Math 581g, Fall 2011, Homework 3: SOLUTIONS

William Stein (wstein@uw.edu)

November 4, 2011

1. (Warm up) Prove that for τ in the upper half plane, we have

$$
\overline{\left(e^{-2 \pi i \bar{\tau}}\right)}=e^{2 \pi i \tau}
$$

Solution. Writing $\tau=x+i y$, we have the following straightforward calculation

$$
\overline{e^{-2 \pi i \bar{\tau}}}=\overline{e^{-2 \pi i(x-i y)}}=\overline{e^{-2 \pi i x} e^{-2 \pi y}}=e^{2 \pi i x} e^{-2 \pi y}=e^{2 \pi i(x+i y)}=e^{2 \pi i \tau}
$$

Notice that the hypothesis that τ is in the upper half plane is not required.
2. Let d and m be positive integers. Prove that $\frac{1}{d} \sum_{b=0}^{d-1}\left(e^{\frac{2 \pi i m}{d}}\right)^{b}$ is only nonzero if $d \mid m$, in which case the sum equals 1.
Solution. If $d \mid m$, then $e^{\frac{2 \pi i m}{d}}=1$, which proves that the sum divided by d is 1. If $d \nmid m$, then $e^{\frac{2 \pi i m}{d}} \neq 1$, so it is some nontrivial k th root ζ_{k} of unity of order some divisor $k \mid d$. We have

$$
\sum_{b=0}^{d-1}\left(e^{\frac{2 \pi i m}{d}}\right)^{b}=\frac{d}{k} \cdot \sum_{b=0}^{k-1} \zeta_{k}^{b}
$$

Since multiplication by ζ_{k} permutes the elements of the cyclic group $\left\langle\zeta_{k}\right\rangle$, we see that $\zeta_{k} \cdot \sum_{b=0}^{k-1} \zeta_{k}^{b}=\sum_{b=0}^{k-1} \zeta_{k}^{b}$, which since $\zeta_{k} \neq 1$ implies that $\sum_{b=0}^{k-1} \zeta_{k}^{b}=0$.
3. For $\tau \in \mathbf{C}$, let $E_{\tau}=\mathbf{C} /(\mathbf{Z} \tau+\mathbf{Z})$. Show that $\# \operatorname{Aut}\left(E_{i}\right)=4$, $\# \operatorname{Aut}\left(E_{\rho}\right)=6$, and $\# \operatorname{Aut}\left(E_{\sqrt{-2}}\right)=2$. (Recall that $\rho=e^{2 \pi i / 3}$.)
Solution. Observe that $\alpha \in \mathbf{C}$ defines an element of $\operatorname{End}\left(E_{\tau}\right)$ if and only if α sends the lattice $\Lambda_{\tau}=\mathbf{Z} \tau+\mathbf{Z}$ into itself. First, for $\tau=i$, we have $\alpha(\mathbf{Z} i+\mathbf{Z}) \subset \mathbf{Z} i+$ \mathbf{Z} if and only if $\alpha \in \mathbf{Z}[i]$, so $\operatorname{End}\left(E_{i}\right)=\mathbf{Z}[i]$. Thus $\operatorname{Aut}\left(E_{i}\right)=\operatorname{End}\left(E_{i}\right)^{*}=\mathbf{Z}[i]^{*}$, which is the group of order 4 generated by i. The proof for ρ and $\sqrt{-2}$ is exactly the same, noting that $\mathbf{Z}[\rho]$ has unit group of order 6 , and all other unit groups of rings of integers of quadratic imaginary fields have order 2 .

