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1. Let d be a positive integer, R the field of real numbers, and Z the ring of integers.
Prove that (Rd/Zd)[n] ≈ (Z/nZ)d.

Solution. We have natural maps

(Rd/Zd)[n] = (Qd/Zd)[n] =

((
1

n
Z

)d
/Zd

)
[n] ∼= Zd/nZd ∼= (Z/nZ)d.

2. Read somewhere and write down (in a way that makes sense to you) a precise
definition of direct and inverse limits of a family of abelian groups (with maps).
You can give a definition that involves either sequences of elements with certain
properties or a universal property.

Solution. Let I be an ordered (index) set and {Ai}i∈I a family of abelian groups.
Suppose they are equipped with homomorphisms ϕi,j : Ai → Aj whenever j > i
(the structure of directed system), and also with homomorphisms πi,j : Ai → Aj
when i > j (the structure of inverse system) that satisfy the natural compatibility
relations: ϕj,k ◦ ϕi,j = ϕi,k and πj,k ◦ πi,j = πi,k. The direct limit lim−→Ai is the
set of equivalence classes of elements of the disjoint union of the Ai, where two
elements xi and xj are equivalent if there is some k ∈ I with k ≥ i and k ≥ j
such that ϕi,k(xi) = ϕj,k(xj). Let G be an arbitrary abelian group. In terms of
a universal property, to give a homomorphism lim−→Ai → G is the same as giving
compatible homorphisms ψi : Ai → G, i.e., homomorphisms such that whenver
i < j we have ψi = ψj ◦ ϕi,j .
The inverse limit lim←−Ai is the set of sequences {xi}i∈I , with xi ∈ Ai, such that
whenever i > j we have πi,j(xi) = xj . In terms of universal properties, to give a
homomorphism G → lim←−Ai is the same as giving a compatible family of homo-
morphisms ψi : G→ Ai, where compatible means that πi,j ◦ ψi = ψj .

3. If A is an abelian group and n is a positive integer, let A[n] = {P ∈ A : nP = 0}.
What is the cardinality of each of the following abelian groups?

(a) Z[5].

Solution. 1

(b) Q[5].

Solution. 1

(c) (Q/Z)[5].

Solution. 5

(d) (Q3/Z3)[5], where Z3 is the ring of 3-adic numbers and Q3 the field of 3-adics.

Solution. 1, since 1
5 ∈ Z3, since 5 is a 3-adic unit.
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(e) (Q5/Z5)[5].

Solution. 5

(f) (Q`/Z`)[`
ν ], where ` is a prime and ν is a positive integer.

Solution. `ν

(g) (Z/125Z)[5].

Solution. 5

(h) (K∗)[n], for K any algebraically closed field of characteristic coprime to n.
(Since K∗ is multiplicative, (K∗)[n] = {x ∈ K∗ : xn = 1}.)
Solution. n

(i) Let X be any infinite set and let (Q/Z)X be the set of all set-theoretic
functions X → Q/Z. Is the group ((Q/Z)X)[n] finite or infinite?

Solution. infinite, since if x ∈ X then the function x 7→ 1
n and all other

y ∈ X go to 0 is in that group.

4. Let E be an elliptic curve defined over Q, and let ρ : Gal(Q/Q)→ Aut(E[n]) be
the map given by restricting an automorphism of Q to E[n]. Prove that

Q
ker(ρ)

= Q(E[n]),

where Q(E[n]) is by definition the field extension of Q generated by all x and y

coordinates of the points in E[n], and Q
ker(ρ)

is the subfield of elements in Q fixed
by all elements of ker(ρ).

Solution. We have Q(E[n]) ⊂ Q
ker(ρ)

, since if ρ(σ) = 1, then σ fixes all x and
y coordinates of E[n], hence fixes the generators of the field Q(E[n]). Since the
elliptic curve E is defined over Q, the field Q(E[n]) is a Galois extension of Q. Let
H ⊂ Gal(Q/Q) be the corresponding normal subgroup, so by Galois theory we

have Q
H

= Q(E[n]) ⊂ Q
ker(ρ)

. Thus by Galois theory we also have ker(ρ) ⊂ H.
But if σ ∈ H, then σ fixes each point in E[n], so ρ(σ) = 1, hence H = ker(ρ), as
required.

5. Show that there exists a non-continuous homomorphism

ρ : Gal(Q/Q)→ {±1},

where {±1} has the discrete topology; equivalently, show there is a non-closed
subgroup of index two in Gal(Q/Q). To accomplish this, produce a map ρ :
Gal(Q/Q)→ {±1} such that

(a) ρ is a homomorphism, and

(b) ρ does not factor through Gal(K/Q) for any finite Galois extension K/Q.

Don’t be afraid to use the Axiom of Choice.

Solution. Let M = Q(
√

2,
√

3,
√

5, . . . ,
√
pi, . . .) be the infinite extension of Q

generated by all square roots of prime numbers. The automorphisms of M are
given by specifying independently

√
pi 7→ ±

√
pi, so Gal(M/Q) ∼=

∏
F2, where we

view (F2,+1) as a group of order 2 under addition, and the product is over the
prime numbers. The product

∏
F2 is the set of all sequences of elements of F2,

and we also view it as a commutative ring R with unity. Note that every element
x ∈ R satisfies x2 = x. Inside R there is an ideal ⊕F2 consisting of all sequences
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with finitely many nonzero entries. By Zorn’s Lemma (which is a consequence
of the Axiom of Choice), there is a maximal ideal m in R that contains I. The
quotient R/m is a field for which every element satisfies x2 = x, so R/m ∼= F2.
We have thus obtained a surjective homomorphism ρ : Gal(Q/Q)→ F2 of groups
as the composition

Gal(Q/Q)→ Gal(M/Q)→ R/m ∼= F2.

Suppose, for the sake of contradiction, that ρ factors through the Galois group
of a finite extension K of Q, so we have a diagram

Gal(Q/Q)
ρ //

&&

F2

Gal(K/Q)

OO

where all maps in the diagram are surjective homomorphisms of groups. We may
replace K by its fixed field under ker(Gal(K/Q) → F2), and hence assume that
K = Q(

√
d) is a quadratic field. Then any automorphism σ ∈ Gal(Q/Q) that fixes

all primes pi | d will also act trivially on K, so because the diagram commutes we
have ρ(σ) = 1. Suppose σ ∈ Gal(Q/Q) is an automorphism such that ρ(σ) 6= 1.
We can modify σ by a lift of any element of the ideal I without changing ρ(σ), so
modify σ by an element of I so that σ acts trivially on the finitely many pi | d.
Then ρ(σ) = 1, as explained above, a contradiction.
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