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1. (Warm up) Find an element of SLy(Z) that reduces modulo 30 to

-3 4
A:( o 21) € SLy(Z/30Z).

Solution. Adding 30 to the lower left entry gives the equivalent matrix (143 241 )7
whose bottom two entries are coprime. Using the Euclidean algorithm xgcd (44,21)
then yields, e.g., that 1 = 10-44 4+ 21 - 21, so B = (2} 19) € SLy(Z). We have
A-B'=C=(}%),50 A=CB=(197"%) € SLa(Z) is a choice of lift. There
are of course many choices of lift.

2. (a) (Warm up) Suppose ¢ : C/A; — C/Az is a nonzero map of complex tori
induced by a C-linear map 7. Prove that the kernel of ¢ is isomorphic to
Aoy /T (Ay).

Solution. See below.

(b) (Though it doesn’t mention abelian varieties, the following exercise is useful
for understanding them.) Let V; be finite dimensional complex vector spaces
and let A; C V; be lattices (so rankz(A;) = 2dimcV; and RA; = V).
Suppose T : V; — V4 is a C-linear map such that T (A1) C Ay. Observe that
T induces a homomorphism ¢ : V1 /A1 — Va/As.

i. If the kernel of ¢ is finite, prove that it is isomorphic to Ag/T(A1). [Hint:
One approach to this problem is to use the “snake lemma”, which you
can look up in many places.]

Solution. See below.

ii. How can you describe and compute ker(¢) when it is infinite?

Solution. See below.

The image of ¢ is a complex torus since it the continuous image of a compact
connected topological space. Thus for the purposes of describing ker(y), we
may replace Vo by T(V1) and Ag by T'(V1)NAg, and hence assume T : V; — Vs
is surjective. We answer the above questions by proving that ker(y) sits in
the exact sequence of abelian groups

ker(7T') A
A ke (T) — ker(p) — <T(;1)> — 0.

The first term in the sequence is the connected component of the kernel, and
the last term is the finite discrete group of components of the not-necessarily-
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connected kernel. To obtain the exact sequence we use the snake lemma:

A B C’D

-
f g
Ay Wi Vi/MA >0
T T ¢
0 Ay ! Vo 2 Va/Asz
D E F

Noting that T': V; — V5 is surjective, so E = 0, the snake lemma yields an
exact sequence 0 - B/A — C — D — 0. Since B/A = ker(T) /(A1 Nker(T))
and C = ker(y) and D = Ay/T(A;), this completes the proof.

3. Write down a definition of the Weil pairing that makes sense for an elliptic curve
over any base field. You are allowed to copy the definition from a book such as
Silverman’s. You don’t have to understand it; the point is just that you see a
completely different definition than the one I gave in class.

Solution. (Just look in a book.)

4. Let E be the elliptic curve with Weierstrass equation y?> = z(z — 1)(x + 1), let
P = (0,0) and @ = (1,0). Let C be the cyclic group of order 2 generated by
P. [Remark: Writing a program to solve all problems like this one automatically
would be a good contribution to Sage, and a good final project idea.]

(a) Find (a numerical approximation to) 7 in the upper half plane such that
(E,C) is isomorphic to (E;,C,), where notation is as in class.

Solution. It turns out that F has CM (complex multiplication), so this
problem can be done by “pure thought”, without resorting to computer com-
putations. First, some general observations on this problem. We have j(E) =
1728, so E happens to be a CM curve with CM by Z[i], so Ec & C/(Zi+Z).
Also, Aut(Ec) = (i) has order 4. There are 3 nontrivial 2-torsion points in
C/(Zi+Z), namely t, = [i/2],t2 = [1/2],t5 = [(i+1)/2]. The automorphism
given by multiplication by ¢ swaps t1 and t5 and fixes t3. That same automor-
phism (or its negative) on F is given by (z,y) — (—z,4y); the three nontrivial
2-torsion points on E are P = (0,0),Q = (1,0),R =P+ Q = (-1,0), and
the automorphism of order 4 acts on P, @, R by fixing P and swapping
and R.

Recall that E; = C/(Z7 4+ Z) and P; = [1/N] and Q, = [r/N], for N = 2.
Since the point P = (0, 0) is fixed and t3 is fixed, we must find 7 so that there
is an isomorphism C/(Z71 + Z) ~ C/(Zi + Z) that sends [1/2] to [(i +1)/2].
Taking the isomorphism to be given by multiplication by (i 4+ 1), we see that

P 14

T = T 2 works.

(b) Find 7 in the upper half plane such that (F, P) is isomorphic to (E., P;).



Solution. Since P has order 2, the answer to the previous problem suffices:
take 7 = %

(c) Find 7 in the upper half plane such that (F, P, Q) is isomorphic to (E., Pr, Q).
Solution. Again, we take 7 = %, and fix a choice of isomorphism E, — F
that sends P; to P. Then @, maps to either @ or R (using the notation
of the solution to the first part of this problem). If @, maps to R, simply
compose the isomorphism with an automorphism of order 4, which works
because that automorphism fixes P, and swaps ) and R.

5. Prove that when I' = SLy(Z) then T'\P'(Q) has cardinality 1.

Solution. Let a/c be a rational number in lowest terms, and use the extended
Euclidean algorithm to find integers b,d such that v = (‘; fjl) € SLo(Z). Then
y(00) = a/c, so [o0] = [a/c] € PHQ).

6. Fix a positive integer M, a prime ¢, and let o = ord,(M). Use the extended
Euclidean algorithm to show that there exists integers z,y,z such that ¢?*x —
yMz = ¢*. Are z,y,z necessarily unique? (This is relevant to defining Atkin-
Lehner operators.)

Solution. For the first part, use the Euclidean algorithm and that ged(M, ¢?®) =
q® to find integers A, B such that A¢g>®+BM = ¢, thentakex = A,y = — B,z =
1. For the second, of course z,y, z are not unique, since e.g. you could also take
y=12=—-B.



