4.3 Complex Numbers

A complex number is an expression of the form a + bi, where a and b are real numbers, and $i^2 = -1$. We add and multiply complex numbers as follows:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

 $(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$

The complex conjugate of a complex number is

$$\overline{a+bi} = a-bi.$$

Note that

$$(a+bi)(\overline{a+bi}) = a^2 + b^2$$

is a real number (has no complex part).

If $c + di \neq 0$, then

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2} = \frac{1}{c^2+d^2}((ac+bd)+(bc-ad)i).$$

Example 4.3.1. (1-2i)(8-3i) = 2 - 19i and 1/(1+i) = (1-i)/2 = 1/2 - (1/2)i.

Complex numbers are incredibly useful in providing better ways to understand ideas in calculus, and more generally in many applications (e.g., electrical engineering, quantum mechanics, fractals, etc.). For example,

• Every polynomial f(x) factors as a product of linear factors $(x - \alpha)$, if we allow the α 's in the factorization to be complex numbers. For example,

$$f(x) = x^{2} + 1 = (x - i)(x + i).$$

This will provide an easier to use variant of the "partial fractions" integration technique, which we will see later.

- Complex numbers are in **correspondence** with points in the plane via $(x, y) \leftrightarrow x + iy$. Via this correspondence we obtain a way to add and *multiply* points in the plane.
- Similarly, points in **polar coordinates** correspond to complex numbers:

$$(r, \theta) \leftrightarrow r(\cos(\theta) + i\sin(\theta)).$$

• Complex numbers provide a very nice way to remember and **understand trig** identities.

4.3.1 Polar Form

The polar form of a complex number x + iy is $r(\cos(\theta) + i\sin(\theta))$ where (r, θ) are any choice of polar coordinates that represent the point (x, y) in rectangular coordinates. Recall that you can find the polar form of a point using that

$$r = \sqrt{x^2 + y^2}$$
 and $\theta = \tan^{-1}(y/x)$.

NOTE: The "existence" of complex numbers wasn't generally accepted until people got used to a geometric interpretation of them.

4.3. COMPLEX NUMBERS

Example 4.3.2. Find the polar form of 1 + i. Solution. We have $r = \sqrt{2}$, so

$$1 + i = \sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right) = \sqrt{2} \left(\cos(\pi/4) + i \sin(\pi/4) \right).$$

Example 4.3.3. Find the polar form of $\sqrt{3} - i$. Solution. We have $r = \sqrt{3+1} = 2$, so

$$\sqrt{3} - i = 2\left(\frac{\sqrt{3}}{2} + i\frac{-1}{2}\right) = 2\left(\cos(-\pi/6) + i\sin(-\pi/6)\right)$$

[[A picture is useful here.]]

Finding the polar form of a complex number is exactly the same problem as finding polar coordinates of a point in rectangular coordinates. The only hard part is figuring out what θ is.

If we write complex numbers in rectangular form, their sum is easy to compute:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

The beauty of polar coordinates is that if we write two complex numbers in polar form, then their *product* is very easy to compute:

$$r_1(\cos(\theta_1) + i\sin(\theta_1)) \cdot r_2(\cos(\theta_2) + i\sin(\theta_2)) = (r_1r_2)(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)).$$

The magnitudes multiply and the angles add. The above formula is true because of the double angle identities for sin and cos (and it is how I remember those formulas!).

$$(\cos(\theta_1) + i\sin(\theta_1)) \cdot (\cos(\theta_2) + i\sin(\theta_2)) = (\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)) + i(\sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2)).$$

For example, the power of a singular complex number in polar form is easy to compute; just power the r and multiply the angle.

Theorem 4.3.4 (De Moivre's). For any integer n we have

$$(r(\cos(\theta) + i\sin(\theta)))^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

Example 4.3.5. Compute $(1 + i)^{2006}$. Solution. We have

$$(1+i)^{2006} = (\sqrt{2} (\cos(\pi/4) + i\sin(\pi/4)))^{2006}$$

= $\sqrt{2}^{2006} (\cos(2006\pi/4) + i\sin(2006\pi/4)))$
= $2^{1003} (\cos(3\pi/2) + i\sin(3\pi/2)))$
= $-2^{1003}i$

To get $\cos(2006\pi/4) = \cos(3\pi/2)$ we use that 2006/4 = 501.5, so by periodicity of cosine, we have

$$\cos(2006\pi/4) = \cos((501.5)\pi - 250(2\pi)) = \cos(1.5\pi) = \cos(3\pi/2).$$

Another application of De Moivre is to computing $\sin(n\theta)$ and $\cos(n\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$. For example,

$$\cos(3\theta) + i\sin(3\theta) = (\cos(\theta) + i\sin(\theta))^3$$
$$= (\cos(\theta)^3 - 3\cos(\theta)\sin(\theta)^2) + i(3\cos(\theta)^2\sin(\theta) - \sin(\theta)^3)$$

Equate real and imaginary parts to get formulas for $\cos(3\theta)$ and $\sin(3\theta)$.

Since we know how to raise a complex number in polar form to the n power, we can find all numbers with a given power, hence find the nth roots of a complex number.

Proposition 4.3.6 (*nth roots*). A complex number $z = r(\cos(\theta) + i\sin(\theta))$ has n distinct nth roots:

$$r^{1/n}\left(\cos\left(\frac{\theta+2\pi k}{n}\right)+i\sin\left(\frac{\theta+2\pi k}{n}\right)\right),$$

for k = 0, 1, ..., n - 1. Here $r^{1/n}$ is the real positive n-th root of r.

As a double-check, note that by De Moivre, each number listed in the proposition has nth power equal to z.

Example 4.3.7. Find the cube roots of 2. **Solution.** Write 2 in polar form as

$$2 = 2(\cos(0) + i\sin(0)).$$

Then the three cube roots of 2 are

$$2^{1/3}(\cos(2\pi k/3) + i\sin(2\pi k/3)),$$

for k = 0, 1, 2. I.e.,

$$2^{1/3}$$
, $2^{1/3}(-1/2+i\sqrt{3}/2)$, $2^{1/3}(-1/2-i\sqrt{3}/2)$.

4.4 Complex Exponentials and Trig Identities

If z = a + ib is a complex number, define

$$e^z = e^a(\cos(b) + i\sin(b)).$$

This has all the right properties. E.g.,

$$e^{z_1}e^{z_2} = e^{z_1 + z_2}$$

since

$$e^{z_1}e^{z_2} = e_1^a(\cos(b_1) + i\sin(b_1)) \cdot e_2^a(\cos(b_2) + i\sin(b_2))$$

= $e^{a_1 + a_2}(\cos(b_1 + b_2) + i\sin(b_1 + b_2))$
= $e^{z_1 + z_2}$.

Here we have just used our observation from the previous section about how to multiply complex numbers in polar coordinates.

4.4. COMPLEX EXPONENTIALS AND TRIG IDENTITIES

In order to easily obtain trig identities like $\cos(x)^2 + \sin(x)^2 = 1$, let's write $\cos(x)$ and $\sin(x)$ as a complex exponential. From the definitions we have

$$e^{ix} = \cos(x) + i\sin(x),$$

and

$$e^{-ix} = \cos(-x) + i\sin(-x) = \cos(x) - i\sin(x)$$

Adding these two equations and dividing by 2 yields a formula for cos(x), and subtracting and dividing by 2i gives a formula for sin(x):

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
 $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}.$

We can now derive trig identities. For example,

$$\sin(2x) = \frac{e^{i2x} - e^{-i2x}}{2i}$$
$$= \frac{(e^{ix} - e^{-ix})(e^{ix} + e^{-ix})}{2i}$$
$$= 2\frac{e^{ix} - e^{-ix}}{2i}\frac{e^{ix} + e^{-ix}}{2}$$
$$= 2\sin(x)\cos(x).$$

Remark 4.4.1. Frankly, I'm unimpressed, given that you can get this much more directly using

$$(\cos(2x) + i\sin(2x)) = (\cos(x) + i\sin(x))^2$$

= $\cos^2(x) - \sin^2(x) + i2\cos(x)\sin(x)$

and equating imaginary parts.

Example 4.4.2. We have $e^{i\pi} + 1 = 0$. Solution. By definition, have $e^{i\pi} = \cos(\pi) + i\sin(\pi) = -1 + i0 = -1$.