Math 168: Homework Assignment 2

William Stein

Due: Wednesday, Oct 12, 2005

The SIX problems have equal point value, and multi-part problems are of the same value. You are allowed to use a computer on any problem, as long as you include the exact code used to solve the problem with your solution. Any software systems (e.g., Magma, SAGE, Mathematica, C) are allowed.

1 Announcements

1. Office Hours: Tuesdays 3-5 in my office (AP\&M 5111).
2. Section: Thursday 5-6 in my office

2 Problems

1. One rational solution to the equation $y^{2}=x^{3}-2$ is $(3,5)$. Find a rational solution with $x \neq 3$ by drawing the tangent line to $(3,5)$ and computing the second point of intersection.
2. Write down an equation $y^{2}=x^{3}+a x+b$ over a field K such that $-16\left(4 a^{3}+27 b^{2}\right)=0$ (yes equals 0). Precisely what goes wrong when trying to endow the set $E(K)=\left\{(x, y) \in K \times K: y^{2}=x^{3}+a x+b\right\} \cup$ $\{\mathcal{O}\}$ with a group structure (in an algebraic way)?
3. Let E be the elliptic curve over the finite field $K=\mathbb{F}_{5}$ defined by the equation

$$
y^{2}=x^{3}+x+1 .
$$

(a) List all 9 elements of $E(K)$.
(b) What is the structure of $E(K)$, as a product of cyclic groups?
4. Let E be the elliptic curve defined by the equation $y^{2}=x^{3}+1$. For each prime $p \geq 5$, let N_{p} be the cardinality of the group $E\left(\mathbb{F}_{p}\right)$ of points on this curve having coordinates in \mathbb{F}_{p}. For example, we have that $N_{5}=6, N_{7}=12, N_{11}=12, N_{13}=12, N_{17}=18, N_{19}=12,, N_{23}=$ 24 , and $N_{29}=30$ (you do not have to prove this).
(a) For the set of primes satisfying $p \equiv 2(\bmod 3)$, can you see a pattern for the values of N_{p} ? Make a general conjecture for the value of N_{p} when $p \equiv 2(\bmod 3)$.
(b) $\left(^{*}\right)$ Prove your conjecture.
5. Suppose $y^{2}=x^{3}+a x+b$ with $a, b \in \mathbb{Q}$ defines an elliptic curve. Show that there is another equation $Y^{2}=X^{3}+A X+B$ with $A, B \in \mathbb{Z}$ whose solutions are in bijection with the solutions to $y^{2}=x^{3}+a x+b$ (via a bijection defined by algebraic formulas).
6. Let E be an elliptic curve over the real numbers \mathbb{R}. Prove that $E(\mathbb{R})$ is not a finitely generated abelian group.

