Math 581g, Fall 2011, Homework 3: SOLUTIONS

William Stein (wstein@uw.edu)

November 4, 2011

1. (Warm up) Prove that for τ in the upper half plane, we have

$$\overline{(e^{-2\pi i\overline{\tau}})} = e^{2\pi i\tau}.$$

Solution. Writing $\tau = x + iy$, we have the following straightforward calculation

$$\overline{e^{-2\pi i \overline{\tau}}} = \overline{e^{-2\pi i (x-iy)}} = \overline{e^{-2\pi i x} e^{-2\pi y}} = e^{2\pi i x} e^{-2\pi y} = e^{2\pi i (x+iy)} = e^{2\pi i \overline{\tau}}$$

Notice that the hypothesis that τ is in the upper half plane is not required.

2. Let d and m be positive integers. Prove that $\frac{1}{d} \sum_{b=0}^{d-1} (e^{\frac{2\pi i m}{d}})^b$ is only nonzero if $d \mid m$, in which case the sum equals 1.

Solution. If $d \mid m$, then $e^{\frac{2\pi i m}{d}} = 1$, which proves that the sum divided by d is 1. If $d \nmid m$, then $e^{\frac{2\pi i m}{d}} \neq 1$, so it is some nontrivial kth root ζ_k of unity of order some divisor $k \mid d$. We have

$$\sum_{b=0}^{d-1} (e^{\frac{2\pi i m}{d}})^b = \frac{d}{k} \cdot \sum_{b=0}^{k-1} \zeta_k^b.$$

Since multiplication by ζ_k permutes the elements of the cyclic group $\langle \zeta_k \rangle$, we see that $\zeta_k \cdot \sum_{b=0}^{k-1} \zeta_k^b = \sum_{b=0}^{k-1} \zeta_k^b$, which since $\zeta_k \neq 1$ implies that $\sum_{b=0}^{k-1} \zeta_k^b = 0$.

3. For $\tau \in \mathbf{C}$, let $E_{\tau} = \mathbf{C}/(\mathbf{Z}\tau + \mathbf{Z})$. Show that $\#\operatorname{Aut}(E_i) = 4$, $\#\operatorname{Aut}(E_{\rho}) = 6$, and $\#\operatorname{Aut}(E_{\sqrt{-2}}) = 2$. (Recall that $\rho = e^{2\pi i/3}$.)

Solution. Observe that $\alpha \in \mathbf{C}$ defines an element of $\operatorname{End}(E_{\tau})$ if and only if α sends the lattice $\Lambda_{\tau} = \mathbf{Z}\tau + \mathbf{Z}$ into itself. First, for $\tau = i$, we have $\alpha(\mathbf{Z}i + \mathbf{Z}) \subset \mathbf{Z}i + \mathbf{Z}$ if and only if $\alpha \in \mathbf{Z}[i]$, so $\operatorname{End}(E_i) = \mathbf{Z}[i]$. Thus $\operatorname{Aut}(E_i) = \operatorname{End}(E_i)^* = \mathbf{Z}[i]^*$, which is the group of order 4 generated by *i*. The proof for ρ and $\sqrt{-2}$ is exactly the same, noting that $\mathbf{Z}[\rho]$ has unit group of order 6, and all other unit groups of rings of integers of quadratic imaginary fields have order 2.