Mathematics 21b. Linear Algebra and Differential Equations

Reflection Sheet

- 1. Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ denote an invertible linear transformation which operates in the following ways:
 - $T\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\3\end{bmatrix}$, and • $T\begin{bmatrix}2\\2\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$.
 - (a) Find the matrix A which governs this transformation.

(b) Find $T\begin{bmatrix} 1\\ 3 \end{bmatrix}$.

(c) Find
$$T^{-1}\begin{bmatrix} 3\\4 \end{bmatrix}$$
.

(d) **True or False?** In order to determine the matrix for a linear transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, it is enough to know $T(\vec{x})$ and $T(\vec{y})$ for any two vectors $\vec{x}, \vec{y} \in \mathbb{R}^2$. Justify your response.

- 2. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ denote the linear transformation which is geometrically described as a reflection through the plane x + y + z = 0.
 - (a) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = \vec{x}$.

(b) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = -\vec{x}$.

(c) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = \vec{0}$.

(d) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = 3\vec{x}$.

(e) Is T invertible? Justify your answer.

- 3. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ denote the linear transformation which is geometrically decsibed as a projection onto the plane x + y + z = 0.
 - (a) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = \vec{x}$.

(b) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = -\vec{x}$.

(c) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = \vec{0}$.

(d) Find all $\vec{x} \in \mathbb{R}^3$ such that $T(\vec{x}) = 3\vec{x}$.

(e) Is T invertible? Justify your answer.

4. Let $A \in \mathbb{R}^{2 \times 2}$ denote the matrix which corresponds to a reflection through some line which passes through the origin. Arguing geometrically, determine what $A \times A$ is.

5. Let $A \in \mathbb{R}^2$ denote the matrix which corresponds to a shear through some line which passes through the origin. Arguing geometrically, determine what $(A-I_2) \times (A-I_2)$ is. (This problem appeared on last year's first midterm.)

6. Find a 2 × 2 matrix B such that $B^{17} = I_2$, and $B^n \neq I_2$ when $1 \leq n \leq 16$, or explain why no such matrix exists.