Math 581g, Fall 2011, Homework 5: SOLUTIONS

William Stein (wstein@uw.edu)

November 30, 2011

1. (Warm up) Find an element of $SL_2(\mathbf{Z})$ that reduces modulo 30 to

$$A = \begin{pmatrix} -3 & 4\\ 14 & 21 \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}/30\mathbf{Z}).$$

Solution. Adding 30 to the lower left entry gives the equivalent matrix $\begin{pmatrix} -3 & 4 \\ 44 & 21 \end{pmatrix}$, whose bottom two entries are coprime. Using the Euclidean algorithm $\operatorname{xgcd}(44, 21)$ then yields, e.g., that $1 = 10 \cdot 44 + 21 \cdot 21$, so $B = \begin{pmatrix} 21 & 10 \\ 44 & 21 \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$. We have $A \cdot B^{-1} \equiv C = \begin{pmatrix} 1 & 24 \\ 0 & 1 \end{pmatrix}$, so $A \equiv CB \equiv \begin{pmatrix} 1077 & 514 \\ 44 & 21 \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ is a choice of lift. There are of course many choices of lift.

2. (a) (Warm up) Suppose $\varphi : \mathbf{C}/\Lambda_1 \to \mathbf{C}/\Lambda_2$ is a nonzero map of complex tori induced by a **C**-linear map *T*. Prove that the kernel of φ is isomorphic to $\Lambda_2/T(\Lambda_1)$.

Solution. See below.

- (b) (Though it doesn't mention abelian varieties, the following exercise is useful for understanding them.) Let V_i be finite dimensional complex vector spaces and let $\Lambda_i \subset V_i$ be lattices (so rank_{**Z**}(Λ_i) = 2 dim_{**C**} V_i and **R** $\Lambda_i = V_i$). Suppose $T : V_1 \to V_2$ is a **C**-linear map such that $T(\Lambda_1) \subset \Lambda_2$. Observe that T induces a homomorphism $\varphi : V_1/\Lambda_1 \to V_2/\Lambda_2$.
 - i. If the kernel of φ is finite, prove that it is isomorphic to $\Lambda_2/T(\Lambda_1)$. [Hint: One approach to this problem is to use the "snake lemma", which you can look up in many places.] Solution. See below.
 - ii. How can you describe and compute $ker(\varphi)$ when it is infinite? Solution. See below.

The image of φ is a complex torus since it the continuous image of a compact connected topological space. Thus for the purposes of describing ker(φ), we may replace V_2 by $T(V_1)$ and Λ_2 by $T(V_1) \cap \Lambda_2$, and hence assume $T: V_1 \to V_2$ is surjective. We answer the above questions by proving that ker(φ) sits in the exact sequence of abelian groups

$$0 \to \frac{\ker(T)}{\Lambda_1 \cap \ker(T)} \to \ker(\varphi) \to \left(\frac{\Lambda_2}{T(\Lambda_1)}\right) \to 0.$$

The first term in the sequence is the connected component of the kernel, and the last term is the finite discrete group of components of the not-necessarilyconnected kernel. To obtain the exact sequence we use the snake lemma:

Noting that $T: V_1 \to V_2$ is surjective, so E = 0, the snake lemma yields an exact sequence $0 \to B/A \to C \to D \to 0$. Since $B/A \cong \ker(T)/(\Lambda_1 \cap \ker(T))$ and $C = \ker(\varphi)$ and $D = \Lambda_2/T(\Lambda_1)$, this completes the proof.

3. Write down a definition of the Weil pairing that makes sense for an elliptic curve over any base field. You are allowed to copy the definition from a book such as Silverman's. You don't have to understand it; the point is just that you see a completely different definition than the one I gave in class.

Solution. (Just look in a book.)

- 4. Let E be the elliptic curve with Weierstrass equation $y^2 = x(x-1)(x+1)$, let P = (0,0) and Q = (1,0). Let C be the cyclic group of order 2 generated by P. [Remark: Writing a program to solve all problems like this one automatically would be a good contribution to Sage, and a good final project idea.]
 - (a) Find (a numerical approximation to) τ in the upper half plane such that (E, C) is isomorphic to (E_{τ}, C_{τ}) , where notation is as in class. **Solution.** It turns out that E has CM (complex multiplication), so this problem can be done by "pure thought", without resorting to computer computations. First, some general observations on this problem. We have j(E) =1728, so *E* happens to be a CM curve with CM by $\mathbf{Z}[i]$, so $E_{\mathbf{C}} \cong \mathbf{C}/(\mathbf{Z}i + \mathbf{Z})$. Also, $\operatorname{Aut}(E_{\mathbf{C}}) = \langle i \rangle$ has order 4. There are 3 nontrivial 2-torsion points in C/(Zi+Z), namely $t_1 = [i/2], t_2 = [1/2], t_3 = [(i+1)/2]$. The automorphism given by multiplication by i swaps t_1 and t_2 and fixes t_3 . That same automorphism (or its negative) on E is given by $(x, y) \mapsto (-x, iy)$; the three nontrivial 2-torsion points on E are P = (0,0), Q = (1,0), R = P + Q = (-1,0), and the automorphism of order 4 acts on P, Q, R by fixing P and swapping Q and R.

Recall that $E_{\tau} = \mathbf{C}/(\mathbf{Z}\tau + \mathbf{Z})$ and $P_{\tau} = [1/N]$ and $Q_{\tau} = [\tau/N]$, for N = 2. Since the point P = (0,0) is fixed and t_3 is fixed, we must find τ so that there is an isomorphism $\mathbf{C}/(\mathbf{Z}\tau + \mathbf{Z}) \approx \mathbf{C}/(\mathbf{Z}i + \mathbf{Z})$ that sends [1/2] to [(i+1)/2]. Taking the isomorphism to be given by multiplication by (i + 1), we see that $\tau = \frac{i}{i+1} = \frac{1+i}{2}$ works.

(b) Find τ in the upper half plane such that (E, P) is isomorphic to (E_{τ}, P_{τ}) .

Solution. Since P has order 2, the answer to the previous problem suffices: take $\tau = \frac{1+i}{2}$.

- (c) Find τ in the upper half plane such that (E, P, Q) is isomorphic to $(E_{\tau}, P_{\tau}, Q_{\tau})$. **Solution.** Again, we take $\tau = \frac{1+i}{2}$, and fix a choice of isomorphism $E_{\tau} \to E$ that sends P_{τ} to P. Then Q_{τ} maps to either Q or R (using the notation of the solution to the first part of this problem). If Q_{τ} maps to R, simply compose the isomorphism with an automorphism of order 4, which works because that automorphism fixes P_{τ} and swaps Q and R.
- 5. Prove that when $\Gamma = \operatorname{SL}_2(\mathbf{Z})$ then $\Gamma \setminus \mathbf{P}^1(\mathbf{Q})$ has cardinality 1.

Solution. Let a/c be a rational number in lowest terms, and use the extended Euclidean algorithm to find integers b, d such that $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z})$. Then $\gamma(\infty) = a/c$, so $[\infty] = [a/c] \in \mathbf{P}^1(\mathbf{Q})$.

6. Fix a positive integer M, a prime q, and let $\alpha = \operatorname{ord}_q(M)$. Use the extended Euclidean algorithm to show that there exists integers x, y, z such that $q^{2\alpha}x - yMz = q^{\alpha}$. Are x, y, z necessarily unique? (This is relevant to defining Atkin-Lehner operators.)

Solution. For the first part, use the Euclidean algorithm and that $gcd(M, q^{2\alpha}) = q^{\alpha}$ to find integers A, B such that $Aq^{2\alpha} + BM = q^{\alpha}$, then take x = A, y = -B, z = 1. For the second, of course x, y, z are not unique, since e.g. you could also take y = 1, z = -B.