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1. (Easy warm up) Suppose L = Zw; + Zws is a lattice in C. Prove that either wq /wo
or ws/wi is in the complex upper half plane.

Solution. We have w/ws € R, since RL = C. If w; /wy in the lower half plane,
then its inverse is in the upper half plane, by basic algebra.

2. (Warm up) Let M}, denote the space of modular forms of weight k& and level 1.
Prove that if kK > 2 and f € My is a constant function, then f = 0.

Solution. Since f € M, and (9 ') € SLy(Z), we have f(—1/z) = 27 % f(z) for
all z € h. If f # 0 is constant, then 2=% = 1 for all z € b, which is a contradiction
since k > 2.

3. Let E be an elliptic curve over C given by a Weierstrass equation 2 +ai12y+asy =
23 4 apx? 4 agx + ag. Prove that the differential w = %ﬂiﬁ has no poles. You
may follow the proof presented in class in the special case when ay = a; = a3 = 0.
[Though you can read a complete proof of this in Silverman’s book on elliptic

curves, I encourage you not to.]
Solution. First we consider the behavior of w at co. The homogeneous equation
is
Y2Z 4+ a XY Z 4 asY Z? = X3 + 4o X?Z + ay X Z° + ag 23,
and x = X/Z, y =Y/Z. Factoring out Z, we find that

X3=Z(Y?+ a1 XY +a3YZ — ayX? — ayX 7 — agZ*) = Zu,

where u is a unit in the local ring Rp corresponding to the point P = (0: 1 : 0).
Thus # = ugX ~2, for a unit ug € Rp, hence orde (z) = —2 and do = —2ugX 3dX
has a pole of order 3 at infinity. Also, orde(y) = —3, so using a basic property
of ord, we find that ord.(2y + a1z + a3) = —3, since ords(a1z) > —2 and
ordes (az) > —2. It follows that orde(w) = orde (dz/(2y + a1z + a3)) = 0.

Next, we consider the behavior at the affine points P where 2y + a1z + a3 = 0.
Taking derivatives, we have

(2y + a1x + az)dy + arydr = (32° + asx + ay)dz,
S0
dx dy
w = = ,
2y +arx+as 312+ asxr +ay — a1y

(0.1)

and

dr 322 + asx + a4 — a1y
dy 2y+ a1z +az



5.

The zeros of 2y + a1x + a3 are at the points where there is a vertical tangent,
i.e., at the nontrivial 2-torsion points on F, so there are exactly 3 distinct zeros.
Since ord, (2y + a1x + ag) = —3, these 3 distinct zeros occur with multiplicity 1.
Also, since there are 3 distinct 2 torsion points (at which Z—z — 00), the function
322 + apx + a4 — ayy cannot vanish at any point where 2y + a1z + a3 vanishes.
Since dy has no poles on the affine plane, and the denominator in the right hand
side of (0.1) does not vanish at the points P, we see that w has no poles at the
points P.

Let K be a number field and ¢ a prime number. Prove that

K®q Q= HKA~
Ale

Here A | ¢ are the prime ideals of the ring of integers of K that contain ¢ and K
is the completion of K at A.

Solution. Let R be the ring of integers of K. We prove that R® Z, =2 @Mf Ry.
Using that R is a Dedekind domain, we can write (uniquely) ¢R = HA,;M A,
and for each positive integer n, we have ("R = HA,;M A{". Using the Chinese
remainder theorem and various compatibilities between finite direct sums and
limits, we have

R®Z, > R@@Z/e"z gl@R@Z/ﬁ"Z %@R/K”R

= lim P R/X" = Plim B/X" = P R

noxle Aile ™ Al
The result then follows by tensoring both sides of the above isomorphism by Q.

Let E be the elliptic curve y* = z(x — 1)(x + 1). Show that the representation
7 : Gal(Q/Q) — GLa(F3) that gives the action of the Galois group on E[2] is
reducible, i.e., has an invariant subspace of dimension 1.

Solution. The representation sends each element o € Gal(Q/Q) to the identity
matrix (§¢). Thus any nonzero proper subspace is invariant.

In the section of the textbook called Modular forms as functions on lattices we
define maps between the set R of lattices in C and the set £ of isomorphism classes
of pairs (E,w), where E is an elliptic curve over C and w € Q}, is a nonzero
holomorphic differential 1-form on E. Prove that the maps in each direction
defined in the book are bijections. (See Appendix Al.1 of Katz’s p-adic properties
of modular schemes and modular forms.)

Solution. If you understand Section 5 of Chapter VI of [Silverman, The Arith-
metic of Elliptic Curves] then you can do this problem. In particular, given an
elliptic curve E over C and a nonzero differential w on F, we can use algebra to
find a Weierstrass equation of the form y? = 423 + ax + b with w = dz/y. The
proof of [Prop. 5.2(a), loc. cit.] implies that if A = { [ w: v € Hi(E(C), Z)}, then
C/A = E(C) via the analytic isomorphism induced by the Weierstrass function
pa associated to A. This implies surjectivity of R — £ and that the composition
of the two maps is the identity on €. The other key fact you need is [Cor. 5.1.1,
loc. cit.], which ensures that R — & is injective. (Silverman does not give a
complete proof, but gives four references for the key fact that he omits.)



7. Prove that the number of subgroups of Z? of index n is equal to the sum of the
positive divisors of n. [Hint: first do the case n = p is prime first as a warm up,
then reduce to the prime power case.]

Solution. First we reduce to the prime power case by applying the structure
theorem for finite abelian groups to the abelian group Z2/L of order n. We
may thus assume that the index of L in Z? is a prime power p™. The lattices
L of index p™ in Z? are in bijection with the Hermite normal form matrices of

determinant p™, which are easy to count. They are the one matrix (p: ’ (1)), the p

matrices (pm(;l ;) with 0 < b < p, the p? matrices (p’";ﬁz pb2> with 0 < b < p?,
OplZn) with 0 < b < p™. Summing, we find
14 p+p?+ -+ p™ matrices, as claimed.

etc., up through the p™ matrices (1



