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1. Let d be a positive integer, R the field of real numbers, and Z the ring of integers.
Prove that (R%/Z%)[n] ~ (Z/nZ)?.

Solution. We have natural maps
1\«
(RY/2)n] = (@ /2[n) = ((ﬂ) /zd> ) = 2 = (20"

2. Read somewhere and write down (in a way that makes sense to you) a precise
definition of direct and inverse limits of a family of abelian groups (with maps).
You can give a definition that involves either sequences of elements with certain
properties or a universal property.

Solution. Let I be an ordered (index) set and { 4; };c a family of abelian groups.
Suppose they are equipped with homomorphisms ¢; ; : A; — A; whenever j > i
(the structure of directed system), and also with homomorphisms 7; ; : A; — A;
when ¢ > j (the structure of inverse system) that satisfy the natural compatibility
relations: @ 0 @;; = @ik and ;o M j = m; . The direct limit lim A; is the
set of equivalence classes of elements of the disjoint union of the A;, where two
elements x; and z; are equivalent if there is some k € I with k¥ > ¢ and k£ > j
such that ¢; x(x;) = @, k(x;). Let G be an arbitrary abelian group. In terms of
a universal property, to give a homomorphism lim A; — G is the same as giving
compatible homorphisms v; : A; — G, i.e., homomorphisms such that whenver
i < j we have ¥; = 1); 0 @; ;.

The inverse limit lim A; is the set of sequences {x;};cr, with z; € A;, such that
whenever ¢ > j we have 7, j(x;) = ;. In terms of universal properties, to give a
homomorphism G — lim A; is the same as giving a compatible family of homo-
morphisms 9; : G = A;, where compatible means that m; ; o ¥; = ;.

3. If A is an abelian group and n is a positive integer, let A[n] ={P € A : nP = 0}.
What is the cardinality of each of the following abelian groups?

(a) Z[5].
Solution. 1

(b) Q[5].
Solution. 1

(c) (Q/Z)[5].

Solution. 5

(d) (Qs/Z3)[5], where Zj is the ring of 3-adic numbers and Q3 the field of 3-adics.
Solution. 1, since % € Zs3, since 5 is a 3-adic unit.



(e) (Qs/Zs5)[5].
Solution. 5

(f) (Qe/Zy)[¢¥], where { is a prime and v is a positive integer.
Solution. ¢~

(g) (Z/125Z)[5].
Solution. 5

(h) (K*)[n], for K any algebraically closed field of characteristic coprime to n.
(Since K* is multiplicative, (K*)[n] = {z € K* : 2™ = 1}.)
Solution. n

(i) Let X be any infinite set and let (Q/Z)* be the set of all set-theoretic
functions X — Q/Z. Is the group ((Q/Z)%X)[n] finite or infinite?

Solution. infinite, since if x € X then the function =z — % and all other
y € X go to 0 is in that group.

4. Let E be an elliptic curve defined over Q, and let p : Gal(Q/Q) — Aut(E[n]) be
the map given by restricting an automorphism of Q to E[n]. Prove that

Q" = Q(EMn),

where Q(FE[n]) is by definition the field extension of Q generated by all x and y

coordinates of the points in E[n], and ler(p) is the subfield of elements in Q fixed
by all elements of ker(p).

Solution. We have Q(E[n]) C chr(p), since if p(o) = 1, then o fixes all x and
y coordinates of E[n], hence fixes the generators of the field Q(E[n]). Since the
elliptic curve E is defined over Q, the field Q(E[n]) is a Galois extension of Q. Let
H C Gal(Q/Q) be the corresponding normal subgroup, so by Galois theory we
have QH = Q(E[n]) C ler(p). Thus by Galois theory we also have ker(p) C H.
But if o € H, then o fixes each point in E[n], so p(c) = 1, hence H = ker(p), as
required.

5. Show that there exists a non-continuous homomorphism
p: Gal(Q/Q) — {+1},

where {£1} has the discrete topology; equivalently, show there is a non-closed
subgroup of index two in Gal(Q/Q). To accomplish this, produce a map p :
Gal(Q/Q) — {£1} such that

(a) p is a homomorphism, and
(b) p does not factor through Gal(K/Q) for any finite Galois extension K/Q.

Don’t be afraid to use the Axiom of Choice.

Solution. Let M = Q(v/2,v/3,V5,..., \/Pi,---) be the infinite extension of Q
generated by all square roots of prime numbers. The automorphisms of M are
given by specifying independently /p; — %/p;, so Gal(M/Q) = [[F2, where we
view (Fg,+1) as a group of order 2 under addition, and the product is over the
prime numbers. The product [ F2 is the set of all sequences of elements of Fa,
and we also view it as a commutative ring R with unity. Note that every element
x € R satisfies 2 = x. Inside R there is an ideal ®F, consisting of all sequences



with finitely many nonzero entries. By Zorn’s Lemma (which is a consequence
of the Axiom of Choice), there is a maximal ideal m in R that contains I. The
quotient R/m is a field for which every element satisfies 22 = x, so R/m = F,.
We have thus obtained a surjective homomorphism p : Gal(Q/Q) — F of groups
as the composition

Gal(Q/Q) — Gal(M/Q) — R/m = Fs.

Suppose, for the sake of contradiction, that p factors through the Galois group
of a finite extension K of Q, so we have a diagram

Gal(Q/Q) — F,

I

Gal(K/Q)

where all maps in the diagram are surjective homomorphisms of groups. We may
replace K by its fixed field under ker(Gal(K/Q) — F2), and hence assume that
K = Q(+/d) is a quadratic field. Then any automorphism o € Gal(Q/Q) that fixes
all primes p; | d will also act trivially on K, so because the diagram commutes we
have p(o) = 1. Suppose o € Gal(Q/Q) is an automorphism such that p(o) # 1.
We can modify o by a lift of any element of the ideal I without changing p(o), so
modify o by an element of I so that o acts trivially on the finitely many p; | d.
Then p(o) = 1, as explained above, a contradiction.



