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6.5 Power Series

Final exam: Wednesday, March 22, 7-10pm in PCYNH 109. Bring ID!
Quiz 4: This Friday
Today: 11.8 Power Series, 11.9 Functions defined by power series
Next: 11.10 Taylor and Maclaurin series

Recall that a polynomial is a function of the form

f(x) = c0 + c1x + c2x
2 + · · · + ckxk.

Polynomials are easy!!!

They are easy to integrate, differentiate, etc.:
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∑
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∑
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Definition 6.5.1 (Power Series). A power series is a series of the form

f(x) =

∞
∑

n=0

cnxn = c0 + c1x + c2x
2 + · · · ,

where x is a variable and the cn are coefficients.

A power series is a function of x for those x for which it converges.

Example 6.5.2. Consider

f(x) =

∞
∑

n=0

xn = 1 + x + x2 + · · · .

When |x| < 1, i.e., −1 < x < 1, we have

f(x) =
1

1 − x
.

But what good could this possibly be? Why is writing the simple function 1
1−x as

the complicated series
∑∞

n=0 xn of any value?

1. Power series are relatively easy to work with. They are “almost” polynomials.
E.g.,

d

dx

∞
∑

n=0

xn =
∞
∑

n=1

nxn−1 = 1 + 2x + 3x2 + · · · =
∞
∑

m=0

(m + 1)xm,

where in the last step we “re-indexed” the series. Power series are only “almost”
polynomials, since they don’t stop; they can go on forever. More precisely, a
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power series is a limit of polynomials. But in many cases we can treat them like
a polynomial. On the other hand, notice that

d

dx

(

1

1 − x

)

=
1

(1 − x)2
=

∞
∑

m=0

(m + 1)xm.

2. For many functions, a power series is the best explicit representation available.

Example 6.5.3. Consider J0(x), the Bessel function of order 0. It arises as a
solution to the differential equation x2y′′ + xy′ + x2y = 0, and has the following
power series expansion:

J0(x) =

∞
∑

n=1

(−1)nx2n

22n(n!)2

= 1 − 1

4
x2 +

1

64
x4 − 1

2304
x6 +

1

147456
x8 − 1

14745600
x10 + · · · .

This series is nice since it converges for all x (one can prove this using the ratio
test). It is also one of the most explicit forms of J0(x).

6.5.1 Shift the Origin

It is often useful to shift the origin of a power series, i.e., consider a power series expanded
about a different point.

Definition 6.5.4. The series

∞
∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · ·

is called a power series centered at x = a, or “a power series about x = a”.

Example 6.5.5. Consider

∞
∑

n=0

(x − 3)n = 1 + (x − 3) + (x − 3)2 + · · ·

=
1

1 − (x − 3)
equality valid when |x − 3| < 1

=
1

4 − x

Here conceptually we are treating 3 like we treated 0 before.
Power series can be written in different ways, which have different advantages and

disadvantages. For example,

1

4 − x
=

1

4
· 1

1 − x/4

=
1

4
·

∞
∑

n=0

(x

4

)n

converges for all |x| < 4.

Notice that the second series converges for |x| < 4, whereas the first converges only for
|x − 3| < 1, which isn’t nearly as good.
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6.5.2 Convergence of Power Series

Theorem 6.5.6. Given a power series
∑∞

n=0 cn(x− a)n, there are exactly three possi-
bilities:

1. The series conveges only when x = a.

2. The series conveges for all x.

3. There is an R > 0 (called the “radius of convergence”) such that
∑∞

n=0 cn(x−a)n

converges for |x − a| < R and diverges for |x − a| > R.

Example 6.5.7. For the power series
∑∞

n=0 xn, the radius R of convergence is 1.

Definition 6.5.8 (Radius of Convergence). As mentioned in the theorem, R is
called the radius of convergence.

If the series converges only at x = a, we say R = 0, and if the series converges
everywhere we say that R = ∞.

The interval of convergence is the set of x for which the series converges. It will be
one of the following:

(a − R, a + R), [a − R, a + R), (a − R, a + R], [a − R, a + R]

The point being that the statement of the theorem only asserts something about conver-
gence of the series on the open interval (a−R, a + R). What happens at the endpoints
of the interval is not specified by the theorem; you can only figure it out by looking
explicitly at a given series.

Theorem 6.5.9. If
∑∞

n=0 cn(x − a)n has radius of convergence R > 0, then f(x) =
∑∞

n=0 cn(x − a)n is differentiable on (a − R, a + R), and

1. f ′(x) =
∞
∑

n=1

n · cn(x − a)n−1

2.

∫

f(x)dx = C +

∞
∑

n=0

cn

n + 1
(x − a)n+1,

and both the derivative and integral have the same radius of convergence as f .

Example 6.5.10. Find a power series representation for f(x) = tan−1(x). Notice that

f ′(x) =
1

1 + x2
=

1

1 − (−x2)
=

∞
∑

n=0

(−1)nx2n,

which has radius of convergence R = 1, since the above series is valid when | − x2| < 1,
i.e., |x| < 1. Next integrating, we find that

f(x) = c +

∞
∑

n=0

(−1)n x2n+1

2n + 1
,

for some constant c. To find the constant, compute c = f(0) = tan−1(0) = 0. We
conclude that

tan−1(x) =

∞
∑

n=0

(−1)n x2n+1

2n + 1
.


