Math 581g, Fall 2011, Homework 5: SOLUTIONS

William Stein (wstein@uw.edu)
November 30, 2011

1. (Warm up) Find an element of $\mathrm{SL}_{2}(\mathbf{Z})$ that reduces modulo 30 to

$$
A=\left(\begin{array}{rr}
-3 & 4 \\
14 & 21
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z} / 30 \mathbf{Z})
$$

Solution. Adding 30 to the lower left entry gives the equivalent matrix $\left(\begin{array}{cc}-3 & 4 \\ 44 & 21\end{array}\right)$, whose bottom two entries are coprime. Using the Euclidean algorithm $\operatorname{xgcd}(44,21)$ then yields, e.g., that $1=10 \cdot 44+21 \cdot 21$, so $B=\left(\begin{array}{cc}21 & 10 \\ 44 & 21\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$. We have $A \cdot B^{-1} \equiv C=\left(\begin{array}{cc}1 & 24 \\ 0 & 1\end{array}\right)$, so $A \equiv C B \equiv\left(\begin{array}{cc}1077 & 514 \\ 44 & 21\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$ is a choice of lift. There are of course many choices of lift.
2. (a) (Warm up) Suppose $\varphi: \mathbf{C} / \Lambda_{1} \rightarrow \mathbf{C} / \Lambda_{2}$ is a nonzero map of complex tori induced by a \mathbf{C}-linear map T. Prove that the kernel of φ is isomorphic to $\Lambda_{2} / T\left(\Lambda_{1}\right)$.
Solution. See below.
(b) (Though it doesn't mention abelian varieties, the following exercise is useful for understanding them.) Let V_{i} be finite dimensional complex vector spaces and let $\Lambda_{i} \subset V_{i}$ be lattices (so $\operatorname{rank}_{\mathbf{Z}}\left(\Lambda_{i}\right)=2 \operatorname{dim}_{\mathbf{C}} V_{i}$ and $\mathbf{R} \Lambda_{i}=V_{i}$). Suppose $T: V_{1} \rightarrow V_{2}$ is a \mathbf{C}-linear map such that $T\left(\Lambda_{1}\right) \subset \Lambda_{2}$. Observe that T induces a homomorphism $\varphi: V_{1} / \Lambda_{1} \rightarrow V_{2} / \Lambda_{2}$.
i. If the kernel of φ is finite, prove that it is isomorphic to $\Lambda_{2} / T\left(\Lambda_{1}\right)$. [Hint: One approach to this problem is to use the "snake lemma", which you can look up in many places.]
Solution. See below.
ii. How can you describe and compute $\operatorname{ker}(\varphi)$ when it is infinite?

Solution. See below.
The image of φ is a complex torus since it the continuous image of a compact connected topological space. Thus for the purposes of describing $\operatorname{ker}(\varphi)$, we may replace V_{2} by $T\left(V_{1}\right)$ and Λ_{2} by $T\left(V_{1}\right) \cap \Lambda_{2}$, and hence assume $T: V_{1} \rightarrow V_{2}$ is surjective. We answer the above questions by proving that $\operatorname{ker}(\varphi)$ sits in the exact sequence of abelian groups

$$
0 \rightarrow \frac{\operatorname{ker}(T)}{\Lambda_{1} \cap \operatorname{ker}(T)} \rightarrow \operatorname{ker}(\varphi) \rightarrow\left(\frac{\Lambda_{2}}{T\left(\Lambda_{1}\right)}\right) \rightarrow 0
$$

The first term in the sequence is the connected component of the kernel, and the last term is the finite discrete group of components of the not-necessarily-
connected kernel. To obtain the exact sequence we use the snake lemma:

Noting that $T: V_{1} \rightarrow V_{2}$ is surjective, so $E=0$, the snake lemma yields an exact sequence $0 \rightarrow B / A \rightarrow C \rightarrow D \rightarrow 0$. Since $B / A \cong \operatorname{ker}(T) /\left(\Lambda_{1} \cap \operatorname{ker}(T)\right)$ and $C=\operatorname{ker}(\varphi)$ and $D=\Lambda_{2} / T\left(\Lambda_{1}\right)$, this completes the proof.
3. Write down a definition of the Weil pairing that makes sense for an elliptic curve over any base field. You are allowed to copy the definition from a book such as Silverman's. You don't have to understand it; the point is just that you see a completely different definition than the one I gave in class.
Solution. (Just look in a book.)
4. Let E be the elliptic curve with Weierstrass equation $y^{2}=x(x-1)(x+1)$, let $P=(0,0)$ and $Q=(1,0)$. Let C be the cyclic group of order 2 generated by P. [Remark: Writing a program to solve all problems like this one automatically would be a good contribution to Sage, and a good final project idea.]
(a) Find (a numerical approximation to) τ in the upper half plane such that (E, C) is isomorphic to $\left(E_{\tau}, C_{\tau}\right)$, where notation is as in class.
Solution. It turns out that E has CM (complex multiplication), so this problem can be done by "pure thought", without resorting to computer computations. First, some general observations on this problem. We have $j(E)=$ 1728 , so E happens to be a CM curve with CM by $\mathbf{Z}[i]$, so $E_{\mathbf{C}} \cong \mathbf{C} /(\mathbf{Z} i+\mathbf{Z})$. Also, $\operatorname{Aut}\left(E_{\mathbf{C}}\right)=\langle i\rangle$ has order 4. There are 3 nontrivial 2-torsion points in $\mathbf{C} /(\mathbf{Z} i+\mathbf{Z})$, namely $t_{1}=[i / 2], t_{2}=[1 / 2], t_{3}=[(i+1) / 2]$. The automorphism given by multiplication by i swaps t_{1} and t_{2} and fixes t_{3}. That same automorphism (or its negative) on E is given by $(x, y) \mapsto(-x, i y)$; the three nontrivial 2-torsion points on E are $P=(0,0), Q=(1,0), R=P+Q=(-1,0)$, and the automorphism of order 4 acts on P, Q, R by fixing P and swapping Q and R.
Recall that $E_{\tau}=\mathbf{C} /(\mathbf{Z} \tau+\mathbf{Z})$ and $P_{\tau}=[1 / N]$ and $Q_{\tau}=[\tau / N]$, for $N=2$. Since the point $P=(0,0)$ is fixed and t_{3} is fixed, we must find τ so that there is an isomorphism $\mathbf{C} /(\mathbf{Z} \tau+\mathbf{Z}) \approx \mathbf{C} /(\mathbf{Z} i+\mathbf{Z})$ that sends $[1 / 2]$ to $[(i+1) / 2]$. Taking the isomorphism to be given by multiplication by $(i+1)$, we see that $\tau=\frac{i}{i+1}=\frac{1+i}{2}$ works.
(b) Find τ in the upper half plane such that (E, P) is isomorphic to $\left(E_{\tau}, P_{\tau}\right)$.

Solution. Since P has order 2, the answer to the previous problem suffices: take $\tau=\frac{1+i}{2}$.
(c) Find τ in the upper half plane such that (E, P, Q) is isomorphic to $\left(E_{\tau}, P_{\tau}, Q_{\tau}\right)$. Solution. Again, we take $\tau=\frac{1+i}{2}$, and fix a choice of isomorphism $E_{\tau} \rightarrow E$ that sends P_{τ} to P. Then Q_{τ} maps to either Q or R (using the notation of the solution to the first part of this problem). If Q_{τ} maps to R, simply compose the isomorphism with an automorphism of order 4 , which works because that automorphism fixes P_{τ} and swaps Q and R.
5. Prove that when $\Gamma=\mathrm{SL}_{2}(\mathbf{Z})$ then $\Gamma \backslash \mathbf{P}^{1}(\mathbf{Q})$ has cardinality 1 .

Solution. Let a / c be a rational number in lowest terms, and use the extended Euclidean algorithm to find integers b, d such that $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$. Then $\gamma(\infty)=a / c$, so $[\infty]=[a / c] \in \mathbf{P}^{1}(\mathbf{Q})$.
6. Fix a positive integer M, a prime q, and let $\alpha=\operatorname{ord}_{q}(M)$. Use the extended Euclidean algorithm to show that there exists integers x, y, z such that $q^{2 \alpha} x-$ $y M z=q^{\alpha}$. Are x, y, z necessarily unique? (This is relevant to defining AtkinLehner operators.)
Solution. For the first part, use the Euclidean algorithm and that $\operatorname{gcd}\left(M, q^{2 \alpha}\right)=$ q^{α} to find integers A, B such that $A q^{2 \alpha}+B M=q^{\alpha}$, then take $x=A, y=-B, z=$ 1. For the second, of course x, y, z are not unique, since e.g. you could also take $y=1, z=-B$.

