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A conic is defined by a nonsingular quadratic form in three variables.

Definition. A conic C over Q is given by an equation

F (X) =
∑
fijXiXj = 0

where X = (X1, X2, X3), fij = fji ∈ Q, and det fij 6= 0.

When does a conic contain a rational point (a solution to F (X) = 0 with rational

coordinates)? The Local-Global Principle says that a global solution exists (in Q) if

and only if local solutions exist (in R and all Qp, which are the completions of Q with

respect to the distinct valuations). It was first proven in the 1920s by Helmut Hasse.

Theorem (The Local-Global Principal for Conics). Let C be a conic defined

over Q. Then C has a point in Q if and only if C has points in R and Qp for every

prime p.

The only if direction is trivial, as solutions in Q also lie in each of the completions

of Q. In this sense, a solution in Q is global.

To prove the if direction, we will use Minkowski’s Theorem from the geometry of

numbers (restricting ourselves to subsets S that are Lebesgue measurable).

Theorem (Minkowski). Let Λ be a subgroup of Zn of index m. Let S ⊂ Rn be a

symmetric convex set of volume

V (S) > 2nm.

Then S and Λ have a common point other than 0 = (0, ..., 0).

In fact, if S is closed, then we can weaken the condition to V (S) ≥ 2nm using a

limit argument. We will need the following lemma, which is essentially the pigeonhole

principle.

Lemma. Let S be a bounded subset of Rn with V (S) > m. Then there exists some

w ∈ Rn/Zn with |π−1(w)| > m, where π : S → Rn/Zn is projection.
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Proof. We first give a conceptual proof. Imagine cutting S up along the lattice hy-

perplanes and integrally translating each piece to the fundamental cube I = {0 ≤
xi < 1 ∀ 1 ≤ i ≤ n}, which we identify with Rn/Zn. The number of preimages via

π of a point w ∈ I is equal to the number of translated pieces of S lying above w.

Since V (S) > mV (I), intuitively some point w must lie below more than m pieces of

S, i.e. |π−1(w)| > m.

We could formalize this argument further by assigning multiplicities to each “re-

gion” of I, but if there are infinitely many such regions we may run into trouble when

summing. Instead follow Cassels lead and make the argument rigorous by hiding the

limits within integrals. Let ψ(x) by the characteristic function of S. Every x ∈ Rn

can be uniquely expressed as w + z with w ∈ I and z ∈ Zn. Therefore

m < V (S) =
∫

Rn ψ(x)dx =
∫

I
ψ(x)

(∑
z∈Zn ψ(w + z)

)
dw.

If
∑

z∈Zn ψ(w + z) ≤ m for every w ∈ I, then we would have the contradiction

V (s) =
∫

I
ψ(x)

(∑
z∈Zn ψ(w + z)

)
dw ≤ m

∫
I
ψ(x)dw = m.

Therefore, there exists some w ∈ I with |π−1(w)| =
∑

z∈Zn ψ(w + z) > m.

Proof of Minkowski. V (S) > 2nm implies V (S/2) > m. By the Lemma, there exists

w ∈ Rn/Zn with |π−1(w)| > m, where π : S/2 → Rn/Zn. So we have distinct points

p0, p1, ..., pm ∈ S with pi

2
− pj

2
∈ Zn for every 0 ≤ i, j ≤ m. Then T = {p0−pi

2
| 0 ≤ i ≤

m} ⊂ Zn is a set of size m + 1. Furthermore, T ⊂ S since pi ∈ S by symmetry and

then p0+(−pi)
2

∈ S by convexity. So we have m + 1 distinct points in S
⋂

Zn (in fact,

a little more care gives 2m + 1 distinct points).

Now Λ has index m in Zn, so by the pigeonhole principle, there exist distinct

points x, y ∈ S
⋂

Zn which are in the same coset of Λ. Thus, x−y is a non-zero point

of S
⋂

Λ.

Proof of the Local-Global Principle for Conics. Our proof fleshes out that of Cassels

in Lectures on Elliptic Curves. The first step is to normalize F (X) to a diagonal form,

which we will prove for an arbitrary number of variables.
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Suppose we change coordinates by sending Xi to X ′
i =

∑
i tijXi, with det tij 6= 0.

Then T = (tij) gives a bijection between the rational points of F (X) and the rational

points of G(X′). Similarly, T gives a bijection between the points in R on F (X) and

G(X′), as well as between such points in Qp. Clearly we can also multiply through

by any non-zero rational without affecting the solution set.

So suppose by induction that there exist coordinates X1, ..., Xn such that

F (X1, ..., Xn) = f1X
2
1 + ...+ fr−1X

2
r−1 +

∑n
i,j=r fijXiXj

fij = fji ∈ Q and the matrix det fij 6= 0. The base case r = 0 is given.

For the induction step, we first show that we can make frr(0) 6= 0 by a non-singular

linear transformation on the last n− r+1 coordinates. The proof works the same for

any r, so for simplicity let r = 1. If we have fii(0) 6= 0 for some 1 ≤ i ≤ n then we

are done by transposing X1 and Xi. Otherwise, since (fij(0)) is non-singular, there

exists some fij(0) 6= 0 with i 6= j. Through a pair of transpositions, we can assume

f11(0) = 0 and f12(0) = f21(0) 6= 0. We define a new set of coordinates X ′
1, ..., X

′
n by

X ′
1 = 1

2
(X1 +X2) X ′

2 = 1
2
(X1 −X2) X ′

i = Xi for i > 2

This linear transformation is invertible with inverse given by

X1 = (X ′
1 −X ′

2) X2 = (X ′
1 +X ′

2) Xi = X ′
i for i > 2

Substituting in these new coordinates and regrouping terms, we have F (X) = Σn
i,j=1f

′
ijX

′
iX

′
j

with f ′11(0) = f12(0) + f21(0) = 2f12 6= 0.

So without loss of generality we assume frr 6= 0. After dividing through F (X) by

frr, we may assume frr = 1. We now define a new set of coordinates X ′
1, ..., X

′
n by

X ′
i = Xi for i 6= r.

X ′
r = Xr +

∑
i>r firXi
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Then

F (X) = f1X
2
1 + ...+ fr−1X

2
r−1 +

n∑
i,j=r

fijXiXj

= f1X
2
1 + ...+ fr−1X

2
r−1 +

[
X2

r + 2Xr

∑
i>r

firXi + (
∑
i>r

firXi)
2

]
−(

∑
i>r

firXi)
2 +

∑
i,j>r,i6=j

fijXiXj.

The term in brackets is X ′
r
2 so it is clear that we can choose f ′ij for i, j > r so that

F (X) =
∑r

i=1 f
′
iX

′
i
2 +

∑n
i,j>r X

′
iX

′
jf

′
ij.

with f ′ij = f ′ji. Furthermore, f ′ij = 1/frrP
tfijP (for some non-singular P ) is non-

singular. This completes the induction step.

So now F (X) = f1X
2
1 + f2X

2
2 + f3X

2
3 , with each fi 6= 0. Multiply through by

the product of the denominators to get each fi ∈ Z. Now we will further reduce

to the case where f1f2f3 ∈ Z is square-free. If a prime p divides two coefficients,

send the other variable to p times itself, thus introducing two factors of p into f1f2f3.

Follow up by dividing through by p, removing three factors of p from f1f2f3. Since

|f1f2f3| is reduced in Z on each cycle, this process will eventually terminate, leaving

the fi pair-wise coprime. Finally, if p2 | fi, send Xi → 1
p
Xi. Repeat until each fi is

square-free, and thus f1f2f3 is square-free.

Our goal is to define a subgroup Λ of index m = 4|f1f2f3| in Z3 such that F (x) ≡
0 (4|f1f2f3|) for x ∈ Λ. Given this, we can apply Minkowski’s Theorem to Λ and the

convex symmetric set

S : |f1|x2
1 + |f2|x2

2 + |f3|x2
3 < 4|f1f2f3|.

Then V (S) = (π/3)23|4f1f2f3| > 23|4f1f2f3| = 23m. So by Minkowski, there is an

x ∈ S
⋂

Λ for which

F (x) ≡ 0 (4|f1f2f3|)

and
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|F (x)| ≤ |f1|x2
1 + |f2|x2

2 + |f3|x2
3 < 4|f1f2f3|.

Therefore, F (x) = 0. A rational point exists!

As satisfying as that was, we must now actually construct said Λ. If a =

(a1, a2, a3) 6= (0, 0, 0) is a point in Qp with F (a) = 0, then all multiples of a are

solutions as well. So without loss of generality, we may assume that

max |aj|p = 1.

We have pushed a into Zp with minimal force.

We now divide out attack into three cases.

Case 1: p 6= 2, p | f1f2f3. Without loss of generality, p | f1, so p - f2, f3. Then

|f1a
2
1|p < 1. If it were the case that |a2|p < 1, then

|f3a
2
3|p = |f1a

2
1 + f2a

2
2|p < 1

by the ultra-metric inequality, and thus |a3|p < 1. Thus,

|f1a
2
1|p = |f2a

2
2 + f3a

2
3|p < p−2

and so |a1|p < 1 as well, contradicting the normalization. Therefore |a2|p = |a3|p = 1.

This gives

|f2a
2
2 + f3a

2
3|p < 1

and we can divide by the unit a2 to deduce that there is some rp ∈ Z such that

f2 + r2
pfp ≡ 0 (p).

We impose the condition

x3 ≡ rpx2 (p).

Then

F (x) ≡ f1x
2
1 + f2x

2
2 + f3x

2
3

≡ (f2 + r2
pf3)x

2
2

≡ 0 (p).
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Case 2: p = 2, 2 - f1f2f3. Working modulo 2, we see that exactly two of the ai

must be units, say a1 and a2. a
2 ≡ 0 or 1 (4) for a ∈ Z, giving

f2 + f3 ≡ 0 (4).

We impose the conditions

x1 ≡ 0 (2)

x2 ≡ x3 (2)

Then F (x) ≡ 0 (4).

Case 3: p = 2, 2 | f1f2f3. Without loss of generality, 2 | f1 so 2 - f2, f3. As in

Case 1, we have |a2|2 = |a3|2 = 1. For a ∈ Z odd, we have a2 ≡ 1 (8). So

f2 + f3 ≡ 0 (8) if 2 | a1 (set s = 0)

or

f1 + f2 + f3 ≡ 0 (8) if 2 - a1 (set s = 1)

We impose the conditions

x2 ≡ x3 (4)

x1 ≡ sx3 (2)

Then F (x) ≡ 0 (8).

We define Λ to be the subgroup of Z3 satisfying these equivalence relations. Λ has

index m = 4|f1f2f3| and by construction F (x) ≡ 0 (4|f1f2f3|) for x ∈ Λ.

The quadratic result can be extended from Q to number fields (and more generally,

global fields). It would be convenient if the Local-Global Principle extended to curves

of higher degree as well. However, it is known to fail even in the cubic case. For

example, the curve defined by 3X3 + 4Y 3 + 5Z3 = 0 has non-zero points in R and

Qp for every prime p, but no non-zero rational points (see §18 of Cassels). Yet if the

number of variables is bumped up to 9, the cubic result holds as well. According to

†: “The ‘large number of variables’ results depend on the Hardy-Littlewood circle
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method, which was extended to all number fields by C. L. Siegel (quadratic case) and

C. P. Ramanujam (in general).”

†http://encyclopedia.thefreedictionary.com/ local-global%20principle


