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1. (Warm up) Find an element of SL2(Z) that reduces modulo 30 to

A =

(
− 3 4
14 21

)
∈ SL2(Z/30Z).

Solution. Adding 30 to the lower left entry gives the equivalent matrix
(−3 4

44 21

)
,

whose bottom two entries are coprime. Using the Euclidean algorithm xgcd(44,21)

then yields, e.g., that 1 = 10 · 44 + 21 · 21, so B = ( 21 10
44 21 ) ∈ SL2(Z). We have

A ·B−1 ≡ C = ( 1 24
0 1 ), so A ≡ CB ≡ ( 1077 514

44 21 ) ∈ SL2(Z) is a choice of lift. There
are of course many choices of lift.

2. (a) (Warm up) Suppose ϕ : C/Λ1 → C/Λ2 is a nonzero map of complex tori
induced by a C-linear map T . Prove that the kernel of ϕ is isomorphic to
Λ2/T (Λ1).

Solution. See below.

(b) (Though it doesn’t mention abelian varieties, the following exercise is useful
for understanding them.) Let Vi be finite dimensional complex vector spaces
and let Λi ⊂ Vi be lattices (so rankZ(Λi) = 2 dimC Vi and RΛi = Vi).
Suppose T : V1 → V2 is a C-linear map such that T (Λ1) ⊂ Λ2. Observe that
T induces a homomorphism ϕ : V1/Λ1 → V2/Λ2.

i. If the kernel of ϕ is finite, prove that it is isomorphic to Λ2/T (Λ1). [Hint:
One approach to this problem is to use the “snake lemma”, which you
can look up in many places.]
Solution. See below.

ii. How can you describe and compute ker(ϕ) when it is infinite?
Solution. See below.

The image of ϕ is a complex torus since it the continuous image of a compact
connected topological space. Thus for the purposes of describing ker(ϕ), we
may replace V2 by T (V1) and Λ2 by T (V1)∩Λ2, and hence assume T : V1 → V2
is surjective. We answer the above questions by proving that ker(ϕ) sits in
the exact sequence of abelian groups

0→ ker(T )

Λ1 ∩ ker(T )
→ ker(ϕ)→

(
Λ2

T (Λ1)

)
→ 0.

The first term in the sequence is the connected component of the kernel, and
the last term is the finite discrete group of components of the not-necessarily-
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connected kernel. To obtain the exact sequence we use the snake lemma:

A // B // C

//

Λ1
f
// V1

g
// V1/Λ1

// 0

0 // Λ2
f ′
// V2

g′
// V2/Λ2

D // E // F

�� �� ��

T

��

T

��

ϕ

��

�� �� ��

Noting that T : V1 → V2 is surjective, so E = 0, the snake lemma yields an
exact sequence 0→ B/A→ C → D → 0. Since B/A ∼= ker(T )/(Λ1∩ker(T ))
and C = ker(ϕ) and D = Λ2/T (Λ1), this completes the proof.

3. Write down a definition of the Weil pairing that makes sense for an elliptic curve
over any base field. You are allowed to copy the definition from a book such as
Silverman’s. You don’t have to understand it; the point is just that you see a
completely different definition than the one I gave in class.

Solution. (Just look in a book.)

4. Let E be the elliptic curve with Weierstrass equation y2 = x(x − 1)(x + 1), let
P = (0, 0) and Q = (1, 0). Let C be the cyclic group of order 2 generated by
P . [Remark: Writing a program to solve all problems like this one automatically
would be a good contribution to Sage, and a good final project idea.]

(a) Find (a numerical approximation to) τ in the upper half plane such that
(E,C) is isomorphic to (Eτ , Cτ ), where notation is as in class.

Solution. It turns out that E has CM (complex multiplication), so this
problem can be done by “pure thought”, without resorting to computer com-
putations. First, some general observations on this problem. We have j(E) =
1728, so E happens to be a CM curve with CM by Z[i], so EC

∼= C/(Zi+Z).
Also, Aut(EC) = 〈i〉 has order 4. There are 3 nontrivial 2-torsion points in
C/(Zi+Z), namely t1 = [i/2], t2 = [1/2], t3 = [(i+1)/2]. The automorphism
given by multiplication by i swaps t1 and t2 and fixes t3. That same automor-
phism (or its negative) on E is given by (x, y) 7→ (−x, iy); the three nontrivial
2-torsion points on E are P = (0, 0), Q = (1, 0), R = P + Q = (−1, 0), and
the automorphism of order 4 acts on P,Q,R by fixing P and swapping Q
and R.

Recall that Eτ = C/(Zτ + Z) and Pτ = [1/N ] and Qτ = [τ/N ], for N = 2.
Since the point P = (0, 0) is fixed and t3 is fixed, we must find τ so that there
is an isomorphism C/(Zτ + Z) ≈ C/(Zi+ Z) that sends [1/2] to [(i+ 1)/2].
Taking the isomorphism to be given by multiplication by (i+ 1), we see that
τ = i

i+1 = 1+i
2 works.

(b) Find τ in the upper half plane such that (E,P ) is isomorphic to (Eτ , Pτ ).
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Solution. Since P has order 2, the answer to the previous problem suffices:
take τ = 1+i

2 .

(c) Find τ in the upper half plane such that (E,P,Q) is isomorphic to (Eτ , Pτ , Qτ ).

Solution. Again, we take τ = 1+i
2 , and fix a choice of isomorphism Eτ → E

that sends Pτ to P . Then Qτ maps to either Q or R (using the notation
of the solution to the first part of this problem). If Qτ maps to R, simply
compose the isomorphism with an automorphism of order 4, which works
because that automorphism fixes Pτ and swaps Q and R.

5. Prove that when Γ = SL2(Z) then Γ\P1(Q) has cardinality 1.

Solution. Let a/c be a rational number in lowest terms, and use the extended
Euclidean algorithm to find integers b, d such that γ =

(
a b
c d

)
∈ SL2(Z). Then

γ(∞) = a/c, so [∞] = [a/c] ∈ P1(Q).

6. Fix a positive integer M , a prime q, and let α = ordq(M). Use the extended
Euclidean algorithm to show that there exists integers x, y, z such that q2αx −
yMz = qα. Are x, y, z necessarily unique? (This is relevant to defining Atkin-
Lehner operators.)

Solution. For the first part, use the Euclidean algorithm and that gcd(M, q2α) =
qα to find integers A,B such that Aq2α+BM = qα, then take x = A, y = −B, z =
1. For the second, of course x, y, z are not unique, since e.g. you could also take
y = 1, z = −B.
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