism determined by the linear system |P +Q|. Associated to any
degree 2 map to P1 there is a covering transformation (the hyperelliptic involution). Thus
if R+ S is an effective divisor of degree 2 which is not linearly equivalent to P +Q then we
obtain a different degree 2 morphism to P1 and hence a different automorphism of degree
two. The conclusion in class was that σ is not unique because you obtain many different
automorphisms of degree 2 in the above manner. But there is no reason any of these should
fix P0. Furthermore, if Aut(C,P0) really turns out to be the units in an order in a number
field then there σ must be unique because there is only one nontrivial square root of −1.

Let C be as in the above example, so C is defined by

y2 = x(x− 1)(x+ 1).

Then the map τ defined by

τ :

{
x 7→ −x
y 7→ iy

is an automorphism of C fixing P0 = (0 : 1 : 0). Furthermore σ = τ 2 so Aut(C,P0) contains
at least Z/4Z. Is Aut(C,P0) exactly Z/4Z? We will come back to this question later.

The map sending every point to its double under the group law is not an automorphism
although it does fix P0. Since k is algebraically closed there are 4 points on C which map
to P0 under multiplication by 2.

Example 50.3. Let C be the genus 1 curve in P3 defined by

x3 + y3 + z3 = 0.

Suppose char k 6= 2, 3. We want to find an equation for C of the form

y2 = x(x− 1)(x− λ).

Since∞ is an inflectional tangent of y2 = x(x−1)(x−λ) we hunt for an inflectional tangent
of C. The line y + z = 0 meets C in an inflectional tangent since

x3 + y3 + z3 = x3 + (y + z)(y2 − yz + z2)

so setting y + z = 0 gives x3 = 0.
Next perform the change of variables z = z′ − y. The reason for doing this is so that

z′ = 0 will give the point of intersection of C with y+z = 0. After substitution the equation
becomes

x3 + y3 + (z′ − y)3 = 0

which is
x3 + y3 + z′

3 − 3z′
2
y + 3z′y2 − y3 = 0.

Setting z′ = 1 we obtain
x3 − 3y + 3y2 + 1 = 0

or equivalently, after factoring the -1 into x3,

y2 − y = x3 − 1

3
.
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Next working modulo linear changes of variables gives

y2 − y +
1

4
= x3 − 1

3
+

1

4
,

(y − 1

2
)2 = x3 − 1

12
,

y2 = x3 − 1

12
,

y2 = x3 − 1,

y2 = (x− 1)(x− ω)(x− ω2), where ω3 = 1.

In general
y2 = (x− a)(x− b)(x− c)

is equivalent to y2 = x(x− 1)(x− λ) where λ = a−c
b−c . In our situation this means

λ =
1− ω
ω2 − ω

=
1− ω

ω(ω − 1)
= − 1

ω
= −ω2 =

1

2
+

1

2

√
−3.

Thus j(λ) = 0 and C is defined by

y2 = x(x− 1)(x+ ω2).

At this point Hartshorne tried to explicitly describe a degree 3 automorphism of C which
fixes infinity. But try as he may it did not come out right. Note that x 7→ x and y 7→ −y
defines a degree 2 automorphism of C.

To define a degree 3 automorphism look at the Fermat form of C

x3 + y3 + z3 = 0, P0 = (0 : 1 : −1).

Then

σ :


x 7→ ωx

y 7→ y

z 7→ z

is an automorphism of degree 3 fixing P0. Interchanging y and z yields an automorphism of
degree 2 fixing P0 and which commutes with σ. Thus Aut(C,P0) is at least Z/6Z.

Now we approach the automorphism group abstractly.

Theorem 50.4. If C is an elliptic curve and P0 is a fixed point then

Aut(C,P0) =



Z/2Z if j 6= 0, 123

Z/4Z if j = 123 6= 0, char k 6= 3

Z/6Z if j = 0 6= 123, char k 6= 3

Z/12Z if j = 0 = 123, char k = 3

Z/24Z if j = 0 = 123, char k = 2

We do not prove the theorem now but the idea is to stare at the following square

C
σ−→ C

|2P0| ↓ ↓ |2P0|
P1 ∃ τ−−→ P1

.
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Example 50.5. Consider
y2 = x(x− 1)(x+ 1)

in characteristic 3. Define automorphisms

τ :

{
x 7→ −x
y 7→ iy

ρ :

{
x 7→ x+ 1

y 7→ y

of orders 4 and 3. Clearly τρ = ρτ . . . but upon checking this, clearly τρ 6= ρτ . Thus
Aut(C,P0) is obviously not cyclic of order 12, in fact it is an extension of S3.

Let C be an elliptic curve and P0 a fixed point on C. Then we associate to the pair C,
P0 the algebraic objects

• Aut(C,P0),

• a group structure on C with P0 as the identity, and

• the endomorphism ring End(C,P0).

The ring End(C,P0) is defined to be the set of morphisms θ : C → C fixing P0. By general
facts about abelian varieties any such θ is in fact a group endomorphism. In characteristic 0
this endomorphism ring is either Z or an order in an imaginary quadratic number field. In
characteristic p the endomorphism ring can be an order in a rank 4 quaternionic extension
of Z. In characteristic p the endomorphism ring can not be just Z because of the Frobenius
endomorphism which verifies a certain quadratic equation. [[How does this last statement
work?]]

51 Moduli Spaces

For the rest of the semester I am going to talk about Jacobian varieties, variety of moduli
and flat families. In each of these situations we parameterize “something or others” by
points on a variety then apply algebraic geometry to the variety.

Here are some examples.

Start Set Parameter Space
A curve C Pic0C = { divisors of degree Closed points of

0 modulo linear equivalence } Jacobian variety J .
Not just a set but a functor J represents the
Sch→ Set functor.

Pn
k and set of closed subschemes The Hilbert scheme

P (z) ∈ Q[z] Z ⊂ Pn
k with Hilbert HilbP (Pn)

polynomial P (z)
fix g > 0 isomorphism classes of curves The variety Mg of

of genus g moduli. Fine if reps. the
functor, coarse if not.

Pn
k , set of cycles of dim. r and The Chow scheme.

degree d, and degree d in Pn modulo It does not represent
dimension r rational equivalence. a functor.

A cycle of dimension r is a Z-linear combination of subschemes of dimension r. If Z =
∑
niYi

is a cycle of dimension r then degZ =
∑
ni deg(Yi).

71



52 The Jacobian Variety

Fix a curve C of genus g. Then Pic0C is the group of divisors of degree 0 modulo linear
equivalence. The Jacobian is going to be a variety J whose closed points correspond to
divisors D ∈ Pic0C.

A closed point of J is a map ϕ : Spec k → J . Taking the product (over Spec k) of this
map with the identity map C → C gives a commuting square

C
ϕ′−−−→ C × Jy y

Spec k
ϕ−−−→ J

Given an invertible sheaf D on C × J and a closed point t of J (given by a morphism
ϕ : Spec k → J) define an invertible sheaf Dt on C by

Dt = ϕ′
∗D.

In this way we obtain a map from the closed points on J to Pic(C).
We first strengthen our requirement for the Jacobian of C by asking for a divisor D on

C × J such that the map D 7→ Dt gives a correspondence

closed points(J)
∼−→ Pic0(C).

Grothendieck’s genius was to generalize all of this. The point is to replace Spec k-valued
points of J with T -valued points of J where T is any scheme over k. Taking the product of

T
ϕ−→ J with C

idC−−→ C we obtain a diagram

C × T ϕ′−−−→ C × Jy y
T

ϕ−−−→ J

If L is an invertible sheaf on C × J then associate to L the invertible sheaf M = ϕ′∗L.
Next we make a stronger requirement for the Jacobian of C. We require that there

exist an invertible sheaf with the following universal property. For any scheme T and any
invertible sheaf M on C × T which is “of degree 0 along the fibers” there exists a unique
morphism ϕ : T → J such that M = ϕ′∗L.

The point is that we are parameterizing families of divisor classes. We make the following
tentative definition. It will not turn out to be the right one.

Definition 52.1. The Jacobian variety is a pair (J,L) with L an invertible sheaf on C × J
such that for all schemes T and for all invertible sheaves M on C × T of degree 0 on the
fibers, there exists a unique morphism ϕ : T → J such that M∼= ϕ′∗L.

What does “degree 0 on the fibers” mean? Suppose M is an invertible sheaf on C × T .
Let t be a point in T . Thus t can be thought of as a map

ψ : Specκ(t)→ T

where κ(t) is the residue field at t. Tensoring this map with the identity map id : C → C
yields a map

ψ′ : Ct = C ×k Specκ(t)→ C × T.
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If M is an invertible sheaf, define Mt to be the pullback ψ′∗M. The degree of Mt as a
divisor on the curve Ct makes sense. Although κ(t) may not be algebraically closed we can
still define the degree of a divisor in a natural way.

Definition 52.2. M on C × T is said to be of degree 0 along the fibers if for all t ∈ T ,
degMt = 0.

Remark 52.3. One can show that the map t 7→ deg(Mt) is a continuous function T → Z.

There is still one subtlety. Our tentative definition of the Jacobian is bad since it obvi-
ously cannot exist.

Consider the diagram

C × T ψ′−−−→ C = Ct
ϕ′−−−→ C × J

p

y y y
T

ψ−−−→ Spec k
ϕ−−−→ J

Pullback L on C × J via ϕ′ to obtain Lt = ϕ′∗L. Then pullback Lt to obtain ψ′∗Lt on
C×T . Let N be any invertible sheaf on T . Then F = p∗N ⊗ψ′∗Lt is an invertible sheaf on
C × T . Furthermore p∗N is trivial on the fibers so the fibers of F do not depend on N . [[I
can not seem to figure out why this all leads to a contradiction!]] For some reason the map
from T → J which corresponds to F must be the constant map sending everything to the
point corresponding to ϕ. Since in general there are many possibilities for p∗N this gives a
contradiction. [[No matter what, I can not seem to understand this. I do not see why the
map from T to J corresponding to F must be anything in particular.]]

So to the correct definition is that we require M to equal ϕ′∗L in the quotient group

Pic0(C × T/T ) := Pic0(C × T )/p∗ PicT.

Now we have the correct definition of the Jacobian variety.
This says the pair (J,L) represents the functor

(F : Sch /k)o → Set

T 7→ Pic0(C × T/T ).

Here (Sch /k)o is the opposite category of the category of schemes over k obtained by
reversing all the arrows. If ψ : T ′ → T is a morphism then F sends ψ to the group
homomorphism

Pic0(C × T/T )→ Pic0(C × T ′/T ′)
defined by M 7→ ψ′∗M. Here ψ′ is the map defined by the diagram

C × T ′ ψ′−−−→ C × Ty y
T ′

ψ−−−→ T

To say that (J,L) represents F is to say that Hom(T, J) = F (T ) in the sense that the
map ϕ 7→ ϕ∗L is a bijection.

Existence of the Jacobian variety in general is difficult. When the genus is 1 we are
lucky because the Jacobian is just the curve itself. For higher genus we must do something
nontrivial. Let me give some consequences of existence.
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52.1 Consequence of existence of the Jacobian

1. J is automatically an abelian group scheme.

Definition 52.4. If C is any category with finite products then a group object is G ∈ Ob(C)
given with morphisms

µ : G×G→ G (multiplication)

ρ : G→ G (inverse)

ε : {e} → G (identity)

For any G ∈ ObC there exists a natural representable functor hG = Hom(·, G). To say
that the functor hG factors through the category Grp of groups is equivalent to saying that
G is a group object. In particular since J represents a functor to the category of abelian
groups it is an abelian group scheme.

2. The Zariski tangent space to J at 0.
Let P0 be the zero point of J . Let m0 ⊂ OP0 be the maximal ideal of the local ring at

P0. Then the Zariski tangent space at P0 is the dual vector space (m0/m
2
0)′. [[I will figure

this out later.]]

53 The Jacobian

In this lecture we reconsider more directly the Jacobian in greater depth. Let C be a curve
of genus g. How can we parameterize divisors of degree 0 on C? The following definition
gives a notion of a family of divisors of degree 0.

Definition 53.1. If T is any scheme, a family of divisor classes on C of degree 0 parame-
terized by T is an element of

Pic0(C × T/T ) := Pic0(C × T )/p∗ Pic0 T

where p : C × T → T is projection.

Definition 53.2. If M is an invertible sheaf on C × T then the fiber Mt of M at t is the
pullback of M by the map Ct → C × T . The diagram is

Ct −−−→ C × Ty yp
Specκ(t) −−−→ T

Definition 53.3. The Jacobian variety is a pair (J,L) where J is a scheme over k and
L ∈ Pic0(C × J/J) such that the pair (J,L) represents the functor

T 7→ Pic0(C × T/T ).

In other words, for every family M on C × T there exists a unique ϕ : T → J such that
M = ϕ′∗L.

C × T ϕ′−−−→ C × Jy y
T

ϕ−−−→ J
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53.1 Consequences of existence

53.1.1 Group structure

J is automatically an abelian group scheme. In particular,

µ : J × J → J

is a morphism.

Example 53.4. When g = 1 we obtain a group structure on the elliptic curve C.
Let L be any divisor class of degree 1. By Riemann-Roch h0(L) = 1 + 1 − 1 = 1 so

there is some s which spans H0(L). This means that there is exactly one effective divisor
of degree 1 corresponding to L, namely a point. Thus for any such L of degree 1 there is a
unique point P ∈ C such that L ∼= L(P ).

Fix a point P0 ∈ C. Consider the map C × C → C defined as follows. Send the pair
〈P,Q〉 to the point R corresponding to the degree 1 divisor

L(P +Q− P0) ∼= L(R).

The map 〈P,Q〉 7→ R defines a group structure on C. It is not obvious that this rule gives
a morphism C × C → C. [[We have only defined a map on closed points. Hmm.]]

53.1.2 Natural fibration, dimension

Fix d > 0. Pick a basepoint P0 ∈ C. Consider the product

Cd = C × · · · × C.

Its closed points are (P1, . . . , Pd) with Pi ∈ C.

Proposition 53.5. There exists a natural morphism Cd → J . On closed points it is

(P1, . . . , Pd) 7→
d∑
i=1

Pi − dP0.

Proof. To give a morphism Cd → J is equivalent to giving an appropriate family on C×T/T
where T = Cd. Let

D = {(R,P1, . . . , Pd) : R is one of the Pi}.

Since D is the sum of pullbacks of various diagonals it defines a divisor of degree d. Let
p : C × T → C be projection onto C. Let

M = L(D)− d(p∗L(P0)).

[[Probably if someone thinks about it for awhile she sees that M gives the desired family.]]
Check that M = ϕ∗L where ϕ is the map we want on closed points.

The first interesting case to consider is when d > 2g− 2. Then the fiber of a point j ∈ J
of the map

Cd

↓
J
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is
Cd
j = {(P1, . . . , Pd) :

∑
Pi − dP0 = j in J } = |j + dP0|.

By Riemann-Roch the size of a fiber is thus

dim |j + dP0| = d+ 1− g − 1 = d− g.

Let C(d) by Cd modulo the action of Sd. Then C(d) is of dimension d and the above map
factors as a surjection C(d) → J with fibers of dimension d− g. Thus J has dimension g.

A second interesting special case is when d = g. If P1 + · · · + Pg is chosen sufficiently
generally then |P1 + · · ·+ Pg| = {P1 + · · ·+ Pg}. To see this choose each Pi so that it is not
a basepoint of |K − P1 − · · · − Pi−1|. Then `(K − P1 − · · · − Pg) = 0 so by Riemann-Roch

`(P1 + · · ·+ Pg) = g + 1− g + `(K − P1 − · · · − Pg) = 1.

This means that the general fiber of C(g) → J has degree 1. Thus it is a birational map,
but it is not necessarily an isomorphism since there can exist special divisors of degree g.

Let U be the open subset of nonspecial divisors on J . This map hints at the construction
of the Jacobian since it gives rise to a “germ of the group law” or a “group chunk”

U × U → U

〈D,E〉 7→ D + E − gP0.

The next step is to try to fill out the group law to get a group law on J . This is Weil’s
method.

53.1.3 The Zariski tangent space

We compute the Zariski tangent space to J at 0.

Definition 53.6. The Zariski tangent space to 0 ∈ J is

TJ,0 = (m0/m
2
0)∨.

Let ε be such that ε2 = 0. The elements of TJ,0 are in one-to-one correspondence with
morphisms

Spec k[ε]→ J

sending the point of Spec k[ε] to 0 ∈ J . The corresponding map O0 → k[ε] sends m0 to (ε).
Since ε2 = 0 this map factors through m0/m

2
0 giving an element of TJ,0.

Now rewrite TJ,0 as
TJ,0 = Hom0(Spec k[ε], J)

where Hom0 means all homomorphisms sending the point of Spec k[ε] to 0 ∈ J .
The next step is to use the fact that J represents a certain functor. The point is that

Hom0(Spec k[ε], J) = ker(Pic0(C × T )→ Pic0(C)).

[[This is a direct check using the fact that 0 ∈ J , by representability, must correspond to
OC on C.]]

The last step is to write down some exact sequences.
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54 Flatness

[[The orals are in 959 1-3pm on Monday and Wednesday. Monday Janos, William, then
Nghi talk. Wednesday Wayne, Amod, then Matt talk.]]

The outline for this lecture is

1. technical definition

2. significance

3. properties

4. examples

54.1 Technical definitions

Let A be a commutative ring with identity.

Definition 54.1. An A-module is flat if the functor M ⊗A · is exact.

For M ⊗ · to be exact means that whenever

0→ N ′ → N → N ′′ → 0

is an exact sequence of A-modules then

0→M ⊗N ′ →M ⊗N →M ⊗N ′′ → 0

is exact. Note that M ⊗ · is right exact even if M is not flat. The salient property of a flat
module is that it preserves injectivity.

54.1.1 General nonsense

If A is Noetherian then M is flat if the functor M⊗· preserves the exactness of any sequence
of finitely generated A-modules. Even better, M is flat if for any ideal I ⊂ A the map
M ⊗ I →M ⊗ A is injective.

Definition 54.2. Suppose A→ B is a morphism of rings. Then B is flat over A if B is flat
as an A-module.

54.2 Examples

Example 54.3. Suppose A is a ring and S a multiplicative set. Then S−1A is a flat A-module,
i.e., the functor M 7→ S−1M is exact.

Example 54.4. If A is a Noetherian local ring then the completion Â of A at its maximal
ideal is flat.

Example 54.5. The first example of flatness was in Serre’s GAGA. He called a flat module
an “exact couple”. The example is

A = C[x1, . . . , xn] ↪→ C{x1, . . . , xn} ⊂ Â

in which C{x1, . . . , xn}, the ring of convergent power series, is flat over A.
A module B → C is faithfully flat if C ⊗BM = 0 implies M = 0. Suppose A→ B → C

with C flat over A and C faithfully flat over B. Then B is flat over A. This is how Serre
proved that his module was flat.
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Theorem 54.6. Suppose A, m is a local Noetherian ring and M is a finitely generated flat
module. Then M is free.

Proof. Take a minimal set of generators for M . Nakayama’s lemma tells us how this can be
done. The quotient M/mM is a vector space over A/m so it has a basis, say m1, . . . ,mr.
By Nakayama’s lemma these generate M . (The module M/(m1, . . . ,mr) is sent to itself by
m since every x ∈ M is equivalent to an element of (m1, . . . ,mr) plus something in mM .
Thus M/(m1, . . . ,mr) = 0.) This gives a surjection Ar → M . Let Q be the kernel so we
have an exact sequence

0→ Q→ Ar →M → 0.

It is a general fact that if A is Noetherian, M is flat, and

0→ R→ S →M → 0

is exact then
0→ R⊗N → S ⊗N →M ⊗N → 0

is exact for any A-module N . This is proved by using the the fact that flatness implies the
vanishing of TorA1 (M, ·).

Using the general fact tensor with k = A/m to obtain an exact sequence

0→ Q⊗ k → kr →M/mM → 0.

Since kr and M/mM are k-vector spaces of the same dimension and the map kr →M/mM
is surjective it must also be injective. Thus Q ⊗ k = 0. But Q is finitely generated since
A is Noetherian and Q is a submodule of Ar. Thus Nakayama’s lemma implies Q = 0 so
M ∼= Ar is free.

Theorem 54.7. Suppose A is a d.v.r. with maximal ideal m = (t). Let M be any A-module.
Then the following are equivalent.

(i) M is flat,

(ii) M is torsion free,

(iii) M
t−→M is injective.

Proof. (i)⇒(ii) Since A is a domain

0→ A
x−→ A

is exact for any x ∈ A. By flatness of M

0→M
x−→M

is exact so M is torsion free.
(ii)⇒(iii) is trivial
(iii)⇒(i) It is enough to check exactness for any ideal a = (tn) ⊂ A. Why is the map

M⊗a→M⊗A an isomorphism? Because under the natural identification of both modules
with M the map is just multiplication by tn which is injective by assumption. The diagram
is

M ∼= M ⊗ a → M ⊗ A ∼= M

m 7→ m⊗ tn 7→ m⊗ tn 7→ tnm

Example 54.8. If M is a projective A module then M is flat.
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54.3 Algebraic geometry definitions

Definition 54.9. Let F be a coherent sheaf on X and let f : X → Y be a morphism. Then
F is flat over Y if for all x ∈ X, Fx is a flat OY,f(x)-module under the map OY,f(x) → OX,x.
The morphism f : X → Y is flat if OX is flat over Y .

[[“Even if f is finite, Fx might not be finite over OY . It is only finite over the semilocal
ring.”]]

Example 54.10. 1. An open immersion U ↪→ X is flat since the local rings are the same.

2. A composition of flat morphisms is flat.

3. Base extension preserves flatness. Thus if X → Y is flat and Y ′ → Y then X ′ =
X ×Y Y ′ is flat over Y ′.

X ′ = X ×Y Y ′ −−−→ Xy y
Y ′ −−−→ Y

This is an exercise in local rings.

4. The product of flat morphisms is flat. [[What does this mean?]]

54.4 Families

Flatness is used for expressing the notion of a family of subschemes. For example let T be
any scheme and let X ⊂ Pn

T be a closed subscheme. Then {Xt : t ∈ T} is the family. Here
Xt is defined by the diagram

Xt = X ×k Specκ(t) −−−→ Xy y
Specκ(t) −−−→ T

where κ(t) is the residue field of t ∈ T .
This notion of family is bad since it allows for things which we do not want.

Example 54.11. Let T = A1 and X ⊂ P 1
T = A1 × P1 be the union of the coordinate axis.

Then for any t 6= 0, Xt is a point. But X0 = P1.

Hard experience has lead the old pros to agree that the notion of family should require
that X → T is flat. This rules out the above example since X → T is not flat. Indeed,
X is defined on an open affine by xt = 0 so the coordinate ring is M = k[x, t]/(xt). The
localization of M at (x, t) has torsion as a k[t](t)-module. The element x is killed by t. Since
k[t](t) is a d.v.r. it follows that M is not a flat.

A vague generalization is the following. Suppose T is a nonsingular curve and X ⊂ Pn
T .

Then X is flat over T iff X has no associated point (i.e., generic points of embedded and
irreducible components) whose image is a closed point of T . Equivalently one could say
“every component of X dominates T .” In our example the t-axis dominates T but the
x-axis does not.

Example 54.12 (Bad). Let X ⊂ P1
T = A1 ×P1 be defined by (x2, xt). When t 6= 0 the fiber

is P0 = Spec k[t] since x localizes away. If t = 0 the fiber is given by the ring

k[x, t]/(x2, xt)⊗k[t] k[t]/(t) ∼= k[x]/(x2)

which is P0 with multiplicity 2 structure.
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Example 54.13 (Good). Let X ⊂ P1
T be defined by x(x− t). Then for t = a 6= 0 the fiber is

P0 + Pa. When t = 0 the fiber is 2P0. This is good.

Theorem 54.14. Suppose T is a connected scheme. [[Must there be a finiteness assumption
on T?]] If X is flat over T then the Hilbert polynomials PXt(z) ∈ Q[z] are independent of
t. If T is integral then the converse is also true.

Proof. Recall that for any scheme Y ,

PY (m) = h0(OY (m)) for all m� 0.

We just need to show h0(OXt(m)) is independent of t for all m sufficiently large. Since T
is connected we reduce to the case T is affine. Furthermore we may assume T = SpecA,
with A,m a local Noetherian ring. [[“Can get from any local ring to any other by successive
specializations and generalizations. Also use the fact that flatness is preserved by base
extension.”]]
Claims.

1. For all m � 0, H i(OX(m)) = 0 for i > 0 and H0(OX(m)) is a free finitely generated
A-module.

2. For all points t ∈ T and all m� 0,

H0(OXt(m)) = H0(OX(m))⊗A κ(t).

Together these two claims imply the theorem.

55 Theorem about flat families

Theorem 55.1. Let X ⊂ Pn
T be a closed subscheme where T is a connected scheme of finite

type over k. If X is flat over T , then the Hilbert polynomial PXt is independent of t ∈ T (all
scheme points – not just closed points!). Conversely, if T is integral and PXt is independent
of t then X is flat over T .

Proof. See Chapter III, section 9 of Hartshorne.

56 Examples of Flat Families

Example 56.1 (Two lines). Consider the parameterized family of curves defined as follows.
For each t ∈ T = Spec k[t] associate the union of the x-axis and a line parallel to the y-axis
which intersects the z-axis at z = t. Thus for t 6= 0 the fiber Xt consists of the disjoint
union of two lines. For t = 0 the fiber consists of two lines meeting at the origin.

A cohomological computation shows that the Hilbert polynomials are

HXt(z) =

{
2z2 + 1− (−1), for t 6= 0

2z2 + 1, for t = 0

What is wrong? Let C ′ be the subscheme of P3
T−0 defined by the ideal

IC′ = (y, z) ∩ (x, z − t) = (xy, xz, yz − tyw, z2 − tzw).

(The intersection of the two ideals is the product of the given generators since they form a
regular sequence.) Since the Hilbert polynomial of C ′ is constant over the fibers we know
that C ′ is flat over T − 0. We have the following proposition.

80



Proposition 56.2. Let T = Spec k[t] and let X ⊂ Pn
T−0 be a closed subscheme which is flat

over T − 0. Then there is a unique closed subscheme X, flat over T , whose restriction to
Pn
T−0 is X. Furthermore X is the scheme-theoretic closure of X.

Proof. See Chapter III, Section 9 of Hartshorne.

In our situation a natural guess for X is the closed subscheme C defined by the ideal

(xy, xz, yz − tyw, z2 − tzw) ⊂ k[t][x, y, z, w].

As a bonus, if we can show C is flat over T then we will know that it is the scheme-theoretic
closure of C ′.

To test if C is flat is suffices to show that the Hilbert polynomials are constant over the
fibers. We know this when t 6= 0 so we need only check that the Hilbert polynomial at t = 0
is 2z2 + 2. At t = 0 the defining ideal becomes

(xy, xz, yz, z2) = (x, z) ∩ (y, z) ∩ (x, y, z)2.

This looks like the union of the x and y with an embedded point at the origin. The arithmetic
genus of the degree d = 2 plane curve defined by (z, xy) is

pa =
1

2
(d− 1)(d− 2) = 0

so it has Hilbert polynomial 2z + 1. The ith graded piece of k[x, y, z, w]/(xy, xz, yz, z2) has
dimension one more than the dimension of the ith graded piece of k[x, y, z, w]/(z, xy). (In
degree i the first ring has wi−1z whereas the latter does not.) The Hilbert polynomial is
then

PC0(z) = (2z + 1) + 1 = 2z + 2.

Thus PCt(z) = 2z + 2 for all t so by the big theorem from the last lecture C ⊂ P3
T is a flat

family.
Note that although the Hilbert polynomial is constant along the fibers the cohomology

of C0 is different than that of the other fibers. This family can sort of be thought of as 2
planes meeting at a point in 4-dimensional space.

“This is an example of the genius of Grothendieck. The Italians knew that when
two planes came together the genus changed but they were not able to deal with
it like Grothendieck did.”

Example 56.3 (The Twisted Cubic). This is the last example of the course. Some say this
is the only example in algebraic geometry. Let T = Spec k[t]. The fiber over 1 in our family
will be C1 ⊂ P3

k defined by

IC1 = (xy − zw, x2 − yw, y2 − xz).

How can C1 give rise to a family? One way is to assign weights to the variables then
homogenize with respect to a new variable t. Assign weights as in the following table.

variable x y z w
weight 8 4 2 1
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Introducing a new variable t of weight 1 and homogenizing we obtain the ideal

I = (xy − t9zw, x2 − t11yw, xz − t2y2) ⊂ k[t][x, y, z, w].

This ideal defines a closed subscheme C of P3
T since I is homogeneous as an ideal in the

polynomial ring k[t][x, y, z, w].
Is C a flat family? When t 6= 0, Ct is a curve. But C0 is defined by the ideal

(xy, x2, xz) = (x) ∩ (x, y, z)2

so it is the entire y–z plane plus an embedded point. This is way too large so C is not a flat
family. There must be some torsion. Indeed,

xyz − t9z2w, xyz − t2y3 ∈ I

so
t2(y3 − t7z2w) = t2y3 − t9z2w ∈ I.

Thus y3 − t7z2w is a torsion element of k[t][x, y, z, w]/I over k[t]. So now add y3 − t7z2w to
I. Let C ′ be the closed subscheme defined by the ideal

I ′ = (y3 − t7z2w, xz − t2y2, x2 − t′′yw, xy − t9zw).

When t = 0 the fiber C ′0 is defined by

(xy, x2, xz, y3) = (x, y3) ∩ (x2, xy, xz, z2, y3).

One can show C ′0 is of degree 3 and has arithmetic genus 0. Thus C ′ is a flat family. The
basis we have given for I ′ is called a Gröbner basis.

[[At this point the class came to an end. Everyone clapped, then clapped some more. It
is clear that we really appreciated Hartshorne. He did a great job.]]

57 Homework problems

I did not type up solutions to the first homework set. I did type of solutions to the other
homework sets.

57.1 Exercise on basic cohomology and abstract nonsense

Exercise 57.1. For each of the following categories, decide whether the category has enough
projective objects (i.e. every object is a quotient of a projective object).

a) Ab(X), where X is a topological space,
b) Mod(X), where (X,OX) is a ringed space,
c) Qco(X), where X is a Noetherian scheme,
d) Qco(X), where X is a Noetherian affine scheme.

Exercise 57.2. Let X = P1
k, over an algebraically closed field k. Using only material from

ChIII, §1,2 (esp. Exercise 2.2) show
a) For any coherent sheaf F on X,

H i(X,F) = 0 for all i ≥ 2.

[Hint: Treat the case F torsion and F torsion-free separately; in the torsion-free case, tensor
the exact sequence of Exercise 2.2 by F .]

b) Show that for all ` > 0, H1(X,OX(`)) = 0.
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Exercise 57.3. Let X be an integral Noetherian scheme.
a) Show that the sheaf K∗ (cf. II §6) is flasque. Conclude that PicX ∼= H1(X,O∗X).
b) Give an example of a Noetherian affine scheme with H1(X,O∗X) 6= 0.

Exercise 57.4. Let X be a Noetherian scheme.
a) Show that the sheaf G constructed in the proof of (3.6) is an injective object in the

category Qco(X) of quasi-coherent sheaves on X. Thus Qco(X) has enough injectives.
b) Show that any injective object of Qco(X) is flasque. [Hints: The method of proof of

(2.4) will not work, because OU is not quasi-coherent on X in general. Instead, use (II, Ex.
5.15) to show that if I ∈ Qco(X) is injective, and if U ⊂ X is an open subset, then I|U is
an injective object of Qco(U). Then cover X with open affine...]

c) Conclude that one can compute cohomology as the derived functors of Γ(X, ·), con-
sidered as a functor from Qco(X) to Ab.

57.2 Chapter III, 4.8, 4.9, 5.6

57.2.1 Exercise III.4.8: Cohomological Dimension

Let X be a Noetherian separated scheme. We define the cohomological dimension of X,
denoted cd(X), to be the least integer n such that H i(X,F) = 0 for all quasi-coherent
sheaves F and all i > n. Thus for example, Serre’s theorem (3.7) says that cd(X) = 0 if
and only if X is affine. Grothendieck’s theorem (2.7) implies that cd(X) ≤ dimX.

(a) In the definition of cd(X), show that it is sufficient to consider only coherent sheaves
on X.

(b) If X is quasi-projective over a field k, then it is even sufficient to consider only locally
free coherent sheaves on X.

(c) Suppose X has a covering by r+1 open affine subsets. Use Čech cohomology to show
that cd(X) ≤ r.

(d) If X is a quasi-projective variety of dimension r over a field k, then X can be covered
by r + 1 open affine subsets. Conclude that cd(X) ≤ dimX.

(e) Let Y be a set-theoretic complete intersection of codimension r in X = Pn
k . Show

that cd(X − Y ) ≤ r − 1.

Proof. (a) It suffices to show that if, for some i, H i(X,F) = 0 for all coherent sheaves F ,
then H i(X,F) = 0 for all quasi-coherent sheaves F . Thus suppose the ith cohomology of
all coherent sheaves on X vanishes and let F be quasi-coherent. Let (Fα) be the collection
of coherent subsheaves of F , ordered by inclusion. Then by (II, Ex. 5.15e) lim−→Fα = F , so
by (2.9)

H i(X,F) = H i(X, lim−→Fα) = lim−→H i(X,Fα) = 0.

(b) Suppose n is an integer and H i(X,F) = 0 for all coherent locally free sheaves F and
integers i > n. We must show H i(X,F) = 0 for all coherent F and all i > n, then applying
(a) gives the desired result. Since X is quasiprojective there is an open immersion

i : X ↪→ Y ⊂ Pn
k

with Y a closed subscheme of Pn
k and i(X) open in Y . By (II, Ex. 5.5c) the sheaf F on X

pushes forward to a coherent sheaf on F ′ = i∗F on Y . By (II, 5.18) we may write F ′ as a
quotient of a locally free coherent sheaf E ′ on Y . Letting R′ be the kernel gives an exact
sequence

0→ R′ → E ′ → F ′ → 0
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with R′ coherent (it’s the quotient of coherent sheaves). Pulling back via i to X gives an
exact sequence

0→ R→ E → F → 0

of coherent sheaves on X with E locally free. The long exact sequence of cohomology shows
that for i > n, there is an exact sequence

0 = H i(X, E)→ H i(X,F)→ H i+1(X,R)→ H i+1(X, E) = 0.

H i(X, E) = H i+1(X, E) = 0 because we have assumed that, for i > n, cohomology vanishes
on locally free coherent sheaves. Thus H i(X,F) ∼= H i+1(X,R). But if k = dimX, then
Grothendieck vanishing (2.7) implies that Hk+1(X,R) = 0 whence Hk(X,F) = 0. But
then applying the above argument with F replaced by R shows that Hk(X,R) = 0 which
implies Hk−1(X,F) = 0 (so long as k − 1 > n). Again, apply the entire argument with F
replaced by R to see that Hk−1(X,R) = 0. We can continue this descent and hence show
that H i(X,F) = 0 for all i > n.

(c) By (4.5) we can compute cohomology by using the Čech complex resulting from the
cover U of X by r + 1 open affines. By definition Cp = 0 for all p > r since there are no
intersections of p + 1 ≥ r + 2 distinct open sets in our collection of r + 1 open sets. The
Čech complex is

C0 → C1 → · · · → Cr → Cr+1 = 0→ 0→ 0→ · · · .

Thus if F is quasicoherent then Ȟ
p
(U,F) = 0 for any p > r which implies that cd(X) ≤ r.

(d) I will first present my solution in the special case that X is projective. The more
general case when X is quasi-projective is similar, but more complicated, and will be pre-
sented next. Suppose X ⊂ Pn is a projective variety of dimension r. We must cover X
with r+ 1 open affines. Let U be nonempty open affine subset of X. Since X is irreducible,
the irreducible components of X − U all have codimension at least one in X. Now pick a
hyperplane H which doesn’t completely contain any irreducible component of X − U . We
can do this by choosing one point Pi in each of the finitely many irreducible components of
X − U and choosing a hyperplane which avoids all the Pi. This can be done because the
field is infinite (varieties are only defined over algebraically closed fields) so we can always
choose a vector not orthogonal to any of a finite set of vectors. Since X is closed in Pn and
Pn − H is affine, (Pn − H) ∩ X is an open affine subset of X. Because of our choice of
H, U ∪ ((Pn −H) ∩X) is only missing codimension two closed subsets of X. Let H1 = H
and choose another hyperplane H2 so it doesn’t completely contain any of the (codimension
two) irreducible components of X −U − (Pn−H1). Then (Pn−H2)∩X is open affine and
U ∪ ((Pn−H1)∩X)∪ ((Pn−H2)∩X) is only missing codimension three closed subsets of
X. Repeating this process a few more times yields hyperplanes H1, · · · , Hr so that

U, (Pn −H1) ∩X, . . . , (Pn −Hr) ∩X

form an open affine cover of X, as desired.
Now for the quasi-projective case. Suppose X ⊂ Pn is quasi-projective. From (I, Ex.

3.5) we know that Pn minus a hypersurface H is affine. Note that the same proof works even
if H is a union of hypersurfaces. We now proceed with the same sort of construction as in
the projective case, but we must choose H more cleverly to insure that (Pn−H)∩X is affine.
Let U be a nonempty affine open subset of X. As before pick a hyperplane which doesn’t
completely contain any irreducible component of X − U . Since X is only quasi-projective
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we can’t conclude that (Pn−H)∩X is affine. But we do know that (Pn−H)∩X is affine.
Our strategy is to add some hypersurfaces to H to get a union of hypersurfaces S so that

(Pn − S) ∩X = (Pn − S) ∩X.

But, we must be careful to add these hypersurfaces in such a way that ((Pn − S) ∩X) ∪ U
is missing only codimension two or greater subsets of X. We do this as follows. For each
irreducible component Y of X − X choose a hypersurface H ′ which completely contains
Y but which does not completely contain any irreducible component of X − U . That this
can be done is the content of a lemma which will be proved later (just pick a point in each
irreducible component and avoid it). Let S by the union of all of the H ′ along with H. Then
Pn − S is affine and so

(Pn − S) ∩X = (Pn − S) ∩X

is affine. Furthermore, S properly intersects all irreducible components of X −U , so ((Pn−
S)∩X)∪U is missing only codimension two or greater subsets of X. Repeating this process
as above several times yields the desired result because after each repetition the codimension
of the resulting pieces is reduced by 1.

Lemma 57.5. If Y is a projective variety and p1, . . . , pn is a finite collection of points not
on Y , then there exists a (possibly reducible) hypersurface H containing Y but not containing
any of the pi.

By a possibly reducible hypersurface I mean a union of irreducible hypersurfaces, not a
hypersurface union higher codimension varieties.

Proof. This is obviously true and I have a proof, but I think there is probably a more
algebraic proof. Note that k is infinite since we only talk about varieties over algebraically
closed fields. Let f1, · · · , fm be defining equations for Y . Thus Y is the common zero locus
of the fi and not all fi vanish on any pi. I claim that we can find a linear combination

∑
aifi

of the fi which doesn’t vanish on any pi. Since k is infinite and not all fi vanish on p1, we
can easily find ai so that

∑
aifi(p1) 6= 0 and all the ai 6= 0. If

∑
aifi(p2) = 0 then, once

again since k is infinite, we can easily “jiggle” the ai so that
∑
aifi(p2) 6= 0 and

∑
aifi(p1)

is still nonzero. Repeating this same argument for each of the finitely many points pi gives
a polynomial f =

∑
aifi which doesn’t vanish on any pi. Of course I want to use f to

define our hypersurface, but I can’t because f might not be homogeneous. Fortunately,
this is easily dealt with by suitably multiplying the various fi by the defining equation of a
hyperplane not passing through any pi, then repeating the above argument. Now let H be
the hypersurface defined by f =

∑
aifi. Then by construction H contains Y and H doesn’t

contain any pi.

(e) Suppose Y is a set-theoretic complete intersection of codimension r in X = Pn
k . Then

Y is the intersection of r hypersurfaces, so we can write Y = H1 ∩ · · · ∩Hr where each Hi

is a hypersurface. By (I, Ex. 3.5) X −Hi is affine for each i, thus

X − Y = (X −H1) ∪ · · · ∪ (X −Hr)

can be covered by r open affine subsets. By (c) this implies cd(X − Y ) ≤ r − 1 which
completes the proof.
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57.2.2 Exercise III.4.9

Let X = Spec k[x1, x2, x3, x4] be affine four-space over a field k. Let Y1 be the plane x1 =
x2 = 0 and let Y2 be the plane x3 = x4 = 0. Show that Y = Y1 ∪ Y2 is not a set-theoretic
complete intersection in X. Therefore the projective closure Y in P4

k is not a set-theoretic
complete intersection.

Proof. By (Ex. 4.8e) it suffices to show that H2(X − Y,OX−Y ) 6= 0. Suppose Z is a closed
subset of X, then by (Ex. 2.3d), for any i ≥ 1, there is an exact sequence

H i(X,OX)→ H i(X − Z,OX−Z)→ H i+1
Z (X,OX)→ H i+1(X,OX).

By (3.8), H i(X,OX) = H i+1(X,OX) = 0 so H i(X − Z,OX−Z) = H i+1
Z (X,OX). Applying

this with Z = Y and i = 2 shows that

H2(X − Y,OX−Y ) = H3
Y (X,OX).

Thus we just need to show that H3
Y (X,OX) 6= 0.

Mayer-Vietoris (Ex. 2.4) yields an exact sequence

H3
Y1

(X,OX)⊕H3
Y2

(X,OX)→ H3
Y (X,OX)→

H4
Y1∩Y2

(X,OX)→ H4
Y1

(X,OX)⊕H4
Y2

(X,OX)

As above, H3
Y1

(X,OX) = H2(X − Y1,OX−Y1). But X − Y1 is a set-theoretic complete
intersection of codimension 2 so cd(X − Y1) ≤ 1, whence H2(X − Y1,OX−Y1) = 0. Similarly

H2(X − Y2,OX−Y2) = H3(X − Y1,OX−Y1) = H3(X − Y2,OX−Y2) = 0.

Thus from the above exact sequence we see that H3
Y (X,OX) = H4

Y1∩Y2
(X,OX).

Let P = Y1 ∩ Y2 = {(0, 0, 0, 0)}. We have reduced to showing that H4
P (X,OX) is

nonzero. Since H4
P (X,OX) = H3(X − P,OX−P ) we can do this by a direct computation of

H3(X−P,OX−P ) using Čech cohomology. CoverX−P by the affine open sets Ui = {xi 6= 0}.
Then the Čech complex is

k[x1, x2, x3, x4, x
−1
1 ]⊕ · · · ⊕ k[x1, x2, x3, x4, x

−1
4 ]

d0−→
k[x1, x2, x3, x4, x

−1
1 , x−1

2 ]⊕ · · · ⊕ k[x1, x2, x3, x4, x
−1
3 , x−1

4 ]
d1−→

k[x1, x2, x3, x4, x
−1
1 , x−1

2 , x−1
3 ]⊕ · · · ⊕ k[x1, x2, x3, x4, x

−1
2 , x−1

3 , x−1
4 ]

d2−→
k[x1, x2, x3, x4, x

−1
1 , x−1

2 , x−1
3 , x−1

4 ]

Thus
H3(X − P,OX−P ) = {xi1x

j
2x

k
3x

`
4 : i, j, k, ` < 0} 6= 0.

57.2.3 Exercise III.5.6: Curves on a nonsingular quadric surface

Let Q be the nonsingular quadric surface xy = zw in X = P3
k over a field k. We will

consider locally principal closed subschemes Y of Q. These correspond to Cartier divisors
on Q by (II, 6.17.1). On the other hand, we know that PicQ ∼= Z⊕Z, so we can talk about
the type (a,b) of Y (II, 6.16) and (II, 6.6.1). Let us denote the invertible sheaf L(Y ) by
OQ(a, b). Thus for any n ∈ Z, OQ(n) = OQ(n, n).

[Comment! In my solution, a subscheme Y of type (a, b) corresponds to the invertible
sheaf OQ(−a,−b). I think this is reasonable since then OQ(−a,−b) = L(−Y ) = IY . The
correspondence is not clearly stated in the problem, but this choice works.]
(a) Use the special case (q, 0) and (0, q), with q > 0, when Y is a disjoint union of q lines
P1 in Q, to show:

86



1. if |a− b| ≤ 1, then H1(Q,OQ(a, b)) = 0;

2. if a, b < 0, then H1(Q,OQ(a, b)) = 0;

3. if a ≤ −2, then H1(Q,OQ(a, 0)) 6= 0).

Solution. First I will prove a big lemma in which I explicitly calculate H1(Q,OQ(0,−q))
and some other things which will come in useful later. Next I give an independent compu-
tation of the other cohomology groups (1), (2).

Lemma 57.6. Let q > 0, then

dimkH
1(Q,OQ(−q, 0)) = H1(Q,OQ(0,−q)) = q − 1.

Furthermore, we know all terms in the long exact sequence of cohomology associated with
the short exact sequence

0→ OQ(−q, 0)→ OQ → OY → 0.

Proof. We prove the lemma only for OQ(−q, 0), since the argument for OQ(0,−q) is exactly
the same. Suppose Y is the disjoint union of q lines P1 in Q so IY = OQ(−q, 0). The
sequence

0→ OQ(−q, 0)→ OQ → OY → 0

is exact. The associated long exact sequence of cohomology is

0→Γ(Q,OQ(−q, 0))→ Γ(Q,OQ)→ Γ(Q,OY )

→H1(Q,OQ(−q, 0))→ H1(Q,OQ)→ H1(Q,OY )

→H2(Q,OQ(−q, 0))→ H2(Q,OQ)→ H2(Q,OY )→ 0

We can compute all of the terms in this long exact sequence. For the purposes at hand it
suffices to view the summands as k-vector spaces so we systematically do this throughout.
Since OQ(−q, 0) = IY is the ideal sheaf of Y , its global sections must vanish on Y . But IY
is a subsheaf of OQ whose global sections are the constants. Since the only constant which
vanish on Y is 0, Γ(Q,OQ(−q, 0)) = 0. By (I, 3.4), Γ(Q,OQ) = k. Since Y is the disjoint
union of q copies of P1 and each copy has global sections k, Γ(Q,OY ) = k⊕q. Since Q is
a complete intersection of dimension 2, (Ex. 5.5 b) implies H1(Q,OQ) = 0. Because Y is
isomorphic to several copies of P1, the general result (proved in class, but not in the book)
that Hn

∗ (OPn) = {
∑
aIXI : entries in I negative} implies H1(Q,OY ) = H1(Y,OY ) = 0.

Since Q is a hypersurface of degree 2 in P3, (I, Ex. 7.2(c)) implies pa(Q) = 0. Thus by
(Ex. 5.5c) we see that H2(Q,OQ) = 0. Putting together the above facts and some basic
properties of exact sequences show that H1(Q,OQ(−q, 0)) = k⊕(q−1), H2(Q,OQ(−q, 0)) = 0
and H2(Q,OY ) = 0. Our long exact sequence is now

0→Γ(Q,OQ(−q, 0)) = 0→ Γ(Q,OQ) = k → Γ(Q,OY ) = k⊕q

→H1(Q,OQ(−q, 0)) = k⊕(q−1) → H1(Q,OQ) = 0→ H1(Q,OY ) = 0

→H2(Q,OQ(−q, 0)) = 0→ H2(Q,OQ) = 0→ H2(Q,OY ) = 0→ 0
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Number (3) now follows immediately from the lemma because

H1(Q,OQ(a, 0)) = k⊕(−a−1) 6= 0

for a ≤ −2.
Now we compute (1) and (2). Let a be an arbitrary integer. First we show that

OQ(a, a) = 0. We have an exact sequence

0→ OP3(−2)→ OP3 → OQ → 0

where the first map is multiplication by xy − zw. Twisting by a gives an exact sequence

0→ OP3(−2 + a)→ OP3(a)→ OQ(a)→ 0.

The long exact sequence of cohomology yields an exact sequence

· · · → H1(OP3(a))→ H1(OQ(a))→ H2(OP3(−2 + a))→ · · ·

But from the explicit computations of projective space (5.1) it follows that H1(OP3(a)) = 0
and H2(OP3(−2 + a)) = 0 from which we conclude that H1(OQ(a)) = 0.

Next we show that OQ(a− 1, a) = 0. Let Y be a single copy of P1 sitting in Q so that
Y has type (1, 0). Then we have an exact sequence

0→ IY → OQ → OY → 0.

But IY = OQ(−1, 0) so this becomes

0→ OQ(−1, 0)→ OQ → OY → 0.

Now twisting by a yields the exact sequence

0→ OQ(a− 1, a)→ OQ(a)→ OY (a)→ 0.

The long exact sequence of cohomology gives an exact sequence

· · · → Γ(OQ(a))→ Γ(OY (a))→ H1(OQ(a− 1, a))→ H1(OQ(a))→ · · ·

We just showed that H1(OQ(a)) = 0, so to see that H1(OQ(a − 1, a)) = 0 it suffices
to note that the map Γ(OQ(a)) → Γ(OY (a)) is surjective. This can be seen by writing
Q = Proj(k[x, y, z, w]/(xy − zw)) and (w.l.o.g.) Y = Proj(k[x, y, z, w]/(xy − zw, x, z)) and
noting that the degree a part of k[x, y, z, w]/(xy − zw) surjects onto the degree a part of
k[x, y, z, w]/(xy − zw, x, z). Thus H1(OQ(a − 1, a)) = 0 and exactly the same argument
shows H1(OQ(a, a− 1)) = 0. This gives (1).

For (2) it suffices to show that for a > 0,

H1(OQ(−a,−a− n)) = H1(OQ(−a− n,−a)) = 0

for all n > 0. Thus let n > 0 and suppose Y is a disjoint union of n copies of P1 in such a
way that IY = OQ(0,−n). Then we have an exact sequence

0→ OQ(0,−n)→ OQ → OY → 0.

Twisting by −a yields the exact sequence

0→ OQ(−a,−a− n)→ OQ(−a)→ OY (−a)→ 0.
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The long exact sequence of cohomology then gives an exact sequence

· · · → Γ(OY (−a))→ H1(OQ(−a,−a− n))→ H1(OQ(−a))→ · · ·

As everyone knows, since Y is just several copies of P1 and −a < 0, Γ(OY (−a)) = 0.
Because of our computations above, H1(OQ(−a)) = 0. Thus H1(OQ(−a,−a − n)) = 0, as
desired. Showing that H1(OQ(−a− n,−a)) = 0 is exactly the same.
(b) Now use these results to show:

1. If Y is a locally principal closed subscheme of type (a, b) with a, b > 0, then Y is
connected.

Proof. Computing the long exact sequence associated to the short exact sequence

0→ IY → OQ → OY → 0

gives the exact sequence

0→ Γ(Q, IY )→ Γ(Q,OQ)→ Γ(Q,OY )→ H1(Q, IY )→ · · ·

But, Γ(IY ) = 0, Γ(Q,OQ) = k, and by (a)2 above H1(Q, IY ) = H1(Q,OQ(−a,−b)) =
0. Thus we have an exact sequence

0→ 0→ k → Γ(OY )→ 0→ · · ·

from which we conclude that Γ(OY ) = k which implies Y is connected.

2. now assume k is algebraically closed. Then for any a, b > 0, there exists an irreducible
nonsingular curve Y of type (a, b). Use (II, 7.6.2) and (II, 8.18).

Proof. Given (a, b), (II, 7.6.2) gives a closed immersion

Q = P1 ×P1 → Pa ×Pb → Pn

which corresponds to the invertible sheaf OQ(−a,−b) of type (a, b). By Bertini’s
theorem (II, 8.18) there is a hyperplane H in Pn such that the hyperplane section
of the (a, b) embedding of Q in Pn is nonsingular. Pull this hyperplane section back
to a nonsingular curve Y of type (a, b) on Q in P3. By the previous problem, Y is
connected. Since Y comes from a hyperplane section this implies Y is irreducible (see
the remark in the statement of Bertini’s theorem).

3. an irreducible nonsingular curve Y of type (a, b), a, b > 0 on Q is projectively normal
(II, Ex. 5.14) if and only if |a − b| ≤ 1. In particular, this gives lots of examples of
nonsingular, but not projectively normal curves in P3. The simplest is the one of type
(1, 3) which is just the rational quartic curve (I, Ex. 3.18).

Proof. Let Y be an irreducible nonsingular curve of type (a, b). The criterion we apply
comes from (II, Ex 5.14d) which asserts that the maps

Γ(P3,OP3(n))→ Γ(Y,OY (n))

are surjective for all n ≥ 0 if and only if Y is projectively normal. To determine when
this occurs we have to replace Γ(P3,OP3(n)) with Γ(Q,OQ(n)). It is easy to see that
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the above criterion implies we can make this replacement if Q is projectively normal.
Since Q ∼= P1 × P1 is locally isomorphic to A1 × A1 ∼= A2 which is normal, we see
that Q is normal. Then since Q is a complete intersection which is normal, (II, 8.4b)
implies Q is projectively normal.

Consider the exact sequence

0→ IY → OQ → OY .

Twisting by n gives an exact sequence

0→ IY (n)→ OQ(n)→ OY (n).

Taking cohomology yields the exact sequence

· · · → Γ(Q,OQ(n))→ Γ(Q,OY (n))→ H1(Q, IY (n))→ · · ·

Thus Y is projectively normal precisely if H1(Q, IY (n)) = 0 for all n ≥ 0. When can
this happen? We apply our computations from part (a). Since OQ(n) = OQ(n, n),

IY (n) = OQ(−a,−b)(n) = OQ(−a,−b)⊗OQ OQ(n, n) = OQ(n− a, n− b)

If |a− b| ≤ 1 then |(n− a)− (n− b)| ≤ 1 for all n so

H1(Q,OQ(−a,−b)(n)) = 0

for all n which implies Y is projectively normal. On the other hand, if |a− b| > 1 let
n be the minimum of a and b, without loss assume b is the minimum, so n = b. Then
from (a) we see that

OQ(−a,−b)(n) = OQ(−a,−b)(b) = OQ(−a+ b, 0) 6= 0

since −a+ b ≤ −2.

(c) If Y is a locally principal subscheme of type (a, b) inQ, show that pa(Y ) = ab−a−b+1.
[Hint: Calculate the Hilbert polynomials of suitable sheaves, and again use the special case
(q,0) which is a disjoint union of q copies of P1.]

Proof. The sequence
0→ OQ(−a,−b)→ OQ → OY → 0

is exact so
χ(OY ) = χ(OQ)− χ(OQ(−a,−b)) = 1− χ(OQ(−a,−b)).

Thus
pa(Y ) = 1− χ(OY ) = χ(OQ(−a,−b)).

The problem is thus reduced to computing χ(OQ(−a,−b)).
Assume first that a, b < 0. To compute χ(OQ(−a,−b)) assume Y = Y1 ∪ Y2 where

IY1 = OQ(−a, 0) and IY2 = OQ(0,−b). Thus we could take Y1 to be a copies of P1 in one
family of lines and Y2 to be b copies of P1 in the other family. Tensoring the exact sequence

0→ IY1 → OQ → OY1 → 0
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by the flat module IY2 yields an exact sequence

0→ IY1 ⊗ IY2 → IY2 → OY1 ⊗ IY2

[Note: I use the fact that IY2 is flat. This follows from a proposition in section 9 which
we haven’t yet reached, but I’m going to use it anyways. Since Y2 is locally principal, IY2

is generated locally by a single element and since Q is a variety it is integral. Thus IY2 is
locally free so by (9.2) IY2 is flat.] This exact sequence can also be written as

0→ OQ(−a,−b)→ OQ(0,−b)→ OY ⊗OQ(0,−b)→ 0.

The associated long exact sequence of cohomology is

0→Γ(Q,OQ(−a,−b))→ Γ(Q,OQ(0,−b))→ Γ(Q,OY1 ⊗OQ(0,−b))
→H1(Q,OQ(−a,−b))→ H1(Q,OQ(0,−b))→ H1(Q,OY1 ⊗OQ(0,−b))
→H2(Q,OQ(−a,−b))→ H2(Q,OQ(0,−b))→ H2(Q,OY1 ⊗OQ(0,−b))→ 0

The first three groups of global sections are 0. Since a, b < 0, (a) impliesH1(Q,OQ(−a,−b)) =
0. From the lemma we know that H1(Q,OQ(0,−b)) = k⊕(b−1). Also by the lemma we know
that H2(Q,OQ(0,−b)) = 0. Since OY1 ⊗OQ(0,−b) is isomorphic to the ideal sheaf of b− 1
points in each line of Y1, a similar proof as that used in the lemma shows that

H1(Q,OY ⊗OQ(0,−b)) = k⊕a(b−1).

Plugging all of this information back in yields the exact sequence

0→Γ(Q,OQ(−a,−b)) = 0→ Γ(Q,OQ(0,−b)) = 0→ Γ(Q,OY1 ⊗OQ(0,−b)) = 0

→H1(Q,OQ(−a,−b)) = 0→ H1(Q,OQ(0,−b)) = k⊕(b−1)

→ H1(Q,OY1 ⊗OQ(0,−b)) = k⊕a(b−1)

→H2(Q,OQ(−a,−b))→ H2(Q,OQ(0,−b)) = 0

→ H2(Q,OY1 ⊗OQ(0,−b)) = 0→ 0

From this we conclude that

χ(OQ(−a,−b)) = 0 + 0 + h2(Q,OQ(−a,−b)) = a(b− 1)− (b− 1) = ab− a− b+ 1

which is the desired result.
Now we deal with the remaining case, when Y is a disjoint copies of P1. We have

pa(Y ) = 1− χ(OY ) = 1− χ(O⊕aP1 ) = 1− aχ(OP1) = 1− a

which completes the proof.

57.3 IV, 3.6, 3.13, 5.4, Extra Problems

57.3.1 Exercise IV.3.6: Curves of Degree 4

(a) If X is a curve of degree 4 in some Pn, show that either

1. g = 0, in which case X is either the rational normal quartic in P4 (Ex. 3.4) or the
rational quartic curve in P3 (II, 7.8.6), or
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2. X ⊂ P2, in which case g = 3, or

3. X ⊂ P3 and g = 1.

(b) In the case g = 1, show that X is a complete intersection of two irreducible quadric
surfaces in P3 (I, Ex. 5.11).

Proof. (a) First suppose n ≥ 4. If X is not contained in any Pn−1 then since 4 ≤ n (Ex.
3.4b) implies n = 4, g(X) = 0, and X differs from the rational normal curve of degree 4
only by an automorphism of P4. (I take this to mean that X is the rational normal curve
of degree 4.) Thus when n ≥ 4 we have proved that case (1) occurs.

Next suppose n = 3. Then X is a degree 4 curve in P3. If X is contained in some P2

then g = 1
2
(d− 1)(d− 2) = 3 and so case (2) occurs. If X is not contained in any P2 then

(Ex. 3.5 b) implies

g <
1

2
(d− 1)(d− 2) = 3.

Thus g is either 0, 1, or 2. If g = 0 then X is the rational quartic curve in P3 which is
case (1). If g = 1 then X falls into case (3). If g = 2 then OX(1) is a very ample divisor of
degree 4 (3.3.2) on a genus 2 curve contrary to (Ex. 3.1) which asserts that the degree of a
very ample divisor on a curve of genus 2 is at least 5.

Next suppose n = 2. Then X is a degree 4 curve in P2 so X has genus 3 and falls into
case (2).

The case n = 1 cannot occur since P1 contains no curve of degree 4.
(b) A curve C of genus 1 has g1

2’s since Riemann-Roch guarantees that the complete
linear system associated to any divisor of degree 2 is a g1

2. There are infinitely many divisors
of degree 2 which is not linearly equivalent. This is because P + Q ∼ P + R iff Q ∼ R.
Since C is not rational there are infinitely many points Q and R with Q 6∼ R.

Given two distinct g1
2’s take the product of the corresponding morphisms to obtain a

map ϕ : C → Q where Q is the quadric surface in P3. The diagram is

C −→ P1

↓ ↘ ϕ ↑
P1 ←− C0 ⊂ Q

Let C0 denote the image of C under ϕ. Note that C0 is not a point so the type (a, b) of C0

is defined. Let e be the degree of ϕ. Then by analyzing how certain divisors pull back one
sees that ae = 2 and be = 2. The only possibilities are that C0 is of type (1, 1) or of type
(2, 2). If C0 is of type (1, 1) then C0 must be nonsingular because of the relation between
the arithmetic genus of C0 and that of its normalization. So in this case C0

∼= P1 and the
projections Q → P1 are injective when restricted to C0. This implies that the two maps
coming from the distinct g1

2’s collapse the same points, a contradiction.
Thus C0 is of type (2, 2) and e = 1. Because C has genus 1 and C0 has arithmetic genus

(2 − 1)(2 − 1) = 1 it follows that C ∼= C0. We now know that C embeds as a type (2, 2)
curve on Q. Since a curve of type (a, a) on Q is a complete intersection we are done.

Another way to do this problem is to somehow embed X into P3 as a degree 4 curve
then consider the exact sequence

0→ IX(2)→ OP3(2)→ OX(2)→ 0.

Taking cohomology yields the exact sequence of vector spaces

0→ H0(IX(2))→ H0(OP3(2))→ H0(OX(2))→ · · · .
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Since X has degree 4 it follows that dimH0(OX(2)) = 8. Furthermore dimH0(OP3(2)) = 10
so we see that

dimH0(IX(2)) ≥ 2.

This means that there exist linearly independent homogeneous polynomials f and g of degree
2 such that X ⊂ Z(f) and X ⊂ Z(g). Since X has degree 4 and Z(f) ∩ Z(g) has degree 4
the fact that X ⊂ Z(f) ∩ Z(g) implies that X = Z(f) ∩ Z(g). This is seen by looking at
the appropriate Hilbert polynomials.

57.3.2 Exercise IV.3.12

For each value of d = 2, 3, 4, 5 and r satisfying 0 ≤ r ≤ 1
2
(d − 1)(d − 2), show that there

exists an irreducible plane curve of degree d with r nodes and no other singularities.

Proof. I did the first few by finding explicit equations. It might have been better to do
everything by abstract general methods but it was a good exercise to search for defining
equations.

d = 2, r = 0: Take f = x2 − yz = 0. This works in any characteristic since the partials
are: fx = 2x, fy = −z, fz = −y so if fy = fz = 0 then z = y = 0 so x = 0. But (0, 0, 0) is
not a point.

d = 3, r = 0: When char k 6= 3 take x3 + y3 + z3 = 0 which is clearly nonsingular. For
char k = 3 take x2y + z2y + z3 + y3 = 0. This is nonsingular as was proved in my solution
to (I, Ex. 5.5).

d = 3, r = 1: Let f = xyz + x3 + y3, then fx = yz + 3x2, fy = xz + 3y2 and fz = xy.
Thus a singular point must have x = 0 or y = 0. If x = 0 then from f = 0 we see that
y = 0. Thus (0 : 0 : 1) is the only singularity and it is clearly nodal. Note that this curve
works in characteristic 3 as well.

d = 4, r = 0: When char k 6= 2 take x4+y4+z4 = 0. If char k = 2 take x3y+z3y+z4+y4 =
0 as in (I, Ex. 5.5).

d = 4, r = 1: If char k 6= 2 take f = xyz2 + x4 + y4 = 0. Then fx = yz2 + 4x3,
fy = xz2 + 4y3, and fz = 2xyz. The only singular point is (0 : 0 : 1) which is a node. When
char k = 2 take f = xyz2 + x3z + y4 = 0. The partials are fx = yz2 + x2z, fy = xz2, and
fz = x3. Thus a singular point must satisfy x = 0. Then f = 0 implies y = 0. Thus the
only singular point is (0 : 0 : 1) which is a node.

d = 4, r = 2: Let C be your favorite genus 1 curve. Let D be a divisor of degree 4, then
by (3.3.3) D is very ample. By Riemann-Roch,

dim |D| − dim |K −D| = 4 + 1− 1

so |D| gives rise to embedding of C as a degree 4 curve in P3. Using (3.11) project C onto
the plane to obtain a plane curve of degree 4 with only nodal singularities. Since the genus
of the normalization is 1 it follows that there are exactly 2 nodes.

d = 4, r = 3: Embed P1 as the degree 4 rational normal curve in P4. Then use (3.5)
and (3.10) to project into P2 to get a curve X of degree 4 in P2 having only nodes for
singularities. Since

0 = g(X̃) =
1

2
(4− 1)(3− 1)− number of nodes

it follows that X has 3 nodes.
d = 5, r = 0: When char k 6= 5 take x5+y5+z5 = 0. If char k = 5 take x4y+z4y+z5+y5 =

0.
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d = 5, r = 1: When char k 6= 5 take f = xyz3 + x5 + y5 = 0. Then fx = yz3 + 5x4,
fy = xz3 + 5y4, and fz = 3xyz2. The only singular point is (0 : 0 : 1) which is a node. In
characteristic 5 let f = xyz3 + x5 + y5 + x3y2. Then fx = yz3 + 3x2y2, fy = xz2 + 2x3y, and
fz = 3xyz2 so the only singular point is (0 : 0 : 1) which is clearly a nodal singularity.

d = 5, r = 2: By (Ex 5.4 a) a genus 4 curve which has two distinct g1
3’s gives rise to

a plane quintic with two nodes. The curve of type (3, 3) on the quadric surface is such a
curve.

d = 5, r = 3. I have not found one yet. If I could find a degree 5 space curve of genus 3
I would win. But by Theorem 6.4 no such space curve exists.

d = 5, r = 4: Let C be a curve of genus 2. By Halphen’s theorem there exists a nonspecial
very ample divisor D of degree 5. Then

dim |D| = 5 + 1− 1− 1 = 3

so C embeds into P3 as a curve of degree 5. Project to P2 to obtain a curve X of degree
5 whose singularities are all nodal and whose normalization has genus 2. It follows that X
has 4 nodes.

d = 5, r = 5: Pick your favorite curve of genus 1. By (3.3.3) there exists a very ample
nonspecial divisor of degree 5. As usual, project to obtain a degree 5 plane curve with
singularities only nodes and normalization of genus 1. It follows that there must be exactly
5 nodes.

d = 5, r = 6: Embed P1 in P5 as a curve of degree 5 (Ex. 3.4), and then project it into
P2 to get a curve X of degree 5 in P2 having only nodes as singularities Since

0 = g(X̃) =
1

2
(5− 1)(4− 1)− number of nodes

the number of nodes must be 6.

We can also obtain the following general result.

Proposition 57.7. If r and d are such that

1

2
(d− 1)(d− 2) + 3− d ≤ r ≤ 1

2
(d− 1)(d− 2)

then there exists a plane curve of degree d which has exactly r singularities all of which are
nodes.

Proof. By (6.2) if d ≥ g + 3 then there exists a curve in P3 of genus g and degree d. Using
(3.11) project this curve onto the plane to obtain a curve of degree d with

r =
1

2
(d− 1)(d− 2)− g

singularities all of which are nodes. We can carry out this process so long as r ≤ 1
2
(d−1)(d−2)

and d ≥ g + 3, that is, as long as

r =
1

2
(d− 1)(d− 2)− g ≥ 1

2
(d− 1)(d− 2) + 3− d.
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57.3.3 Exercise IV.5.4

Another way of distinguishing curves of genus g is to ask, what is the least degree of a
birational plane model with only nodes as singularities (3.11)? Let X be nonhyperelliptic of
genus 4. Then:

(a) if X has two g1
3’s, it can be represented as a plane quintic with two nodes, and

conversely;
(b) if X has one g1

3, then it can be represented as a plane quintic with a tacnode (I, Ex.
5.14d), but the least degree of a plane representation with only nodes is 6.

Proof. (a) Summary: If X is nonhyperelliptic with two g1
3’s then X is type (3, 3) in the

quadric so projecting through a point on X gives a plane quintic model with exactly two
nodal singularities.

Suppose X is nonhyperelliptic and X has two g1
3’s. Let p and p′ be the degree 3 maps

X → P1 determined by the two g1
3’s. Let

ϕ : X → P1 ×P1 = Q ⊂ P3

be their product. Let X0 = ϕ(X) be the image of X, and let (a, b) be the type of X0. Letting
e be the degree of ϕ we see that ea = 3 and eb = 3. This implies that either a = b = 1 and
e = 3 or a = b = 3 and e = 1.

First suppose a = b = 1 and e = 3. Then X0 is nonsingular of genus 0 and the two
projection maps X0 → P1 are injective. This implies p and p′ collapse the same points, a
contradiction.

Thus a = b = 3 and e = 1. Because the arithmetic genus of X0 is (a− 1)(b− 1) = 4 and
X has genus 4 we see that X0 must be nonsingular. Thus X embeds as a type (3, 3) curve
on the quadric surface. Henceforth view X as embedded in Q.

Pick a point P0 on X ⊂ Q and fix a copy of P2. Map X to P2 by projection through
P0. If two points P,Q project to the same point then P0, P,Q are collinear. I claim that
this implies the line L through P0, P,Q is contained in Q. To see this let H by a hyperplane
containing L. Then either H.Q is two copies of a line or a degree 2 curve. If H.Q is a degree
2 curve then L.(H.Q) consists of at most 2 points, a contradiction since the points P0, P,Q
are all contained in L.(H.Q). Thus H.Q is two copies of a line. Since P0, P,Q are contained
in H.Q we see that H.Q = 2L and hence that L is contained in Q. Since there are exactly 2
lines on Q through any given point of Q the image of X under projection can have at most
2 singularities.

To show that the singularities are nodes we show that three or more points can not
collapse under projection. [[This is not quite enough. I do not know how to show that
there is not some other unusual singularity.]] Suppose some three points are collapsed under
projection. Then there exists points P,Q,R on X such that P0, P,Q,R are all collinear.
Now X is of type (3, 3) so X is a complete intersection Q.F3 where F3 is some degree 3
surface. Since F3 has degree 3 and contains P0, P,Q,R it must contain the line through
them. (Take a plane containing the line, and apply an argument as above.) Similarly Q
contains the line through P0, P,Q,R so X contains this line, a contradiction.

Since the genus of the normalization of the image X0 of X in P2 is 4 and X0 has exactly
two nodes as singularities it follows that X0 has degree 5.

The converse. Suppose we are given a plane quintic curve C with two nodes and no
other singularities. Then the normalization has genus

g(C̃) =
1

2
(5− 1)(4− 1)− 2 = 4.
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Thus C represents a curve X of genus 4. Let P0 be one of the two nodes, then since C has
degree 5 a line through P0 intersect C in 3 other points. This gives a degree 3 map from C
to P1. Since this map is defined on a nonempty open subset of X it extends to a degree 3
morphism of X into P3. This gives a g1

3 on X. The other node gives a different g1
3 so X has

two distinct g1
3’s.

We must also show that X is not hyperelliptic. Suppose X is hyperelliptic so X has a g1
2.

Let p be the map to P1 corresponding to this g1
2 and let p′ be the map to P1 corresponding

to some g1
3. Let ϕ = p × p′ : X → Q ⊂ P3 be their product. Let X0 = ϕ(X) be the image

of X and suppose X0 has type (a, b). Let e be the degree of ϕ. Then ea = 2 and eb = 3.
Thus e = 1 so X is birational to the normalization of X0. But X0 has arithmetic genus
(2− 1)(3− 1) = 2 < 4 which is a contradiction.

(b) Suppose C is a nonhyperelliptic curve with exactly one g1
3. By looking at twists

of certain exact sequences we showed in class that C lies on the (singular) quadric cone.
We showed furthermore that C is a complete intersection Qcone.F3 of Qcone with some cubic
hypersurface F3. Pick a point P0 on C and a copy of P2 ⊂ P3. Projection through P0 defines
a map C → P2. If two points P,Q collapse then the three points P0, P,Q are collinear. Let
L be the line determined by P0, P,Q. Since Qcone has degree 2 and L intersects Qcone in
at least three points it follows that L lies on Qcone. Since there is only one line through P0

which lies on Qcone it follows that projection defines a birational map of C to plane curve
C0 which has exactly one singularity.

If 3 points P,Q,R are collapsed by projection then the four points P0, P,Q,R are
collinear. Let L be the line through them. Then L must lie in F3 and L must lie in Q
which is a contradiction. This shows that the singular point on C0 is a double point.

I do not know how to show it must be a tacnode.
The Converse:
If there is a quintic plane representation of degree less than 6 with only nodes then there

must be at least two nodes because of the formula for the genus of the normalization. But
each node gives rise to a distinct g1

3. Since there is a unique g1
3 on X this is a contradiction.

57.3.4 Extra Problem 3, by William Stein

Suppose C is hyperelliptic and g ≥ 3. Then there does not exist a g1
3 on C.

Proof. Suppose that C has a g1
3 and let p : C → P1 be the corresponding morphism. Let

p′ : C → P1 be the morphism corresponding to a g1
2 on the hyperelliptic curve C. Let

ϕ = p× p′ : C → P1 ×P1 = Q ⊂ P3.

Let (a, b) be the type of C0 = ϕ(C). If e denotes the degree of ϕ then ea = 2 and eb = 3.
We see this by looking at how divisors of types (1, 0) and (0, 1) pull back. Thus e = 1, a = 2
and b = 3. Now C is isomorphic to the normalization of C0 which has arithmetic genus
(2− 1)(3− 1) = 2 < 3 so C has genus less than 3, a contradiction.

57.3.5 Extra Problem 4, by Nghi Nguyen

If C is a non-hyperelliptic curve of genus g ≥ 4, show that C has at most a finite number of
g1

3’s.

Proof. This proof is the work of Nghi although the write up is my own. (Therefore any
mistakes are my responsibility.)
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Summary. For a fixed point P0 there are only finitely many g1
3’s arising from a divisor

D of the form D = P0 +Q+R. If some g1
3 is defined by a divisor D, then D−P0 is linearly

equivalent to an effective divisor Q + R so D ∼ P0 + Q + R. Combining this with the first
assertion implies that there are only finitely many g1

3’s.
Step 1. Fix a point P0, then we show that there are only finitely many g1

3’s arising from
a divisor D of the form P0 +Q+R. Suppose D = P0 +Q+R is a divisor such that |D| is
a g1

3.
Since C is non-hyperelliptic the canonical divisor K is very ample. Thus K − P0 is base

point free. Let ϕ : X → Pg−2 be the morphism determined by K − P0. By Riemann-Roch

dim |P0 +Q+R| − dim |K − P0 −Q−R| = 3 + 1− g

so since dim |P +Q+R| = 1,

dim |K − P0 −Q−R| = g − 3.

But K is very ample so dim |K − P0 −Q| = dim |K| − 2 = g − 3. Thus

dim |K − P0 −Q−R| = dim |K − P0 −Q|

so R is a basepoint of K − P0 −Q. This means that ϕ(R) = ϕ(Q).
Let X0 = ϕ(X) ⊂ Pg−2. Let µ = degϕ and let d = degX0. Then

µd = deg(K − P0) = 2g − 3.

If µ > 1 then d ≤ 2g−3
3

since µ is not 2 because 2g− 3 is odd. But 2g−3
3

< g− 2 since g ≥ 4.
Thus d < g − 2.

Let X̃0 be the normalization of the degree d curve X0 ⊂ Pg−2. Let h be the linear system
of degree d corresponding to the morphism

X̃0 → X0 ⊂ Pg−2.

Then h is a linear system of degree d and dimension g − 2. Thus by (Ex. 3.4) we conclude
that g−2 ≤ d. This contradicts the conclusion d < g−2 which followed from our assumption
that µ > 1. Thus µ = 1.

Since µ = 1 the map ϕ is birational so it can collapse only finitely many points. This
means that there are only finitely many choices for D = P0 +Q+R so that |D| is a g1

3.
Step 2. Suppose |D| is a g1

3. Then dim |D| = 1 and since |D| is basepoint free

dim |D − P0| = dim |D| − 1 = 0.

Thus there exists an effective divisor Q+R such that

D − P0 ∼ Q+R,

so D ∼ P0 +Q+R. This shows that every g1
3 is defined by an effective divisor which contains

P0. By step 1 we know there are only finitely many such g1
3 so we conclude that C has only

finitely many g1
3’s.
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