6.5 Power Series

Final exam: Wednesday, March 22, 7-10pm in PCYNH 109. Bring ID!
Quiz 4: This Friday
Today: 11.8 Power Series, 11.9 Functions defined by power series
Next: 11.10 Taylor and Maclaurin series

Recall that a polynomial is a function of the form

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k}
$$

Polynomials are easy!!!

They are easy to integrate, differentiate, etc.:

$$
\begin{aligned}
\frac{d}{d x}\left(\sum_{n=0}^{k} c_{n} x^{n}\right) & =\sum_{n=1}^{k} n c_{n} x^{n-1} \\
\int \sum_{n=0}^{k} c_{n} x^{n} d x & =C+\sum_{n=0}^{k} c_{n} \frac{x^{n+1}}{n+1}
\end{aligned}
$$

Definition 6.5.1 (Power Series). A power series is a series of the form

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots
$$

where x is a variable and the c_{n} are coefficients.
A power series is a function of x for those x for which it converges.
Example 6.5.2. Consider

$$
f(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots
$$

When $|x|<1$, i.e., $-1<x<1$, we have

$$
f(x)=\frac{1}{1-x}
$$

But what good could this possibly be? Why is writing the simple function $\frac{1}{1-x}$ as the complicated series $\sum_{n=0}^{\infty} x^{n}$ of any value?

1. Power series are relatively easy to work with. They are "almost" polynomials. E.g.,

$$
\frac{d}{d x} \sum_{n=0}^{\infty} x^{n}=\sum_{n=1}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+\cdots=\sum_{m=0}^{\infty}(m+1) x^{m}
$$

where in the last step we "re-indexed" the series. Power series are only "almost" polynomials, since they don't stop; they can go on forever. More precisely, a
power series is a limit of polynomials. But in many cases we can treat them like a polynomial. On the other hand, notice that

$$
\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}=\sum_{m=0}^{\infty}(m+1) x^{m}
$$

2. For many functions, a power series is the best explicit representation available.

Example 6.5.3. Consider $J_{0}(x)$, the Bessel function of order 0. It arises as a solution to the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$, and has the following power series expansion:

$$
\begin{aligned}
J_{0}(x) & =\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}} \\
& =1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}-\frac{1}{2304} x^{6}+\frac{1}{147456} x^{8}-\frac{1}{14745600} x^{10}+\cdots
\end{aligned}
$$

This series is nice since it converges for all x (one can prove this using the ratio test). It is also one of the most explicit forms of $J_{0}(x)$.

6.5.1 Shift the Origin

It is often useful to shift the origin of a power series, i.e., consider a power series expanded about a different point.

Definition 6.5.4. The series

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

is called a power series centered at $x=a$, or "a power series about $x=a$ ".
Example 6.5.5. Consider

$$
\begin{aligned}
\sum_{n=0}^{\infty}(x-3)^{n} & =1+(x-3)+(x-3)^{2}+\cdots \\
& =\frac{1}{1-(x-3)} \quad \text { equality valid when }|x-3|<1 \\
& =\frac{1}{4-x}
\end{aligned}
$$

Here conceptually we are treating 3 like we treated 0 before.
Power series can be written in different ways, which have different advantages and disadvantages. For example,

$$
\begin{aligned}
\frac{1}{4-x} & =\frac{1}{4} \cdot \frac{1}{1-x / 4} \\
& =\frac{1}{4} \cdot \sum_{n=0}^{\infty}\left(\frac{x}{4}\right)^{n} \quad \text { converges for all }|x|<4
\end{aligned}
$$

Notice that the second series converges for $|x|<4$, whereas the first converges only for $|x-3|<1$, which isn't nearly as good.

6.5.2 Convergence of Power Series

Theorem 6.5.6. Given a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, there are exactly three possibilities:

1. The series conveges only when $x=a$.
2. The series conveges for all x.
3. There is an $R>0$ (called the "radius of convergence") such that $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ converges for $|x-a|<R$ and diverges for $|x-a|>R$.

Example 6.5.7. For the power series $\sum_{n=0}^{\infty} x^{n}$, the radius R of convergence is 1 .
Definition 6.5.8 (Radius of Convergence). As mentioned in the theorem, R is called the radius of convergence.

If the series converges only at $x=a$, we say $R=0$, and if the series converges everywhere we say that $R=\infty$.

The interval of convergence is the set of x for which the series converges. It will be one of the following:

$$
(a-R, a+R), \quad[a-R, a+R), \quad(a-R, a+R], \quad[a-R, a+R]
$$

The point being that the statement of the theorem only asserts something about convergence of the series on the open interval $(a-R, a+R)$. What happens at the endpoints of the interval is not specified by the theorem; you can only figure it out by looking explicitly at a given series.

Theorem 6.5.9. If $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then $f(x)=$ $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is differentiable on $(a-R, a+R)$, and

1. $f^{\prime}(x)=\sum_{n=1}^{\infty} n \cdot c_{n}(x-a)^{n-1}$
2. $\int f(x) d x=C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}$,
and both the derivative and integral have the same radius of convergence as f.
Example 6.5.10. Find a power series representation for $f(x)=\tan ^{-1}(x)$. Notice that

$$
f^{\prime}(x)=\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

which has radius of convergence $R=1$, since the above series is valid when $\left|-x^{2}\right|<1$, i.e., $|x|<1$. Next integrating, we find that

$$
f(x)=c+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

for some constant c. To find the constant, compute $c=f(0)=\tan ^{-1}(0)=0$. We conclude that

$$
\tan ^{-1}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

