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is the space of holomorphic functions f : h → C that satisfy the usual vanishing
conditions at the cusps and such that for all

(
a b
c d

)
∈ Γ0(M,N),

f |
(
a b
c d

)
= ε(d)f.

We have

Sk(M,N) = ⊕εSk(M,N, ε).

We now introduce operators between various Sk(M,N). Note that, except when
otherwise noted, the notation we use for these operators below is as in [Li75],
which conflicts with notation in various other books. When in doubt, check the
definitions.
Let

f |
(
a b
c d

)
(τ) = (ad− bc)k/2(cτ + d)−kf

(
aτ + b

cτ + d

)
.

This is like before, but we omit the weight k from the bar notation, since k will be
fixed for the whole discussion.

For any d and f ∈ Sk(M,N, ε), define

f |UN
d = dk/2−1f

∣∣∣

(
∑

u mod d

(
1 uN
0 d

))
,

where the sum is over any set u of representatives for the integers modulo d. Note
that the N in the notation is a superscript, not a power of N . Also, let

f |Bd = d−k/2f |
(
d 0
0 1

)
,

and

f |Cd = dk/2f |
(
1 0
0 d

)
.

In [Li75], Cd is denoted Wd, which would be confusing, since in the literature Wd is
usually used to denote a completely different operator (the Atkin-Lehner operator,
which is denoted V M

d in [Li75]).
Since ( 1 N

0 1 ) ∈ Γ(M,N), any f ∈ Sk(M,N, ε) has a Fourier expansion in terms
of powers of qN = q1/N . We have

(∑
anq

n
N

)
|UN

d =
∑

n≥1

andq
n
N ,

(∑
anq

n
N

)
|Bd =

∑

n≥1

anq
nd
N ,

and (∑
anq

n
N

)
|Cd =

∑

n≥1

anq
n
Nd.

The second two equalities are easy to see; for the first, write everything out and
use that for n ≥ 1, the sum

∑
u e

2πiun/d is 0 or d if d ! n, d | n, respectively.
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9.1 Atkin-Lehner-Li theory 69

The maps Bd and Cd define injective maps between various spaces Sk(M,N, ε).
To understand Bd, use the matrix relation

(
d 0
0 1

)(
x y
z w

)
=

(
x dy

z/d w

)(
d 0
0 1

)
,

and a similar one for Cd. If d | N then Bd : Sk(M,N, ε) → Sk(dM,N/d, ε) is
an isomorphism, and if d | M , then Cd : Sk(M,N) → Sk(M/d,Nd, ε) is also an
isomorphism. In particular, taking d = N , we obtain an isomorphism

BN : Sk(M,N, ε) → Sk(MN, 1, ε) = Sk(Γ1(MN), ε). (9.1.1)

Putting these maps together allows us to completely understand the cusp forms
Sk(Γ(N)) in terms of spaces Sk(Γ1(N

2), ε), for all Dirichlet characters ε that arise
from characters modulo N . (Recall that Γ(N) is the principal congruence subgroup
Γ(N) = ker(SL2(Z) → SL2(Z/NZ)). This is because Sk(Γ(N)) is isomorphic to
the direct sum of Sk(N,N, ε), as ε various over all Dirichlet characters modulo N .

For any prime p, the pth Hecke operator on Sk(M,N, ε) is defined by

Tp = UN
p + ε(p)pk−1Bp.

Note that Tp = UN
p when p | N , since then ε(p) = 0. In terms of Fourier expansions,

we have (∑
anq

n
N

)
|Tp =

∑

n≥1

(
anp + ε(p)pk−1an/p

)
qnN ,

where an/p = 0 if p ! n.
The operators we have just defined satisfy several commutativity relations. Sup-

pose p and q are prime. Then TpBq = BqTp, TpCq = CqTp, and TpU
N
q = UN

q Tp if

(p, qMN) = 1. Moreover UN
d Bd′ = Bd′UN

d if (d, d′) = 1.

Remark 9.1.1. Because of these relations, (9.1.1) describe Sk(Γ(N)) as a module
over the ring generated by Tp for p ! N .

Definition 9.1.2 (Old Subspace). The old subspace Sk(M,N, ε)old is the sub-
space of Sk(M,N, ε) generated by all f |Bd and g|Ce where f ∈ Sk(M

′, N), g ∈
Sk(M,N ′), and M ′, N ′ are proper factors of M , N , respectively, and d | M/M ′,
e | N/N ′.

Since Tp commutes withBd and Ce, the Hecke operators Tp all preserve Sk(M,N, ε)old,
for p ! MN . Also, BN defines an isomorphism

Sk(M,N, ε)old ∼= Sk(MN, 1, ε)old.

Definition 9.1.3 (Petersson Inner Product). If f, g ∈ Sk(Γ(N)), the Petersson
inner product of f and g is

〈f, g〉 = 1

[SL2(Z) : Γ(N)]

∫

D

f(z)g(z)yk−2 dx dy,

where D is a fundamental domain for Γ(N) and z = x+ iy.

This Petersson pairing is normalized so that if we consider f and g as elements
of Γ(N ′) for some multiple N ′ of N , then the resulting pairing is the same (since
the volume of the fundamental domain shrinks by the index).
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70 9. Newforms and Euler Products

Proposition 9.1.4 (Petersson). If p ! N and f ∈ Sk(Γ1(N), ε), then 〈f |Tp, g〉 =
ε(p)〈f, g|Tp〉.

Remark 9.1.5. The proposition implies that the Tp, for p ! N , are diagonalizable.
Be careful, because the Tp, with p | N , need not be diagonalizable.

Definition 9.1.6 (New Subspace). The new subspace Sk(M,N, ε)new is the or-
thogonal complement of Sk(M,N, ε)old in Sk(M,N, ε) with respect to the Peters-
son inner product.

Both the old and new subspaces of Sk(M,N, ε) are preserved by the Hecke
operators Tp with (p,NM) = 1.

Remark 9.1.7. Li [Li75] also gives a purely algebraic definition of the new subspace
as the intersection of the kernels of various trace maps from Sk(M,N, ε), which
are obtained by averaging over coset representatives.

Definition 9.1.8 (Newform). A newform f =
∑

anq
n
N ∈ Sk(M,N, ε) is an ele-

ment of Sk(M,N, ε)new that is an eigenform for all Tp, for p ! NM , and is normal-
ized so that a1 = 1.

Li introduces the crucial “Atkin-Lehner operator” WM
q (denoted V M

q in [Li75]),
which plays a key roll in all the proofs, and is defined as follows. For a posi-
tive integer M and prime q, let α = ordq(M) and find integers x, y, z such that
q2αx − yMz = qα. Then WM

q is the operator defined by slashing with the ma-

trix

(
qαx y
Mz qα

)
. Li shows that if f ∈ Sk(M, 1, ε), then f |WM

q |WM
q = ε(qα)f , so

WM
q is an automorphism. Care must be taken, because the operator WM

q need not

commute with Tp = UN
p , when p | M .

After proving many technical but elementary lemmas about the operators Bd,
Cd, U

N
p , Tp, and WM

q , Li uses the lemmas to deduce the following theorems. The
proofs are all elementary, but there is little I can say about them, except that you
just have to read them.1 1

Theorem 9.1.9. Suppose f =
∑

anq
n
N ∈ Sk(M,N, ε) and an = 0 for all n with

(n,K) = 1, where K is a fixed positive integer. Then f ∈ Sk(M,N, ε)old.

From the theorem we see that if f and g are newforms in Sk(M,N, ε), and if for
all but finitely many primes p, the Tp eigenvalues of f and g are the same, then
f−g is an old form, so f−g = 0, hence f = g. Thus the eigenspaces corresponding
to the systems of Hecke eigenvalues associated to the Tp, with p ! MN , each have
dimension 1. This is known as “multiplicity one”.

Theorem 9.1.10. Let f =
∑

anq
n
N be a newform in Sk(M,N, ε), p a prime with

(p,MN) = 1, and q | MN a prime. Then

1. f |Tp = apf , f |UN
q = aqf , and for all n ≥ 1,

apan = anp + ε(p)pk−1an/p,

aqan = anq.

1Remove from book.
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9.2 The Up operator 71

If L(f, s) =
∑

n≥1 ann
−s is the Dirichlet series associated to f , then L(f, s)

has an Euler product

L(f, s) =
∏

q|MN

(1− aqq
−s)−1

∏

p!MN

(1− app
−s + ε(p)pk−1p−2s)−1.

2. (a) If ε is not a character mod MN/q, then |aq| = q(k−1)/2.

(b) If ε is a character mod MN/q, then aq = 0 if q2 | MN , and a2q =

ε(q)qk−2 if q2 ! MN .

9.2 The Up operator

Let N be a positive integer and M a divisor of N . For each divisor d of N/M we
define a map

αd : Sk(Γ1(M)) → Sk(Γ1(N)) : f(τ) )→ f(dτ).

We verify that f(dτ) ∈ Sk(Γ1(N)) as follows. Recall that for γ =
(
a b
c d

)
, we write

(f |[γ]k)(τ) = det(γ)k−1(cz + d)−kf(γ(τ)).

The transformation condition for f to be in Sk(Γ1(N)) is that f |[γ]k(τ) = f(τ). Let
f(τ) ∈ Sk(Γ1(M)) and let ιd =

(
d 0
0 1

)
. Then f |[ιd]k(τ) = dk−1f(dτ) is a modular

form on Γ1(N) since ι−1
d Γ1(M)ιd contains Γ1(N). Moreover, if f is a cusp form

then so is f |[ιd]k.

Proposition 9.2.1. If f ∈ Sk(Γ1(M)) is nonzero, then

{
αd(f) : d | N

M

}

is linearly independent.

Proof. If the q-expansion of f is
∑

anq
n, then the q-expansion of αd(f) is

∑
anq

dn.
The matrix of coefficients of the q-expansions of αd(f), for d | (N/M), is upper
triangular. Thus the q-expansions of the αd(f) are linearly independent, hence
the αd(f) are linearly independent, since the map that sends a cusp form to its
q-expansion is linear.

When p | N , we denote by Up the Hecke operator Tp acting on the image space
Sk(Γ1(N)). For clarity, in this section we will denote by Tp,M , the Hecke operator
Tp ∈ End(Sk(Γ1(M))). For f =

∑
anq

n ∈ Sk(Γ1(N)), we have

f |Up =
∑

anpq
n.

Suppose f =
∑

anq
n ∈ Sk(Γ1(M)) is a normalized eigenform for all of the Hecke

operators Tn and 〈n〉, and p is a prime that does not divide M . Then

f |Tp,M = apf and f |〈p〉 = ε(p)f.
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72 9. Newforms and Euler Products

Assume N = prM , where r ≥ 1 is an integer. Let

fi(τ) = f(piτ),

so f0, . . . , fr are the images of f under the maps αp0 , . . . ,αpr , respectively, and
f = f0. We have

f |Tp,M =
∑

n≥1

anpq
n + ε(p)pk−1

∑
anq

pn

= f0|Up + ε(p)pk−1f1,

so

f0|Up = f |Tp,M − ε(p)pk−1f1 = apf0 − ε(p)pk−1f1.

Also

f1|Up =
(∑

anq
pn
)
|Up =

∑
anq

n = f0.

More generally, for any i ≥ 1, we have fi|Up = fi−1.
The operator Up preserves the two dimensional vector space spanned by f0

and f1, and the matrix of Up with respect to the basis f0, f1 is

A =

(
ap 1

− ε(p)pk−1 0

)
,

which has characteristic polynomial

X2 − apX + pk−1ε(p). (9.2.1)

9.2.1 A Connection with Galois representations

This leads to a striking connection with Galois representations. Let f be a newform
and let K = Kf be the field generated over Q by the Fourier coefficients of f . Let
& be a prime and λ a prime lying over &. Then Deligne (and Serre, when k = 1)
constructed a representation

ρλ : Gal(Q/Q) → GL(2,Kλ).

If p ! N&, then ρλ is unramified at p, so if Frobp ∈ Gal(Q/Q) if a Frobenius element,
then ρλ(Frobp) is well defined, up to conjugation. Moreover, one can show that

det(ρλ(Frobp)) = pk−1ε(p), and

tr(ρλ(Frobp)) = ap.

(We will discuss the proof of these relations further in the case k = 2.) Thus the
characteristic polynomial of ρλ(Frobp) ∈ GL2(Eλ) is

X2 − apX + pk−1ε(p),

which is the same as (9.2.1).
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9.3 The Cusp forms are free of rank one over TC 73

9.2.2 When is Up semisimple?

Question 9.2.2. Is Up semisimple on the span of f0 and f1?

If the eigenvalues of Up are distinct, then the answer is yes. If the eigenvalues
are the same, then X2 − apX + pk−1ε(p) has discriminant 0, so a2p = 4pk−1ε(p),
hence

ap = 2p
k−1
2

√
ε(p).

Open Problem 9.2.3. Does there exist an eigenform f =
∑

anq
n ∈ Sk(Γ1(N))

such that ap = 2p
k−1
2

√
ε(p)?

It is a curious fact that the Ramanujan conjectures, which were proved by
Deligne in 1973, imply that |ap| ≤ 2p(k−1)/2, so the above equality remains taunt-
ing. When k = 2, Coleman and Edixhoven proved that |ap| < 2p(k−1)/2.

2 2

9.2.3 An Example of non-semisimple Up

Suppose f = f0 is a normalized eigenform. Let W be the space spanned by f0, f1
and let V be the space spanned by f0, f1, f2, f3. Then Up acts on V/W by f2 )→ 0
and f3 )→ f2. Thus the matrix of the action of Up on V/W is ( 0 1

0 0 ), which is
nonzero and nilpotent, hence not semisimple. Since W is invariant under Up this
shows that Up is not semisimple on V , i.e., Up is not diagonalizable.

9.3 The Cusp forms are free of rank one over TC

9.3.1 Level 1

Suppose N = 1, so Γ1(N) = SL2(Z). Using the Petersson inner product, we see
that all the Tn are diagonalizable, so Sk = Sk(Γ1(1)) has a basis

f1, . . . , fd

of normalized eigenforms where d = dimSk. This basis is canonical up to ordering.
Let TC = T ⊗C be the ring generated over C by the Hecke operator Tp. Then,
having fixed the basis above, there is a canonical map

TC ↪→ Cd : T )→ (λ1, . . . ,λd),

where fi|T = λifi. This map is injective and dimTC = d, so the map is an
isomorphism of C-vector spaces.
The form

v = f1 + · · ·+ fn

generates Sk as a T-module. Note that v is canonical since it does not depend on
the ordering of the fi. Since v corresponds to the vector (1, . . . , 1) and T ∼= Cd

2Look in Coleman-edixhoven and say more about this. Plus find the Weil reference. When
k = 2, Weil [?] showed that ρλ(Frobp) is semisimple, so if the eigenvalues of Up are equal then

ρλ(Frobp) is a scalar. But Edixhoven and Coleman [CE98] show that it is not a scalar by looking
at the abelian variety attached to f .
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74 9. Newforms and Euler Products

acts on Sk
∼= Cd componentwise, this is just the statement that Cd is generated

by (1, . . . , 1) as a Cd-module.
There is a perfect pairing Sk ×TC → C given by

〈∑
f, Tn

〉
= a1(f |Tn) = an(f),

where an(f) denotes the nth Fourier coefficient of f . Thus we have simultaneously:

1. Sk is free of rank 1 over TC, and

2. Sk
∼= HomC(TC,C) as T-modules.

Combining these two facts yields an isomorphism

TC
∼= HomC(TC,C). (9.3.1)

This isomorphism sends an element T ∈ T to the homomorphism

X )→ 〈v|T,X〉 = a1(v|T |X).

Since the identification Sk = HomC(TC,C) is canonical and since the vector v is
canonical, we see that the isomorphism (9.3.1) is canonical.
Recall that Mk has as basis the set of products Ea

4E
b
6, where 4a + 6b = k, and

Sk is the subspace of forms where the constant coefficient of their q-expansion is 0.
Thus there is a basis of Sk consisting of forms whose q-expansions have coefficients
in Q. Let Sk(Z) = Sk ∩ Z[[q]], be the submodule of Sk generated by cusp forms
with Fourier coefficients in Z, and note that Sk(Z)⊗Q ∼= Sk(Q). Also, the explicit
formula (

∑
anq

n)|Tp =
∑

anpq
n+pk−1

∑
anq

np implies that the Hecke algebra T
preserves Sk(Z).

Proposition 9.3.1. The Fourier coefficients of each fi are totally real algebraic
integers.

Proof. The coefficient an(fi) is the eigenvalue of Tn acting on fi. As observed
above, the Hecke operator Tn preserves Sk(Z), so the matrix [Tn] of Tn with respect
to a basis for Sk(Z) has integer entries. The eigenvalues of Tn are algebraic integers,
since the characteristic polynomial of [Tn] is monic and has integer coefficients.
The eigenvalues are real since the Hecke operators are self-adjoint with respect

to the Petersson inner product.

Remark 9.3.2. A CM field is a quadratic imaginary extension of a totally real field.
For example, when n > 2, the field Q(ζn) is a CM field, with totally real subfield
Q(ζn)

+ = Q(ζn + 1/ζn). More generally, one shows that the eigenvalues of any
newform f ∈ Sk(Γ1(N)) generate a totally real or CM field.

Proposition 9.3.3. We have v ∈ Sk(Z).

Proof. This is because v =
∑

Tr(Tn)q
n, and, as we observed above, there is a basis

so that the matrices Tn have integer coefficients.

Example 9.3.4. When k = 36, we have

v = 3q + 139656q2 − 104875308q3 + 34841262144q4 + 892652054010q5

− 4786530564384q6 + 878422149346056q7 + · · · .
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9.3 The Cusp forms are free of rank one over TC 75

The normalized newforms f1, f2, f3 are

fi = q + aq2 + (−1/72a2 + 2697a+ 478011548)q3 + (a2 − 34359738368)q4

(a2 − 34359738368)q4 + (−69/2a2 + 14141780a+ 1225308030462)q5 + · · · ,

for a each of the three roots ofX3−139656X2−59208339456X−1467625047588864.

9.3.2 General level

Now we consider the case for general level N . Recall that there are maps

Sk(Γ1(M)) → Sk(Γ1(N)),

for all M dividing N and all divisor d of N/M .
The old subspace of Sk(Γ1(N)) is the space generated by all images of these

maps with M |N but M .= N . The new subspace is the orthogonal complement of
the old subspace with respect to the Petersson inner product.

There is an algebraic definition of the new subspace. One defines trace maps

Sk(Γ1(N)) → Sk(Γ1(M))

for all M < N , M | N which are adjoint to the above maps (with respect to the
Petersson inner product). Then f is in the new part of Sk(Γ1(N)) if and only if f
is in the kernels of all of the trace maps.

It follows from Atkin-Lehner-Li theory that the Tn acts semisimply on the new
subspace Sk(Γ1(M))new for all M ≥ 1, since the common eigenspaces for all Tn

each have dimension 1. Thus Sk(Γ1(M))new has a basis of normalized eigenforms.
We have a natural map

⊕

M |N

Sk(Γ1(M))new ↪→ Sk(Γ1(N)).

The image in Sk(Γ1(N)) of an eigenform f for some Sk(Γ1(M))new is called a
newform of level Mf = M . Note that a newform of level less than N is not
necessarily an eigenform for all of the Hecke operators acting on Sk(Γ1(N)); in
particular, it can fail to be an eigenform for the Tp, for p | N .

Let

v =
∑

f

f(q
N

Mf ) ∈ Sk(Γ1(N)),

where the sum is taken over all newforms f of weight k and some level M | N . This
generalizes the v constructed above when N = 1 and has many of the same good
properties. For example, Sk(Γ1(N)) is free of rank 1 over T with basis element v.
Moreover, the coefficients of v lie in Z, but to show this we need to know that
Sk(Γ1(N)) has a basis whose q-expansions lie in Q[[q]]. This is true, but we will
not prove it here. One way to proceed is to use the Tate curve to construct a
q-expansion map H0(X1(N),ΩX1(N)/Q) → Q[[q]], which is compatible with the
usual Fourier expansion map.3 3

3Where will we?
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76 9. Newforms and Euler Products

Example 9.3.5. The space S2(Γ1(22)) has dimension 6. There is a single newform
of level 11,

f = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + · · · .

There are four newforms of level 22, the four Gal(Q/Q)-conjugates of

g = q − ζq2 + (−ζ3 + ζ − 1)q3 + ζ2q4 + (2ζ3 − 2)q5

+ (ζ3 − 2ζ2 + 2 ζ − 1)q6 − 2ζ2q7 + ...

where ζ is a primitive 10th root of unity.

Warning 9.3.6. Let S = S2(Γ0(88)), and let v =
∑

Tr(Tn)q
n. Then S has dimen-

sion 9, but the Hecke span of v only has dimension 7. Thus the more “canonical
looking” element

∑
Tr(Tn)q

n is not a generator for S. 4 4

9.4 Decomposing the anemic Hecke algebra

We first observe that it make no difference whether or not we include the Diamond
bracket operators in the Hecke algebra. Then we note that the Q-algebra generated
by the Hecke operators of index coprime to the level is isomorphic to a product of
fields corresponding to the Galois conjugacy classes of newforms.

Proposition 9.4.1. The operators 〈d〉 on Sk(Γ1(N)) lie in Z[. . . , Tn, . . .].

Proof. It is enough to show 〈p〉 ∈ Z[. . . , Tn, . . .] for primes p, since each 〈d〉 can be
written in terms of the 〈p〉. Since p ! N , we have that5 5

Tp2 = T 2
p − 〈p〉pk−1,

so 〈p〉pk−1 = T 2
p −Tp2 . By Dirichlet’s theorem on primes in arithmetic progression

[Lan94, VIII.4], there is another prime q congruent to p mod N . Since pk−1 and
qk−1 are relatively prime, there exist integers a and b such that apk−1+bqk−1 = 1.
Then

〈p〉 = 〈p〉(apk−1 + bqk−1) = a(Tp
2 − Tp2) + b(Tq

2 − Tq2) ∈ Z[. . . , Tn, . . .].

Let S be a space of cusp forms, such as Sk(Γ1(N)) or Sk(Γ1(N), ε). Let

f1, . . . , fd ∈ S

be representatives for the Galois conjugacy classes of newforms in S of level Nfi

dividing N . For each i, let Ki = Q(. . . , an(fi), . . .) be the field generated by the
Fourier coefficients of fi.

4I think this because using my MAGMA program, I computed the image of v under T1,...,T25

and the span of the image has dimension 7. For example, there is an element of S whose q-
expansion has valuation 7, but no element of the T-span of v has q-expansion with valuation 7

or 9.
5See where?
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9.4 Decomposing the anemic Hecke algebra 77

Definition 9.4.2 (Anemic Hecke Algebra). The anemic Hecke algebra is the sub-
algebra

T0 = Z[. . . , Tn, . . . : (n,N) = 1] ⊂ T

of T obtained by adjoining to Z only those Hecke operators Tn with n relatively
prime to N .

Proposition 9.4.3. We have T0 ⊗Q ∼=
∏d

i=1 Ki.

The map sends Tn to (an(f1), . . . , an(fd)). The proposition can be proved using
the discussion above and Atkin-Lehner-Li theory, but we will not give a proof
here.6 6

Example 9.4.4. When S = S2(Γ1(22)), then T0 ⊗ Q ∼= Q × Q(ζ10) (see Exam-
ple 9.3.5). When S = S2(Γ0(37)), then T0 ⊗Q ∼= Q×Q.

6Add for book.
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proof of this  also in  diamond-im was enlightening,  so give it here in  more generality80-3
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special  case of b  or  c from prev section!?80-4

(only?)  also superscript  would be more consistent with  U notation in  prev section80-6

express on terms of alpha above81-1

write  down Up mattix  on space spanned by all  fi as well.   note is not semistable?81-2

ref...  and shimura81-4

ref to earlier

rhof,lam = rholam

81-5

that  such a rho exists81-7

acting on the 2d span!82-1

exact ref82-2

for example :  give numbers...   double check with  sage session82-3

explain plan of is section82-4

all  T_n!!82-6

ref back83-1

isom83-2

didnt we do is already elsewhere83-3

reference83-4

remark that  f is just  the form sum Tr(Tn)q^n.83-5

so their traces are integers83-6

same para.84-1

always fails?84-4

T_C not T!!84-5
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no comma, that...84-6

make sure this  galois conj class definition terminology is clear!85-1

by Dirich.et's thm.  explain.   ref.85-4

give details  on sage85-7

must have used this  before?86-1

gcd86-2

could be good exercise86-4

rmk that  index of T0 in  T is not finite  in  general.86-5
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