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1 Introduction

Sk(1) is the space of cusp forms of level 1 and weight k. For k odd, this space has dimension zero, since a
form in it would have to satisfy f(τ) = (−1)kf(τ), by applying the definition of modular form, using the
matrix −I ∈ SL2(Z). For k even, the dimension of Sk(1) grows roughly as k/12 (for an exact formula, see
Stein’s lecture notes for Math 252 [6]). Here we will consider only those k for which the dimension of the
space of cusp forms is positive.

The Hecke algebra is a subring of the endomorphism ring of Sk(1), generated by the Hecke operators Tn.
Since a Hecke operator acts on the finite-dimensional vector space Sk(1), given a basis of the space we can
write down the matrix corresponding to Tn, and a natural thing to do then is to consider the characteristic
polynomial of that matrix, since it characterizes the operator without regard to the basis we’d chosen.
Yoshitaka Maeda considered these characteristic polynomials and conjectured that where p is a prime, the
characteristic polynomial of Tp acting on Sk(1) is irreducible. (It is not generally irreducible on Mk(1), the
full modular subspace.) We will confirm his conjecture for the operators T2 and k ≤ 3000.

2 Algorithms Testing Polynomial Irreducibility

A standard algorithm used to test for irreducibility of polynomials comes from a factorization algorithm due
to Berlekamp (1967): the following treatment is given in complete detail in Knuth [5].

We are given a polynomial f(x) of degree n. First it is standard to reduce to the case of squarefree
polynomials (if f(x) isn’t squarefree, which we test by computing gcd(f(x), f ′(x)), we already know it isn’t
irreducible). Now choose a prime p. All computations from here on out are in Fp.

Assume that f splits into a product of prime factors q1 . . . qr. Let’s say we have a corresponding set of
integers s1, . . . , sr ∈ Fp. By the Chinese remainder theorem, there is a unique polynomial v(x) of degree
less than n that reduces to si modulo qi for all i. This polynomial has an interesting property: modulo f ,
v(x)p ≡ v(x), because, modulo each of the qi, we have v(x)p ≡ sp

i = si ≡ v(x), with the middle equality by
Fermat’s Little Theorem.

The key observation is that (modulo p) the polynomial identity

v(x)p
− v(x) = (v(x) − 0)(v(x) − 1) . . . (v(x) − (p − 1))

holds for any choice of v. (This is an algebraic identity that arises from considering the factorization of
xp − x in Fp.) In particular, if we have chosen v as above, the left side is divisible by f and so each of the
prime factors of f divides one of the elements in the product on the right. If we knew that qi divided (v−k),
we would then know that si, from above, equalled k. Then every r-tuple s1, . . . , sr ∈ Fp is in one-to-one
correspondence with a polynomial v for which v(x)p ≡ v(x) modulo f , and therefore there are obviously pr

such polynomials.
Now construct the matrix

Q =







a0,0 a0,1 · · · a0,n−1

...
...

...
an−1,0 an−1,1 · · · an−1,n−1
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where the entries am,i are defined by

(xp)m
≡

n−1
∑

i=0

am,ix
i mod f.

A polynomial v(x) =
∑n−1

i=0
vix

i satisfies v(x)p ≡ v(x) mod f iff (v0, v1, . . . , vn−1)Q = (v0, v1, . . . , vn−1), as
follows:

v(x) =
∑

i

vix
i =

∑

i

∑

j

vjaj,ix
i,

but we can simplify this sum as
∑

j

vj(x
p)j = v(xp) = v(x)p

by the equivalence that defines the elements aj,i.
Therefore we are looking for left-multiplication eigenvectors of Q with eigenvalue 1, and so the thing to

do is examine the matrix Q − I. Its kernel contains exactly the polynomials we need; the dimension of the
kernel is the number of irreducible factors of f . To see this, remember that the number of such polynomials
is pr as explained above, where r is the number of irreducible factors of f , and thus the dimension of the
kernel is r.

So that represents a test of irreducibility: construct Q as above. If dim(ker(Q − I)) = 1, then the
polynomial f is irreducible; if not, then it splits into dim(ker(Q − I)) factors.

MAGMA has been using a recent algorithm by van Hoeij (2002) [4], which he calls “knapsack factoring.”
It relies on Berlekamp’s method but is supposed to be more practical in some ranges.

3 Computations

Previous computations (by Kevin Buzzard and by William Stein using MECCAH and NERON) have pro-
duced the characteristic polynomials of T2 acting on Sk(SL2(Z)) for k ≤ 3000. Since the conjecture has
been confirmed for these polynomials with k ≤ 2048 (see Farmer and James [2] for the result up to 2000,
and Buzzard for the check up to 2048) it remained to check the irreducibility of these polynomials for
2048 < k ≤ 3000.

To do the check, first we wrote the strings “is” and “close,” which when girding the polynomials makes
them MAGMA-executable files:

echo "R<x> := PolynomialRing(Integers()); time IsIrreducible(" > is

echo ");" > close

Next, we wrote a script to test the polynomials of weight k in a certain range, which we called test.sh:

#!/bin/sh

for x in ‘seq $1 2 $2‘; do cat is $x close | magma > $x.out; done &

Finally, we ran twelve occurences of this script, one on each processor of the MECCAH cluster, with ranges
breaking up 2050-3000 given here by [start] and [end]:

nohup ./test.sh [start] [end]

MECCAH is working on these and should be finished in a few days. Each computation takes somewhere
between 1 and 8 hours on its processors, which are Athlon 2800 MPs. We use the following command to
output the number of polynomials confirmed to be irreducible, and the number of failures:

grep "^true" *.out | awk -F: ’{ print $1; }’ | wc -l;

grep "^false" *.out | awk -F: ’{ print $1; }’ | wc -l

To date, MECCAH has confirmed the irreducibility of 130 of the 476 polynomials, and produced no coun-
terexamples to Maeda’s conjecture.
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4 Applications

Hida [3] mentions in a lecture that if one assumes Maeda’s conjecture and a conjecture about the prevalence
of “ordinarity” for Hecke eigenforms, all Hecke eigenforms of level 1 are liftable. However, his notes on the
subject are only schematic.
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