4.3 Complex Numbers

A complex number is an expression of the form $a+b i$, where a and b are real numbers, and $i^{2}=-1$. We add and multiply complex numbers as follows:

$$
\begin{aligned}
(a+b i)+(c+d i) & =(a+c)+(b+d) i \\
(a+b i) \cdot(c+d i) & =(a c-b d)+(a d+b c) i
\end{aligned}
$$

The complex conjugate of a complex number is

$$
\overline{a+b i}=a-b i .
$$

Note that

$$
(a+b i)(\overline{a+b i})=a^{2}+b^{2}
$$

is a real number (has no complex part).
If $c+d i \neq 0$, then

$$
\frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}}=\frac{1}{c^{2}+d^{2}}((a c+b d)+(b c-a d) i)
$$

Example 4.3.1. $(1-2 i)(8-3 i)=2-19 i$ and $1 /(1+i)=(1-i) / 2=1 / 2-(1 / 2) i$.
Complex numbers are incredibly useful in providing better ways to understand ideas in calculus, and more generally in many applications (e.g., electrical engineering, quantum mechanics, fractals, etc.). For example,

- Every polynomial $f(x)$ factors as a product of linear factors $(x-\alpha)$, if we allow the α 's in the factorization to be complex numbers. For example,

$$
f(x)=x^{2}+1=(x-i)(x+i)
$$

This will provide an easier to use variant of the "partial fractions" integration technique, which we will see later.

- Complex numbers are in correspondence with points in the plane via $(x, y) \leftrightarrow$ $x+i y$. Via this correspondence we obtain a way to add and multiply points in the plane.
- Similarly, points in polar coordinates correspond to complex numbers:

$$
(r, \theta) \leftrightarrow r(\cos (\theta)+i \sin (\theta))
$$

- Complex numbers provide a very nice way to remember and understand trig identities.

4.3.1 Polar Form

The polar form of a complex number $x+i y$ is $r(\cos (\theta)+i \sin (\theta))$ where (r, θ) are any choice of polar coordinates that represent the point (x, y) in rectangular coordinates. Recall that you can find the polar form of a point using that

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\tan ^{-1}(y / x) .
$$

NOTE: The "existence" of complex numbers wasn't generally accepted until people got used to a geometric interpretation of them.

Example 4.3.2. Find the polar form of $1+i$.
Solution. We have $r=\sqrt{2}$, so

$$
1+i=\sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4)) .
$$

Example 4.3.3. Find the polar form of $\sqrt{3}-i$.
Solution. We have $r=\sqrt{3+1}=2$, so

$$
\sqrt{3}-i=2\left(\frac{\sqrt{3}}{2}+i \frac{-1}{2}\right)=2(\cos (-\pi / 6)+i \sin (-\pi / 6))
$$

[[A picture is useful here.]]
Finding the polar form of a complex number is exactly the same problem as finding polar coordinates of a point in rectangular coordinates. The only hard part is figuring out what θ is.

If we write complex numbers in rectangular form, their sum is easy to compute:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

The beauty of polar coordinates is that if we write two complex numbers in polar form, then their product is very easy to compute:

$$
r_{1}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right) \cdot r_{2}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right)=\left(r_{1} r_{2}\right)\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)
$$

The magnitudes multiply and the angles add. The above formula is true because of the double angle identities for \sin and \cos (and it is how I remember those formulas!).

$$
\begin{aligned}
\left(\cos \left(\theta_{1}\right)\right. & \left.+i \sin \left(\theta_{1}\right)\right) \cdot\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right) \\
& =\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)+i\left(\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)
\end{aligned}
$$

For example, the power of a singular complex number in polar form is easy to compute; just power the r and multiply the angle.

Theorem 4.3.4 (De Moivre's). For any integer n we have

$$
(r(\cos (\theta)+i \sin (\theta)))^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))
$$

Example 4.3.5. Compute $(1+i)^{2006}$.
Solution. We have

$$
\begin{aligned}
(1+i)^{2006} & =(\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4)))^{2006} \\
& \left.=\sqrt{2}^{2006}(\cos (2006 \pi / 4)+i \sin (2006 \pi / 4))\right) \\
& \left.=2^{1003}(\cos (3 \pi / 2)+i \sin (3 \pi / 2))\right) \\
& =-2^{1003} i
\end{aligned}
$$

To get $\cos (2006 \pi / 4)=\cos (3 \pi / 2)$ we use that $2006 / 4=501.5$, so by periodicity of cosine, we have

$$
\cos (2006 \pi / 4)=\cos ((501.5) \pi-250(2 \pi))=\cos (1.5 \pi)=\cos (3 \pi / 2)
$$

Another application of De Moivre is to computing $\sin (n \theta)$ and $\cos (n \theta)$ in terms of $\sin (\theta)$ and $\cos (\theta)$. For example,

$$
\begin{aligned}
\cos (3 \theta)+i \sin (3 \theta) & =(\cos (\theta)+i \sin (\theta))^{3} \\
& =\left(\cos (\theta)^{3}-3 \cos (\theta) \sin (\theta)^{2}\right)+i\left(3 \cos (\theta)^{2} \sin (\theta)-\sin (\theta)^{3}\right)
\end{aligned}
$$

Equate real and imaginary parts to get formulas for $\cos (3 \theta)$ and $\sin (3 \theta)$.
Since we know how to raise a complex number in polar form to the n power, we can find all numbers with a given power, hence find the nth roots of a complex number.

Proposition 4.3.6 (nth roots). A complex number $z=r(\cos (\theta)+i \sin (\theta))$ has n distinct nth roots:

$$
r^{1 / n}\left(\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right)
$$

for $k=0,1, \ldots, n-1$. Here $r^{1 / n}$ is the real positive n-th root of r.
As a double-check, note that by De Moivre, each number listed in the proposition has nth power equal to z.

Example 4.3.7. Find the cube roots of 2.
Solution. Write 2 in polar form as

$$
2=2(\cos (0)+i \sin (0))
$$

Then the three cube roots of 2 are

$$
2^{1 / 3}(\cos (2 \pi k / 3)+i \sin (2 \pi k / 3))
$$

for $k=0,1,2$. I.e.,

$$
2^{1 / 3}, \quad 2^{1 / 3}(-1 / 2+i \sqrt{3} / 2), \quad 2^{1 / 3}(-1 / 2-i \sqrt{3} / 2)
$$

4.4 Complex Exponentials and Trig Identities

If $z=a+i b$ is a complex number, define

$$
e^{z}=e^{a}(\cos (b)+i \sin (b))
$$

This has all the right properties. E.g.,

$$
e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}
$$

since

$$
\begin{aligned}
e^{z_{1}} e^{z_{2}} & =e_{1}^{a}\left(\cos \left(b_{1}\right)+i \sin \left(b_{1}\right)\right) \cdot e_{2}^{a}\left(\cos \left(b_{2}\right)+i \sin \left(b_{2}\right)\right) \\
& =e^{a_{1}+a_{2}}\left(\cos \left(b_{1}+b_{2}\right)+i \sin \left(b_{1}+b_{2}\right)\right) \\
& =e^{z_{1}+z_{2}}
\end{aligned}
$$

Here we have just used our observation from the previous section about how to multiply complex numbers in polar coordinates.

In order to easily obtain trig identities like $\cos (x)^{2}+\sin (x)^{2}=1$, let's write $\cos (x)$ and $\sin (x)$ as a complex exponential. From the definitions we have

$$
e^{i x}=\cos (x)+i \sin (x)
$$

and

$$
e^{-i x}=\cos (-x)+i \sin (-x)=\cos (x)-i \sin (x)
$$

Adding these two equations and dividing by 2 yields a formula for $\cos (x)$, and subtracting and dividing by $2 i$ gives a formula for $\sin (x)$:

$$
\cos (x)=\frac{e^{i x}+e^{-i x}}{2} \quad \sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}
$$

We can now derive trig identities. For example,

$$
\begin{aligned}
\sin (2 x) & =\frac{e^{i 2 x}-e^{-i 2 x}}{2 i} \\
& =\frac{\left(e^{i x}-e^{-i x}\right)\left(e^{i x}+e^{-i x}\right)}{2 i} \\
& =2 \frac{e^{i x}-e^{-i x}}{2 i} \frac{e^{i x}+e^{-i x}}{2} \\
& =2 \sin (x) \cos (x)
\end{aligned}
$$

Remark 4.4.1. Frankly, I'm unimpressed, given that you can get this much more directly using

$$
\begin{aligned}
(\cos (2 x)+i \sin (2 x)) & =(\cos (x)+i \sin (x))^{2} \\
& =\cos ^{2}(x)-\sin ^{2}(x)+i 2 \cos (x) \sin (x)
\end{aligned}
$$

and equating imaginary parts.
Example 4.4.2. We have $e^{i \pi}+1=0$.
Solution. By definition, have $e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1+i 0=-1$.

