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4.3 Complex Numbers

A complex number is an expression of the form a + bi, where a and b are real numbers,
and i2 = −1. We add and multiply complex numbers as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) · (c + di) = (ac − bd) + (ad + bc)i

The complex conjugate of a complex number is

a + bi = a − bi.

Note that
(a + bi)(a + bi) = a2 + b2

is a real number (has no complex part).
If c + di 6= 0, then

a + bi

c + di
=

(a + bi)(c − di)

c2 + d2
=

1

c2 + d2
((ac + bd) + (bc − ad)i).

Example 4.3.1. (1 − 2i)(8 − 3i) = 2 − 19i and 1/(1 + i) = (1 − i)/2 = 1/2 − (1/2)i.

Complex numbers are incredibly useful in providing better ways to understand ideas
in calculus, and more generally in many applications (e.g., electrical engineering, quan-
tum mechanics, fractals, etc.). For example,

• Every polynomial f(x) factors as a product of linear factors (x − α), if we allow
the α’s in the factorization to be complex numbers. For example,

f(x) = x2 + 1 = (x − i)(x + i).

This will provide an easier to use variant of the “partial fractions” integration
technique, which we will see later.

• Complex numbers are in correspondence with points in the plane via (x, y) ↔
x+ iy. Via this correspondence we obtain a way to add and multiply points in the
plane.

• Similarly, points in polar coordinates correspond to complex numbers:

(r, θ) ↔ r(cos(θ) + i sin(θ)).

• Complex numbers provide a very nice way to remember and understand trig
identities.

4.3.1 Polar Form

The polar form of a complex number x + iy is r(cos(θ) + i sin(θ)) where (r, θ) are any
choice of polar coordinates that represent the point (x, y) in rectangular coordinates.
Recall that you can find the polar form of a point using that

r =
√

x2 + y2 and θ = tan−1(y/x).

NOTE: The “existence” of complex numbers wasn’t generally accepted until people
got used to a geometric interpretation of them.
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Example 4.3.2. Find the polar form of 1 + i.
Solution. We have r =

√
2, so

1 + i =
√

2

(

1√
2

+
i√
2

)

=
√

2 (cos(π/4) + i sin(π/4)) .

Example 4.3.3. Find the polar form of
√

3 − i.
Solution. We have r =

√
3 + 1 = 2, so

√
3 − i = 2

(√
3

2
+ i

−1

2

)

= 2 (cos(−π/6) + i sin(−π/6))

[[A picture is useful here.]]

Finding the polar form of a complex number is exactly the same problem as finding
polar coordinates of a point in rectangular coordinates. The only hard part is figuring
out what θ is.

If we write complex numbers in rectangular form, their sum is easy to compute:

(a + bi) + (c + di) = (a + c) + (b + d)i

The beauty of polar coordinates is that if we write two complex numbers in polar form,
then their product is very easy to compute:

r1(cos(θ1) + i sin(θ1)) · r2(cos(θ2) + i sin(θ2)) = (r1r2)(cos(θ1 + θ2) + i sin(θ1 + θ2)).

The magnitudes multiply and the angles add. The above formula is true because of the
double angle identities for sin and cos (and it is how I remember those formulas!).

(cos(θ1) + i sin(θ1)) · (cos(θ2) + i sin(θ2))

= (cos(θ1) cos(θ2) − sin(θ1) sin(θ2)) + i(sin(θ1) cos(θ2) + cos(θ1) sin(θ2)).

For example, the power of a singular complex number in polar form is easy to
compute; just power the r and multiply the angle.

Theorem 4.3.4 (De Moivre’s). For any integer n we have

(r(cos(θ) + i sin(θ)))n = rn(cos(nθ) + i sin(nθ)).

Example 4.3.5. Compute (1 + i)2006.
Solution. We have

(1 + i)2006 = (
√

2 (cos(π/4) + i sin(π/4)))2006

=
√

2
2006

(cos(2006π/4) + i sin(2006π/4)))

= 21003 (cos(3π/2) + i sin(3π/2)))

= −21003i

To get cos(2006π/4) = cos(3π/2) we use that 2006/4 = 501.5, so by periodicity of
cosine, we have

cos(2006π/4) = cos((501.5)π − 250(2π)) = cos(1.5π) = cos(3π/2).
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Another application of De Moivre is to computing sin(nθ) and cos(nθ) in terms of
sin(θ) and cos(θ). For example,

cos(3θ) + i sin(3θ) = (cos(θ) + i sin(θ))3

= (cos(θ)3 − 3 cos (θ) sin(θ)2) + i(3 cos(θ)2 sin(θ) − sin(θ)3)

Equate real and imaginary parts to get formulas for cos(3θ) and sin(3θ).
Since we know how to raise a complex number in polar form to the n power, we can

find all numbers with a given power, hence find the nth roots of a complex number.

Proposition 4.3.6 (nth roots). A complex number z = r(cos(θ) + i sin(θ)) has n
distinct nth roots:

r1/n

(

cos

(

θ + 2πk

n

)

+ i sin

(

θ + 2πk

n

))

,

for k = 0, 1, . . . , n − 1. Here r1/n is the real positive n-th root of r.

As a double-check, note that by De Moivre, each number listed in the proposition
has nth power equal to z.

Example 4.3.7. Find the cube roots of 2.
Solution. Write 2 in polar form as

2 = 2(cos(0) + i sin(0)).

Then the three cube roots of 2 are

21/3(cos(2πk/3) + i sin(2πk/3)),

for k = 0, 1, 2. I.e.,

21/3, 21/3(−1/2 + i
√

3/2), 21/3(−1/2 − i
√

3/2).

4.4 Complex Exponentials and Trig Identities

If z = a + ib is a complex number, define

ez = ea(cos(b) + i sin(b)).

This has all the right properties. E.g.,

ez1ez2 = ez1+z2

since

ez1ez2 = ea
1(cos(b1) + i sin(b1)) · ea

2(cos(b2) + i sin(b2))

= ea1+a2(cos(b1 + b2) + i sin(b1 + b2))

= ez1+z2 .

Here we have just used our observation from the previous section about how to multiply
complex numbers in polar coordinates.
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In order to easily obtain trig identities like cos(x)2 + sin(x)2 = 1, let’s write cos(x)
and sin(x) as a complex exponential. From the definitions we have

eix = cos(x) + i sin(x),

and
e−ix = cos(−x) + i sin(−x) = cos(x) − i sin(x).

Adding these two equations and dividing by 2 yields a formula for cos(x), and subtract-
ing and dividing by 2i gives a formula for sin(x):

cos(x) =
eix + e−ix

2
sin(x) =

eix − e−ix

2i
.

We can now derive trig identities. For example,

sin(2x) =
ei2x − e−i2x

2i

=
(eix − e−ix)(eix + e−ix)

2i

= 2
eix − e−ix

2i

eix + e−ix

2
= 2 sin(x) cos(x).

Remark 4.4.1. Frankly, I’m unimpressed, given that you can get this much more
directly using

(cos(2x) + i sin(2x)) = (cos(x) + i sin(x))2

= cos2(x) − sin2(x) + i2 cos(x) sin(x)

and equating imaginary parts.

Example 4.4.2. We have eiπ + 1 = 0.
Solution. By definition, have eiπ = cos(π) + i sin(π) = −1 + i0 = −1.


