is the space of holomorphic functions $f: \mathfrak{h} \rightarrow \mathbf{C}$ that satisfy the usual vanishing conditions at the cusps and such that for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(M, N)$,

$$
f \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\varepsilon(d) f\right.
$$

We have

$$
S_{k}(M, N)=\oplus_{\varepsilon} S_{k}(M, N, \varepsilon)
$$

We now introduce operators between various $S_{k}(M, N)$. Note that, except when otherwise noted, the notation we use for these operators below is as in [Li75], which conflicts with notation in various other books. When in doubt, check the definitions.

Let

$$
f \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(\tau)=(a d-b c)^{k / 2}(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)\right.
$$

This is like before, but we omit the weight k from the bar notation, since k will be fixed for the whole discussion.

For any d and $f \in S_{k}(M, N, \varepsilon)$, define

$$
f\left|U_{d}^{N}=d^{k / 2-1} f\right|\left(\sum_{u \bmod d}\left(\begin{array}{rr}
1 & u N \\
0 & d
\end{array}\right)\right)
$$

where the sum is over any se \square f representatives for the integers modulo d. Note that the N in the notation i. uperscript, not a power of N. Also, let

$$
f\left|B_{d}=d^{-k / 2} f\right|\left(\begin{array}{ll}
d & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
f\left|C_{d}=d^{k / 2} f\right|\left(\begin{array}{ll}
1 & 0 \\
0 & d
\end{array}\right)
$$

In [Li75], C_{d} is denoted W_{d}, which would be confusing, since in the literature W_{d} is usually used to denote a completely different operator (the Atkin-Lehner operator, which is denoted V_{d}^{M} in [Li75]).

Since $\left(\begin{array}{cc}1 & N \\ 0 & 1\end{array}\right) \in \Gamma(M, N)$, any $f \in S_{k}(M, N, \varepsilon)$ has a Fourier expansion in terms of powers of $q_{N}=q^{1 / N}$. We have

$$
\begin{aligned}
& \left(q_{N}^{n}\right) \mid U_{d}^{N}=\sum_{n \geq 1} a_{n d} q_{N}^{n} \\
& \left(\sum a_{n} q_{N}^{n}\right) \mid B_{d}=\sum_{n \geq 1} a_{n} q_{N}^{n d}
\end{aligned}
$$

and

$$
\left(\sum a_{n} q_{N}^{n}\right) \mid C_{d}=\sum_{n \geq 1} a_{n} q_{N d}^{n}
$$

The second two equalities are easy to see; for the first, write everything ont and use that for $n \geq 1$, the sum $\sum_{u} e^{2 \pi i u n / d}$ is 0 or d if $d \nmid n, d \mid n$, respectivel

The maps B_{d} and C_{d} define injective maps between various spaces $S_{k}(M, N, \varepsilon)$. To understand B_{d}, use the matrix relation

$$
\left(\begin{array}{cc}
d & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{rr}
x & d y \\
z / d & w
\end{array}\right)\left(\begin{array}{ll}
d & 0 \\
0 & 1
\end{array}\right)
$$

and a similar c or C_{d}. If $d \mid N$ then $B_{d}: S_{k}(M, N, \varepsilon) \rightarrow S_{k}(d M, N / d, \varepsilon)$ is an isomorphism, and if $d \mid M$, then $C_{d}: S_{k}(M, N) \rightarrow S_{k}(M / d, N d, \varepsilon)$ is also an isomorphism. In particular, taking $d=N$, we obtain an isomorphism

$$
\begin{equation*}
B_{N}: S_{k}(M, N, \varepsilon) \rightarrow S_{k}(M N, 1, \varepsilon)=S_{k}\left(\Gamma_{1}(M N), \varepsilon\right) \tag{9.1.1}
\end{equation*}
$$

Putting these maps together allows us to completely understand the cusp forms $S_{k}(\Gamma(N))$ in terms of spaces $S_{k}\left(\Gamma_{1}\left(N^{2}\right), \varepsilon\right)$, for all Dirichlet characters ε that arise from characters modulo N. (Recall that $\Gamma(N)$ is the principal congruence cuhgroup $\Gamma(N)=\operatorname{ker}\left(\mathrm{SL}_{2}(\mathbf{Z}) \rightarrow \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})\right)$. This is because $S_{k}(\Gamma(N))$ is isol \longrightarrow hic to the direct sum of $S_{k}(N, N, \varepsilon)$, as ε various over all Dirichlet charac+ ${ }^{+\cdots}$ nuvuulo N.

For any prime p, the p th Hecke operator on $S_{k}(M, N, \varepsilon)$ is defin

$$
T_{p}=U_{p}^{N}+\varepsilon(p) p^{k-1} B_{p}
$$

Note that $T_{p}=U_{p}^{N}$ when $p \mid N$, since then $\varepsilon(p)=0$. In terms of Fourier expansions, we have

$$
\left(\sum W_{j}\right) \mid T_{p}=\sum_{n \geq 1}\left(a_{n p}+\varepsilon(p) p^{k-1} a_{n / p}\right) q_{N}^{n}
$$

where $a_{n / p}=0$ if $p \nmid n$.
The operators we have just defined satisfy several commutativity relations. Suppose p and q are prime. Then $T_{p} B_{q}=B_{q} T_{p}, T_{p} C_{q}=C_{q} T_{p}$, and $T_{p} U_{q}^{N}=U_{q}^{N} T_{p}$ if $(p, q M N)=1$. Moreover $U_{d}^{N} B_{d^{\prime}}=B_{d^{\prime}} U_{d}^{N}$ if $\left(d, d^{\prime}\right)=1$.
Remark 9.1.1. Because of these relations, (9.1.1) describe $S_{k}(\Gamma(N))$ as a module over the ring generated by T_{p} for $p \nmid N$.
Definition 9.1.2 (Old Subspace). The old subspace $S_{k}(M, N, \varepsilon)_{\text {old }}$ is the subspace of $S_{k}(M, N, \varepsilon)$ generated by all $f \mid B_{d}$ and $g \mid C_{e}$ where $f \in S_{k}\left(M^{\prime}, N\right), g \in$ $S_{k}\left(M, N^{\prime}\right)$, and M^{\prime}, N^{\prime} are proper factors of M, N, respectively, and $d \mid M / M^{\prime}$, $e \mid N / N^{\prime}$.

Since T_{p} commutes with B_{d} and C_{e}, the Hecke operators T_{p} al preserve $S_{k}(M, N, \varepsilon)_{\text {old }}$, for $p \nmid M N$. Also, B_{N} defines an isomorphism

$$
S_{k}(M, N, \varepsilon)_{\text {old }} \cong S_{k}(M N, 1, \varepsilon)_{\text {old }}
$$

Definition 9.1.3 (Petersson Inner Product). If $f, g \in S_{k}(\Gamma(N))$, the Petersson inner product of f and g is

$$
\langle f, g\rangle=\frac{1}{\left[\mathrm{SL}_{2}(\mathbf{Z}): \Gamma(N)\right]} \int_{D} f(z) \overline{g(z)} y^{k-2} d x d y
$$

where D is a fundamental domain for $\Gamma(N)$ and $z=x+i y$.
This Petersson pairing is normalized so that if we consider f and g as elements of $\Gamma\left(N^{\prime}\right)$ for some multiple N^{\prime} of N, then the resulting pairing is the same (since the volume of the fundamental domain shrinks by the index).

Proposition 9.1.4 (Petersson). If $p \nmid N$ and $f \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$, then $\left\langle f \mid T_{p}, g\right\rangle=$ $\varepsilon(p)\left\langle f, g \mid T_{p}\right\rangle$.
Remark 9.1.5. The proposition im that the T_{p}, for $p \nmid N$, are $\square_{\text {onalizable. }}$ Be careful, because the T_{p}, with $p \mid N$, need not be diagonalizable.

Definition 9.1.6 (New Subspace). The new subspace $S_{k}(M, N, \varepsilon)_{\text {new }}$ is the orthogonal complement of $S_{k}(M, N, \varepsilon)_{\text {old }}$ in $S_{k}(M, N, \varepsilon)$ with respect to the Petersson inner product.

Both the old new subspaces of $S_{k}(M, N, \varepsilon)$ are preserved by the Hecke operators T_{p} witl $\left.\sim N M\right)=1$.
Remark 9.1.7. Li [Li75] also gives a purely algebraic definition of the new subsnomen as the intersection of the kernels of various trace maps from $S_{k}(M, N, \varepsilon)$, и are obtained by averaging over coset representatives.

Definition 9.1.8 (Newform). A newform $f=\sum a_{n} q_{N}^{n} \in S_{k}(M, N, \varepsilon)$ is an element of $S_{k}(M, N, \varepsilon)_{\text {new }}$ that is an eigenform for all T_{p}, for $p \nmid N M$, and is normalized so that $a_{1}=1$.

Li introduces the crucial "Atkin-Lehner operator" W_{q}^{M} (denoted V_{q}^{M} in [Li75]), which plays a key roll in all the proofs, and is de $\quad l$ as follows. For a posi-
 $q^{2 \alpha} x-y M z=q^{\alpha}$. Then W_{q}^{M} is the operator defined by slashing with the ma$\operatorname{trix}\left(\begin{array}{cc}q^{\alpha} x & y \\ M z & q^{\alpha}\end{array}\right)$. Li chnrws that if $f \in S_{k}(M, 1, \varepsilon)$, then $f\left|W_{q}^{M}\right| W_{q}^{M}=\varepsilon\left(q^{\alpha}\right) f$, so W_{q}^{M} is an automorp. Care must be taken, because the operator W_{q}^{M} need not commute with $T_{p}=U_{p}^{N}$, when $p \mid M$.

After proving many technical but elementary lemmas about the operators B_{d}, C_{d}, U_{p}^{N}, T_{p}, and $W_{c}^{M} \mathrm{I} \mathrm{i}$ uses the lemmas to deduce the following theorems. The proofs are all elemer but there is little I can say about them, except that you just have to read them.
eorem 9.1.9. Suppose $f=\sum a_{n} q_{N}^{n} \in S_{k}(M, N, \varepsilon)$ and $a_{n}=0$ for all n with $\left(n(, K)=1\right.$, wher K is a fixed positive integer. Then $f \in S_{k}(M, N, \varepsilon)_{\text {old }}$.

From the theorem we see that if f and g are newforms in $S_{k}(M, N, \varepsilon)$, and if for all but finitely many primes p, the T_{p} eigenvalues of f and g are $\mathrm{t} \square$ me, then $f-g$ is an old form, so $f-g=0$, hence $f=g$. Thus the eigenspaces sponding to the systems of Hecke eigenvalues associated to the T_{p}, with $p \nmid M N$, each have dimension 1. This is known as "multiplicity one".
mi orem 9.1.10. Let $f=\sum a_{n} q_{N}^{n}$ be a newform in $S_{k}(M, N, \varepsilon), p$ a prime with $(N)=1$, and $q \mid M N$ a prime. Then

1. $f\left|T_{p}=a_{p} f, f\right| U_{q}^{N}=a_{q} f$, and for all $n \geq 1$,

$$
\begin{aligned}
a_{p} a_{n} & =a_{n p}+\varepsilon(p) p^{k-1} a_{n / p} \\
a_{q} a_{n} & =a_{n q}
\end{aligned}
$$

[^0]If $L(f, s)=\sum_{n \geq 1} a_{n} n^{-s}$ is the Dirichlet series associated to f, then $L(f, s)$ has an Euler product

$$
L(f, s)=\prod_{q \mid M N}\left(1-a_{q} q^{-s}\right)^{-1} \prod_{p \nmid M N}\left(1-\Im^{-s}+\varepsilon(p) p^{k-1} p^{-2 s}\right)^{-1}
$$

2. (a) If ε is not a character mod $M N / q$, then $\left|a_{q}\right|=q^{(k-1) / 2}$.
(b) If ε is a character $\mathrm{m} \longrightarrow 1 N / q$, then $a_{q}=0$ if $q^{2} \square N$, and $a_{q}^{2}=$ $\varepsilon(q) q^{k-2}$ if $q^{2} \nmid M N$.

9.2 The U_{p} operator

Let N be a positive integer and M a divisor of N. For each divisor d of N / M we define a map

$$
\alpha_{d}: S_{k}\left(\Gamma_{1}(M)\right) \rightarrow S_{k}\left(\Gamma_{1}(N)\right): \quad f(\tau) \mapsto f(d \tau)
$$

We verify that $f(d \tau) \in S_{k}\left(\Gamma_{1}(N)\right)$ as follows. Recall that for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we write

$$
\left(f \mid[\gamma]_{k}\right)(\tau)=\operatorname{det}(\gamma)^{k-1}(c z+d)^{-k} f(\gamma(\tau))
$$

The transformation condition for f to be in $S_{k}\left(\Gamma_{1}(N)\right)$ is that $f \mid[\gamma]_{k}(\tau)=f(\tau)$. Let $f(\tau) \in S_{k}\left(\Gamma_{1}(M)\right)$ and let $\iota_{d}=\left(\begin{array}{ll}d & 0 \\ 0 & 1\end{array}\right)$. Then $f \mid\left[\iota_{d}\right]_{k}(\tau)=d^{k-1} f(d \tau)$ is a modular form on $\Gamma_{1}(N)$ since $\iota_{d}^{-1} \Gamma_{1}(M) \iota_{d}$ contains $\Gamma_{1}(N)$. Moreover, if f is a cusp form then so is $f \mid\left[\iota_{d}\right]_{k}$.
Proposition 9.2.1. If $f \in S_{k}\left(\Gamma_{1}(M)\right)$ is nonzero, then

$$
\left\{\alpha_{d}(f): d \left\lvert\, \frac{N}{M}\right.\right\}
$$

is linearly independent.
Proof. If the q-expansion of f is $\sum a_{n} q^{n}$, then the q-expansion of $\alpha_{d}(f)$ is $\sum a_{n} q^{d n}$. The matrix of coefficients of the q-expansions of $\alpha_{d}(f)$, for $d \mid(N / M)$, is upper triangular. Thus the q-expansions of the $\alpha_{d}(f)$ are linearly independent, hence the $\alpha_{d}(f)$ are linearly independent, since the map that sends a cusp form to its q-expansion is linear.

When $p \mid N$, we denote by U_{p} the \square se operator T_{p} acting on the ildage space $S_{k}\left(\Gamma_{1}(N)\right)$. For clarity, in this section m will denote by $T_{p, M}$, the Hecke operator $T_{p} \in \operatorname{End}\left(S_{k}\left(\Gamma_{1}(M)\right)\right)$. For $f=\sum a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N)\right)$, we have

$$
f \mid U_{p}=\sum a_{n p} q^{n}
$$

Suppose $f=\sum a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(M)\right)$ is a normalized eigenform for all of the Hecke operators T_{n} and $\langle n\rangle$, and p is a prime that does not divide M. Then

$$
f \mid T_{p, M}=a_{p} f \quad \text { and } \quad f \mid\langle p\rangle=\varepsilon(p) f
$$

Assume $N=p^{r} M$, where $r \geq 1$ is an integer. Let

$$
f_{i}(\tau)=f\left(p^{i} \tau\right)
$$

so f_{0}, \ldots, f_{r} are the images of f under the maps $\alpha_{p^{0}}, \ldots, \alpha_{p^{r}}$, respectively, and $f=f_{0}$. We have

$$
\begin{aligned}
f \mid T_{p, M} & =\sum_{n \geq 1} a_{n p} q^{n}+\varepsilon(p) p^{k-1} \sum a_{n} q^{p n} \\
& =f_{0} \mid U_{p}+\varepsilon(p) p^{k-1} f_{1}
\end{aligned}
$$

so

$$
f_{0}\left|U_{p}=f\right| T_{p, M}-\varepsilon(p) p^{k-1} f_{1}=a_{p} f_{0}-\varepsilon(p) p^{k-1} f_{1}
$$

Also

$$
f_{1}\left|U_{p}=\left(\sum a_{n} q^{p n}\right)\right| U_{p}=\sum a_{n} q^{n}=f_{0}
$$

More generally, for any $i \geq 1$, we have $f_{i} \mid U_{p}=f_{i-1}$.
The operator U_{p} preserves the two dimensional vector space spanned by f_{0} and f_{1}, and the matrix of U_{p} with respect to the basis f_{0}, f_{1} is

$$
A=\left(\begin{array}{cc}
a_{p} & 1 \\
-\varepsilon(p) p^{k-1} & 0
\end{array}\right)
$$

which has characteristic polynomial

$$
\begin{equation*}
X^{2}-a_{p} X+p^{k-1} \varepsilon(p) \tag{9.2.1}
\end{equation*}
$$

9.2.1 A Connection with Galois representations

This leads to a striking connection with Galois representations. Let f be a newform and let $K=K_{f}$ be the field generated over \mathbf{Q} by the Fourier coefficients of f. Let ℓ be a prime and λ a prime lying over ℓ. Then Deligne (and Serı ien $k=1$) constructed a representation

$$
\rho_{\lambda}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \mathrm{GL}\left(2, K_{\lambda}\right)
$$

If $p \nmid N \ell$, then ρ_{λ} is unramified at p, so if $\operatorname{Frob}_{p} \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ if a Frobenius element, then $\rho_{\lambda}\left(\operatorname{Frob}_{p}\right)$ is well defined, up to conjugation. Moreover, onat

$$
\begin{aligned}
\operatorname{det}\left(\rho_{\lambda}\left(\operatorname{Frob}_{p}\right)\right) & =p^{k-1} \varepsilon(p), \quad \text { and } \\
\operatorname{tr}\left(\rho_{\lambda}\left(\operatorname{Frob}_{p}\right)\right) & =a_{p}
\end{aligned}
$$

(We will discuss the proof of $\mathrm{t} \quad$ relations fyrther in the case $k=2$.) Thus the characteristic polynomial of $\rho_{\lambda}\left(\operatorname{Frob}_{p}\right) \in \operatorname{GL}\left(E_{\lambda}\right)$ is

$$
X^{2}-a_{p} X+p^{k-1} \varepsilon(p)
$$

which is the same as (9.2.1).

9.2.2 When is U_{p} semisimple?

Question 9.2.2. Is U_{p} se \square ple on the span of f_{0} and f_{1} ?
If the eigenvalues of U_{p} distinct, then the answer is yes. If the eigenvalues are the same, then $X^{2}-a_{p} X+p^{k-1} \varepsilon(p)$ has discriminant 0 , so $a_{p}^{2}=4 p^{k-1} \varepsilon(p)$, hence

$$
a_{p}=2 p^{\frac{k-1}{2}} \sqrt{\varepsilon(p)}
$$

Open Problem 9.2.3. Does there exist an eigenform $f=\sum a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N)\right)$ such that $a_{p}=2 p^{\frac{k-1}{2}} \sqrt{\varepsilon(p)}$?

It is a curious fact that the Ramanujan conjectures, which were proved by Deligne in 1973 , imply that $\left|a_{p}\right| \leq 2 p^{(k-1) / 2}$, so the ab \backsim quality remains taunting. When $k=2$, Coleman and Edixhoven proved tha $<2 p^{(k-1) / 2}$.

9.2.3 An Example of non-semisimple U_{p}

Suppose $f=f_{0}$ is a normalized eigenform. Let W be the space spanned by f_{0}, f_{1} and let V be the space spanned by $f_{0}, f_{1}, f_{2}, f_{3}$. Then U_{p} acts on V / W by $\bar{f}_{2} \mapsto 0$ and $\bar{f}_{3} \mapsto \bar{f}_{2}$. Thus the matrix of the action of U_{p} on V / W is $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, which is nonzero and nilpotent, hence not semisimple. Since W is invariant under U_{p} this shows that U_{p} is not semisimple on V, i.e., U_{p} is nc \square gonalizable.

$9.3 \mathrm{~T} \cdot{ }^{\text {Cusp }}$ forms are free of rank one over $\mathbf{T}_{\mathbf{C}}$

9.3.1 Level 1

Suppose $N=1$, so $\Gamma_{1}(N)=\mathrm{SL}_{2}(\mathbf{Z})$. Using the Petersson inner product, we see that all the T_{n} are diagonalizable, so $S_{k}=S_{k}\left(\Gamma_{1}(1)\right)$ has a basis

$$
f_{1}, \ldots, f_{d}
$$

of normalized eigenforms where $d=\operatorname{dim} S_{k}$. This basis iscanonical up to ordering. Let $\mathbf{T}_{\mathbf{C}}=\mathbf{T} \otimes \mathbf{C}$ be the ring generated over \mathbf{C} by the Heck \square arator T_{p}. Then, having fixed the basis above, there is a canonical map

$$
\mathbf{T}_{\mathbf{C}} \hookrightarrow \mathbf{C}^{d}: \quad T \mapsto\left(\lambda_{1}, \ldots, \lambda_{d}\right)
$$

where $f_{i} \mid T=\lambda_{i} f_{i}$. This map is injective and $\operatorname{dim} \mathbf{T}_{\mathbf{C}}=d$, so the map is an isomorphism of \mathbf{C}-vector spaces.

The form

$$
v=f_{1}+\cdots+f_{n}
$$

generates S_{k} as a T-module. Note that v is canonical since it does not depend on the ordering of the f_{i}. Since v corresponds to the vector $(1, \ldots, 1)$ and $\mathbf{T} \cong \mathbf{C}^{d}$

[^1]acts on $S_{k} \cong \mathbf{C}^{d}$ componentwise, this is just the statement that \mathbf{C}^{d} is generated by $(1, \ldots, 1)$ as a \mathbf{C}^{d}-module.

There is a perfect $\bigcirc \mathrm{ng} S_{k} \times \mathbf{T}_{\mathbf{C}} \rightarrow \mathbf{C}$ given by

$$
\left\langle\sum f, T_{n}\right\rangle=a_{1}\left(f \mid T_{n}\right)=a_{n}(f)
$$

where $a_{n}(f)$ denotes the nth Fourier coefficient of f. Thus we have simultaneously:

1. S_{k} is free of rank 1 over $\mathbf{T}_{\mathbf{C}}$, and
2. $S_{k} \cong \operatorname{Hom}_{\mathbf{C}}\left(\mathbf{T}_{\mathbf{C}}, \mathbf{C}\right)$ as \mathbf{T}-modules.

Combining these two facts yields an isomorphism

$$
\begin{equation*}
\mathbf{T}_{\mathbf{C}} \cong \operatorname{Hom}_{\mathbf{C}}\left(\mathbf{T}_{\mathbf{C}}, \mathbf{C}\right) \tag{9.3.1}
\end{equation*}
$$

This isomorphism sends an element $T \in \mathbf{T}$ to the homomorphism

$$
\because\langle v \mid T, X\rangle=a_{1}(v|T| X)
$$

Since the identification $S_{k}=\operatorname{Hom}_{\mathbf{C}}\left(\mathbf{T}_{\mathbf{C}}, \mathbf{C}\right)$ is canonical and since the vector v is canonical, we see that the isomorphism (9.3.1) is canonical.

Recall that M_{k} has as basis the set of products $E_{4}^{a} E_{6}^{b}$, where $4 a+6 b=k$, and S_{k} is the subspace of forms where the constant coefficient of their q-expansion is 0 . Thus there is a basis of S_{k} consisting of forms whose q-expansions have coefficients in \mathbf{Q}. Let $S_{k}(\mathbf{Z})=S_{k} \cap \mathbf{Z}[[q]]$, be the submodule of S_{k} generated by cusp forms with Fourier coefficients in \mathbf{Z}, and note that $S_{k}(\mathbf{Z}) \otimes \mathbf{Q} \cong S_{k}(\mathbf{Q})$. Also, the explicit formula $\left(\sum a_{n} q^{n}\right) \mid T_{p}=\sum a_{n p} q^{n}+p^{k-1} \sum a_{n} q^{n p}$ implies that the Hecke algebra \mathbf{T} preserves $S_{k}(\mathbf{Z})$.
Proposition 9.3.1. The Fourier coefficients oJ each f_{i} are totally real algebraic integers.

Proof. The coefficient $a_{n}\left(f_{i}\right)$ is the eigenvalue of T_{n} acting on f_{i}. As observed above, the Hecke operator T_{n} preserves $S_{k}(\mathbf{Z})$, so the matrix $\left[T_{n}\right]$ of T_{n} with respect to a basis for $S_{k}(\mathbf{Z})$ has integer entries. The eigenvalues of T_{n} are algebraic integers, since the characteristic polynomial of $\left[T_{n}\right]$ is monic and has integer coefficients.

The eigenvalues are real since the Hecke operators are self-adjoint with respect to the Petersson inner product.

Remark 9.3.2. A $C M$ field is a quadratic imaginary extension of a totally real field. For example, when $n>2$, the field $\mathbf{Q}\left(\zeta_{n}\right)$ is a $(\square$ eld, with totally real subfield $\mathbf{Q}\left(\zeta_{n}\right)^{+}=\mathbf{Q}\left(\zeta_{n}+1 / \zeta_{n}\right)$. More generally, one s_... that the eigenvalues of any newform $f \in S_{k}\left(\Gamma_{1}(N)\right)$ generate a totally real \ldots M field.

Proposition 9.3.3. We have $v \in S_{k}(\mathbf{Z})$.
Proof. This is because $v=\sum \operatorname{Tr}\left(T_{n}\right) q^{n}$, and, as we observed above, there is a basis so that the matrices T_{n} have integer coefficient:

Example 9.3.4. When $k=36$, we have

$$
\begin{aligned}
v=3 q & +139656 q^{2}-104875308 q^{3}+34841262144 q^{4}+892652054010 q^{5} \\
& -4786530564384 q^{6}+878422149346056 q^{7}+\cdots .
\end{aligned}
$$

The normalized newforms f_{1}, f_{2}, f_{3} are

$$
\begin{aligned}
& f_{i}=q+a q^{2}+\left(-1 / 72 a^{2}+2697 a+478011548\right) q^{3}+\left(a^{2}-34359738368\right) q^{4} \\
&\left(a^{2}-34359738368\right) q^{4}+\left(-69 / 2 a^{2}+14141780 a+1225308030462\right) q^{5}+\cdots,
\end{aligned}
$$

for a each of the three roots of $X^{3}-139656 X^{2}-59208339456 X-1467625047588864$.

9.3.2 General level

Now we consider the case for general level N. Recall that there are maps

$$
S_{k}\left(\Gamma_{1}(M)\right) \rightarrow S_{k}\left(\Gamma_{1}(N)\right)
$$

for all 1 dividing N and all divisor d of N / M.
The old subspace of $S_{k}\left(\Gamma_{1}(N)\right)$ is the space generated by all images of these maps with $M \mid N$ but $M \neq N$. The new subspace is the orthogonal complement of the old subspace with respect to the Petersson inner product.

There is an algebraic definition of the new subspace. One defines trace maps

$$
S_{k}\left(\Gamma_{1}(N)\right) \rightarrow S_{k}\left(\Gamma_{1}(M)\right)
$$

for all $M<N, M \mid N$ which are adjoint to the above maps (with respect to the Petersson inner product). Then f is in the new part of $S_{k}\left(\Gamma_{1}(N)\right)$ if and only if f is in the kernels of all of the trace maps.

It follows from Atkin-Lehner-Li theory that the T_{n} acts semisimply on the new subspace $S_{k}\left(\Gamma_{1}(M)\right)_{\text {new }}$ for all $M \geq 1$, since the common eigenspaces for all T_{n} each have dimension 1 . Thus $S_{k}\left(\Gamma_{1}(M)\right)_{\text {new }}$ has a basis of normalized eigenforms. We have a natural map

$$
\bigoplus_{M \mid N} S_{k}\left(\Gamma_{1}(M)\right)_{\text {new }} \hookrightarrow S_{k}\left(\Gamma_{1}(N)\right)
$$

The image in $S_{k}\left(\Gamma_{1}(N)\right)$ of an eigenform f for some $S_{k}\left(\Gamma_{1}(M)\right)_{\text {new }}$ is called a newform of $M_{f}=M$. Note that a newform of level less than N is not necessarily an \square nform for all of the Hecke operators acting on $S_{k}\left(\Gamma_{1}(N)\right)$; in particular, it © ill to be an eigenform for the T_{p}, for $p \mid N$.

Let

$$
v=\sum_{f} f\left(q^{\frac{N}{M_{f}}}\right) \in S_{k}\left(\Gamma_{1}(N)\right)
$$

where the sum is taken over all newforms f of weight k and s^mn level $M \mid N$. This generalizes the v constructed above when $N=1$ and has $\mathrm{n} ~$ of the same good properties. For example, $S_{k}\left(\Gamma_{1}(N)\right)$ is free of rank 1 over \mathbf{T} with basis element v. Moreover, the coefficients of v lie in \mathbf{Z}, but to show this we need to know that $S_{k}\left(\Gamma_{1}(N)\right)$ has a basis whose q-expansions lie in $\mathbf{Q}[[q]]$. This is true, but we will not prove it here. One way to proceed is to use thr \square e curve to construct a q-expansion map $\mathrm{H}^{0}\left(X_{1}(N), \Omega_{X_{1}(N) / \mathbf{Q}}\right) \rightarrow \mathbf{Q}[[q]]$, w. is compatible with the usual Fourier expansion map. ${ }^{3}$

Example 9.3.5. The space $S_{2}\left(\Gamma_{1}(22)\right)$ has dimension 6 . There is a single newform of level 11,

$$
f=q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}+\cdots
$$

There are four newforms of level 22, the four $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-conjugates of

$$
\begin{aligned}
g=q & -\zeta q^{2}+\left(-\zeta^{3}+\zeta-1\right) q^{3}+\zeta^{2} q^{4}+\left(2 \zeta^{3}-2\right) q^{5} \\
& +\left(\zeta^{3}-2 \zeta^{2}+2 \zeta-1\right) q^{6}-2 \zeta^{2} q^{7}+\ldots
\end{aligned}
$$

where ζ is a primitive 10 th root of unity.
Warning 9.3.6. Let $S=S_{2}\left(\Gamma_{0}(88)\right)$, and let $v=\sum \operatorname{Tr}\left(T_{n}\right) q^{n}$. Then S has dimension 9 , but the Hecke span of v only has dimension 7. Thus the more "canonical looking" element $\sum \operatorname{Tr}\left(T_{n}\right) q^{n}$ is not a generator for $S .{ }^{4}$

9.4 Decomposing the anemic Hecke algebra

We first observe that it make no difference whether or not we include the Diamond bracket operators in the Hecke algebra. Then we note that the \mathbf{Q}-algebra generated by the Hecke operators of incoprime to the level is isomorphic to a prod $\square \mathrm{f}$ fields corresponding to the Galois conjugacy classes of newforms.
Proposition 9.4.1. The operators $\langle d\rangle$ on $S_{k}\left(\Gamma_{1}(N)\right)$ lie in $\mathbf{Z}\left[\ldots, T_{n}, \ldots\right]$.
Proof. It is enough to sho $\longrightarrow \mathbf{Z}\left[\ldots, T_{n}, \ldots\right]$ for pfimes p, since each $\langle d\rangle$ can be written in terms of the $\left\langle p\right.$, f.ce $p \nmid N$, we have that ${ }^{5}$

so $\langle p\rangle p^{k-1}=T_{p}^{2}-T_{p^{2}}$. By Dirichlet theorem on primes in arithmetic progression [Lan94, VIII.4], there is another prime q congruent to $p \bmod N$. Since p^{k-1} and q^{k-1} are relatively prime, there exist integers a and b such that $a p^{k-1}+b q^{k-1}=1$. Then

$$
\langle p\rangle=\langle p\rangle\left(a p^{k-1}+b q^{k-1}\right)=a\left(T_{p}^{2}-T_{p^{2}}\right)+b\left(T_{q}^{2}-T_{q^{2}}\right) \in \mathbf{Z}\left[\ldots, T_{n}, \ldots\right] .
$$

Let S be a space of cusp forms, such as $S_{k}\left(\Gamma_{1}(N)\right)$ or $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$. Let

$$
f_{1}, \ldots, f_{d} \in S
$$

be representatives for the Galois conjugacy classes of newforms in S of level $N_{f_{i}}$ dividing N. For each i, let $K_{i}=\mathbf{Q}\left(\ldots, a_{n}\left(f_{i}\right), \ldots\right)$ be the field generated by the Fourier coefficients of f_{i}.

[^2]Definition 9.4.2 (Aner ecke Algebra). The anemic Hecke algebra is the subalgebra

$$
\mathbf{T}_{0}=\mathbf{Z}\left[\ldots, T_{n}, \ldots:(\square=1] \subset \mathbf{T}\right.
$$

of \mathbf{T} obtained by adjoining to \mathbf{Z} only those Hecke operators T_{n} with n relatively prime to N.
Proposition 9.4.3. We have $\mathbf{T}_{0} \otimes \mathbf{Q} \cong \prod_{i=1}^{d} K_{i}$.
The map sends T_{n} to $\left(a_{n}\left(f_{1}\right), \ldots, a_{n}\left(f_{d}\right)\right)$. The proposition can be proved using the diseussion abor $\square \mathrm{d}$ Atkin-Lehner-Li theory, but we will not give a proof here. ${ }^{6}$
Example 9.4.4. When $S=S_{2}\left(\Gamma_{1}(22)\right)$, then $\mathbf{T}_{0} \otimes \mathbf{Q} \cong \mathbf{Q} \times \mathbf{Q}\left(\zeta_{10}\right)$ (see Example 9.3.5). When $S=S_{2}\left(\Gamma_{0}(37)\right)$, then $\mathbf{T}_{0} \otimes \mathbf{Q} \cong \mathbf{Q} \times \mathbf{Q}$.

[^3]
[^0]: ${ }^{1}$ Remove from book.

[^1]: ${ }^{2}$ Look in Coleman-edixhoven and say more about this. Plus find the Weil reference. When $k=2$, Weil [?] showed that $\rho_{\lambda}\left(\operatorname{Frob}_{p}\right)$ is semisimple, so if the eigenvalues of U_{p} are equal then $\rho_{\lambda}\left(\operatorname{Frob}_{p}\right)$ is a scalar. But Edixhoven and Coleman [CE98] show that it is not a scalar by looking at the abelian variety attached to f.

[^2]: ${ }^{4}$ I think this because using my MAGMA program, I comput. \square image of v under T_{1}, \ldots, T_{25} and the span of the image has dimension 7. For exanple, th \square an element of S whose qexpansion has valuation 7 , but no element of the T-span of v has q-expansion with valuation 7 or 9 .
 ${ }^{5}$ See where?

[^3]: ${ }^{6}$ Add for book.

