William Stein

Due: Wednesday, Nov 2, 2005

The problems have equal point value, and multi-part problems are of the same value.

1 Problems

- 1. Suppose $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a matrix with real entries and positive determinant. Prove that if $z \in \mathbb{C}$ is a complex number with positive imaginary part, then the imaginary part of $\gamma(z) = (az+b)/(cz+d)$ is also positive.
- 2. (a) Prove that a polynomial is an analytic function on \mathbb{C} .
 - (b) Prove that a rational function (quotient of two polynomials) is a meromorphic function on C.
- 3. Suppose f and g are weakly modular functions with $f \neq 0$.
 - (a) Prove that the product fg is a weakly modular function.
 - (b) Prove that 1/f is a weakly modular function.
 - (c) If f and g are modular functions, show that fg is a modular function.
 - (d) If f and g are modular forms, show that fg is a modular form.
- 4. Suppose f is a weakly modular function of odd weight k. Show that f = 0.
- 5. (a) Prove that $\Gamma_1(N)$ is a group.
 - (b) Prove that $\Gamma_1(N)$ has finite index in $\mathrm{SL}_2(\mathbb{Z})$ (Hint: it contains the kernel of the homomorphism $\mathrm{SL}_2(\mathbb{Z}) \to \mathrm{SL}_2(\mathbb{Z}/N\mathbb{Z})$.)