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1
The Main Objects

1.1 Torsion points on elliptic curves

The main geometric objects that we will study in this book are elliptic curves,
which are curves of genus one equipped with a distinguished point. More generally,
we consider certain algebraic curves of larger genus called modular curves, which in
turn give rise via the Jacobian construction to higher-dimensional abelian varieties
from which we will obtain representations of the Galois group Gal(Q/Q) of the
rational numbers.

It is convenient to view the group of complex points E(C) on an elliptic curve E
over the complex numbers C as a quotient C/L. Here

L =

{∫
γ

ω : γ ∈ H1(E(C),Z)

}
is a lattice attached to a nonzero holomorphic differential ω on E, and the homology
H1(E(C),Z) ≈ Z×Z is the abelian group of smooth closed paths on E(C) modulo
the homology relations.

Viewing E as C/L immediately gives us information about the structure of the
group of torsion points on E, which we exploit in the next section to construct
two-dimensional representations of Gal(Q/Q).

1.1.1 The Tate module

In the 1940s, Andre Weil studied the analogous situation for elliptic curves defined
over a finite field k. He desperately wanted to find an algebraic way to describe
the above relationship between elliptic curves and lattices. He found an algebraic
definition of L/nL, when n is prime to the characteristic of k.

Let

E[n] := {P ∈ E(k) : nP = 0}.
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When E is defined over C,

E[n] =

(
1

n
L

)
/L ∼= L/nL ≈ (Z/nZ)× (Z/nZ),

so E[n] is a purely algebraic object canonically isomorphic to L/nL.
Now suppose E is defined over an arbitrary field k. For any prime `, let

E[`∞] := {P ∈ E(k) : `νP = 0, some ν ≥ 1}

=

∞⋃
ν=1

E[`ν ] = lim−→E[`ν ].

In an analogous way, Tate constructed a rank 2 free Z`-module

T`(E) := lim←−E[`ν ],

where the map E[`ν ] → E[`ν−1] is multiplication by `. The Z/`νZ-module struc-

ture of E[`ν ] is compatible with the maps E[`ν ]
`−→ E[`ν−1] (see, e.g., [Sil92, III.7]).

If ` is coprime to the characteristic of the base field k, then T`(E) is free of rank 2
over Z`, and

V`(E) := T`(E)⊗Q`

is a 2-dimensional vector space over Q`.

1.2 Galois representations

Number theory is largely concerned with the Galois group Gal(Q/Q), which is
often studied by considering continuous linear representations

ρ : Gal(Q/Q)→ GLn(K)

where K is a field and n is a positive integer, usually 2 in this book. Artin, Shimura,
Taniyama, and Tate pioneered the study of such representations.

Let E be an elliptic curve defined over the rational numbers Q. Then Gal(Q/Q)
acts on the set E[n], and this action respects the group operations, so we obtain a
representation

ρ : Gal(Q/Q)→ Aut(E[n]) ≈ GL2(Z/nZ).

Let K be the field cut out by the ker(ρ), i.e., the fixed field of ker(ρ). Then K is
a finite Galois extension of Q. Since

Gal(K/Q) ∼= Gal(Q/Q)/ ker ρ ∼= Im ρ ↪→ GL2(Z/nZ)

we obtain, in this way, subgroups of GL2(Z/nZ) as Galois groups.
Shimura showed that if we start with the elliptic curve E defined by the equation

y2 + y = x3 − x2 then for “most” n the image of ρ is all of GL2(Z/nZ). More
generally, the image is “most” of GL2(Z/nZ) when E does not have complex
multiplication. (We say E has complex multiplication if its endomorphism ring
over C is strictly larger than Z.)
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1.3 Modular forms

Many spectacular theorems and deep conjectures link Galois representations with
modular forms. Modular forms are extremely symmetric analytic objects, which
we will first view as holomorphic functions on the complex upper half plane that
behave well with respect to certain groups of transformations.

Let SL2(Z) be the group of 2× 2 integer matrices with determinant 1. For any
positive integer N , consider the subgroup

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1, c ≡ 0 (mod N)

}
of matrices in SL2(Z) that are of the form

(
1 ∗
0 1

)
when reduced modulo N .

The space Sk(N) of cusp forms of weight k and level N for Γ1(N) consists of
all holomorphic functions f(z) on the complex upper half plane

h = {z ∈ C : Im(z) > 0}

that vanish at the cusps (see below) and satisfy the equation

f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ1(N) and z ∈ h.

Thus f(z + 1) = f(z), so f determines a function F of q(z) = e2πiz such that
F (q) = f(z). Viewing F as a function on {z : 0 < |z| < 1}, the condition that
f(z) is holomorphic and vanishes at infinity is that F (z) extends to a holomorphic
function on {z : |z| < 1} and F (0) = 0. In this case, f is determined by its Fourier
expansion

f(q) =

∞∑
n=1

anq
n.

It is also useful to consider the space Mk(N) of modular forms of level N , which
is defined in the same way as Sk(N), except that the condition that F (0) = 0 is
relaxed, and we require only that F extends to a holomorphic function at 0 (and
there is a similar condition at the cusps other than ∞).

The spaces Mk(N) and Sk(N) are finite dimensional.

Example 1.3.1. We compute dim(M5(30)) and dim(S5(30)) in Sage:

sage: ModularForms(Gamma1 (30) ,5). dimension ()

112

sage: CuspForms(Gamma1 (30) ,5). dimension ()

80

For example, the space S12(1) has dimension one and is spanned by the famous
cusp form

∆ = q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn.

The coefficients τ(n) define the Ramanujan τ -function. A non-obvious fact is that τ
is multiplicative and for every prime p and positive integer ν, we have

τ(pν+1) = τ(p)τ(pν)− p11τ(pν−1).
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Example 1.3.2. We draw a plot of the ∆ function (using 20 terms of the q-
expansion) on the upper half plane. Notice the symmetry ∆(z) = ∆(z + 1):

-2 -1.5 -1 -0.5 0.5 1 1.5 2

0.1
0.2
0.3
0.4
0.5
0.6
0.7

sage: z = var(’z’); q = exp (2*pi*i*z)

sage: D = delta_qexp (20)(q)

sage: complex_plot(D, (-2,2), (0,.75), plot_points =200)

1.4 Hecke operators

Mordell defined operators Tn, n ≥ 1, on Sk(N) which are called Hecke operators.
These proved very fruitful. The set of such operators forms a commuting family of
endomorphisms and is hence “almost” simultaneously diagonalizable.

Often there is a basis f1, . . . , fr of Sk(N) such that each f = fi =
∑∞
n=1 anq

n

is a simultaneous eigenvector for all the Hecke operators Tn normalized so that
Tnf = anf , i.e., so the coefficient of q is 1. In this situation, the eigenvalues an are
necessarily algebraic integers and the field

K = Kf = Q(. . . , an, . . .)

generated by all an is finite over Q.
The an exhibit remarkable properties. For example,

τ(n) ≡
∑
d|n

d11 (mod 691).

We can check this congruence for n = 30 in Sage as follows:

sage: n=30; t = delta_qexp(n+1)[n]; t

-29211840

sage: sigma(n,11)

17723450167663752

sage: (sigma(n,11) - t)%691

0

The key to studying and interpreting the an is to understand the deep connec-
tions between Galois representations and modular forms that were discovered by
Serre, Shimura, Eichler and Deligne.



2
Modular Representations and Algebraic
Curves

2.1 Modular forms and Arithmetic

Consider a cusp form

f =

∞∑
n=1

anq
n ∈ Sk(N)

which is an eigenform for all of the Hecke operators Tp, and assume f is normalized
so a1 = 1. Then the Mellin transform of f is the L-function

L(f, s) =

∞∑
n=1

an
ns
.

Hecke proved that L(f, s) extends uniquely to a holomorphic function on C that
satisfies a functional equation.

Let K = Q(a1, a2, . . .) be the number field generated by the Fourier coefficients
of f . One can show that the an are algebraic integers and that K is a number field.
When k = 2, Shimura associated to f an abelian variety Af over Q of dimension
[K : Q] on which Z[a1, a2, . . .] acts [Shi94, Theorem 7.14].

Example 2.1.1 (Modular Elliptic Curves). Suppose now that all coefficients an of f
lie in Q so that [K : Q] = 1 and hence Af is a one dimensional abelian variety, i.e.,
an elliptic curve. An elliptic curve isogenous to one arising via this construction is
called modular.

Elliptic curves E1 and E2 are isogenous if there is a morphism E1 → E2 of
algebraic groups, having finite kernel.

The following theorem motivates much of the theory discussed in this course. It
is a theorem of Breuil, Conrad, Diamond, Taylor, and Wiles (see [BCDT01]).

Theorem 2.1.2 (Modularity Theorem). Every elliptic curve over Q is modular,
that is, isogenous to a curve constructed in the above way.
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For k ≥ 2 Serre and Deligne discovered a way to associate to f a family of `-adic
representations. Let ` be a prime number and K = Q(a1, a2, . . .) be as above.
Then it is well known that

K ⊗Q Q`
∼=
∏
λ|`

Kλ.

One can associate to f a representation

ρ`,f : G = Gal(Q/Q)→ GL2(K ⊗Q Q`)

unramified at all primes p - `N . Let Z be the ring of all algebraic integers. For ρ`,f
to be unramified at p we mean that for all primes P of Z lying over p, the inertia
subgroup of the decomposition group at P is contained in the kernel of ρ`,f . The
decomposition group DP at P is the set of those g ∈ G which fix P . Let k be
the residue field Z/P and k = Fp. Then the inertia group IP is the kernel of the
surjective map DP → Gal(k/k).

Now IP ⊂ DP ⊂ Gal(Q/Q) and DP /IP is pro-cyclic (being isomorphic to the
Galois group Gal(k/k)), so it is generated by a Frobenious automorphism Frobp
lying over p. One has

tr(ρ`,f (Frobp)) = ap ∈ K ⊂ K ⊗Q`

and

det(ρ`,f ) = χk−1
` ε

where, as explained below, χ` is the `th cyclotomic character and ε is the Dirichlet
character associated to f .

There is an incredible amount of “abuse of notation” packed into the above

statement. Let M = Q
ker(ρ`,f )

be the field fixed by the kernel of ρ`,f . Then the
Frobenius element FrobP (note P not p) is well defined as an element of Gal(M/Q),
and the element Frobp is then only well defined up to conjugacy. But this works
out since ρ`,f is well-defined on Gal(M/Q) (it kills Gal(Q/M)) and trace is well-
defined on conjugacy classes (tr(AB) = tr(BA) so tr(ABA−1) = Tr(B)).

2.2 Characters

Let f ∈ Sk(N) be an eigenform for all Hecke operators. Then for all
(
a b
c d

)
∈ SL2(Z)

with c ≡ 0 mod N we have

f

(
az + b

cz + d

)
= (cz + d)kε(d)f(z),

where ε : (Z/NZ)∗ → C∗ is a Dirichlet character mod N . If f is also normalized
so that a1 = 1, as in Section 1.4, then ε actually takes values in K∗.

Let G = Gal(Q/Q), and let ϕN be the mod N cyclotomic character so that
ϕN : G → (Z/NZ)∗ takes g ∈ G to the automorphism induced by g on the
Nth cyclotomic extension Q(µN ) of Q (where we identify Gal(Q(µN )/Q) with
(Z/NZ)∗). Then what we called ε above in the formula det(ρ`) = χk−1

` ε is really
the composition

G
ϕN−−→ (Z/NZ)∗

ε−→ C∗.
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For each positive integer ν we consider the `νth cyclotomic character on G,

ϕ`ν : G→ (Z/`νZ)∗.

Putting these together gives the `-adic cyclotomic character

χ` : G→ Z∗` .

2.3 Parity conditions

Let c ∈ Gal(Q/Q) be complex conjugation. Then ϕN (c) = −1 so ε(c) = ε(−1)
and χk−1

` (c) = (−1)k−1. Letting
(
a b
c′ d

)
=
(−1 0

0 −1

)
, for f ∈ Sk(N), we have

f(z) = (−1)kε(−1)f(z),

so (−1)kε(−1) = 1. Thus

det(ρ`,f (c)) = ε(−1)(−1)k−1 = −1.

We say a representation is odd if the determinant of complex conjugation is −1.
Thus the representation ρ`,f is odd.

Remark 2.3.1 (Vague Question). How can one recognize representations like ρ`,f
“in nature”? Fontaine and Mazur have made relevant conjectures. The modularity
theorem can be reformulated by saying that for any representation ρ`,E coming
from an elliptic curve E there is an f so that ρ`,E ∼= ρ`,f .

2.4 Conjectures of Serre (mod ` version)

Suppose f is a modular form, ` ∈ Z prime, λ a prime lying over `, and the
representation

ρλ,f : G→ GL2(Kλ)

(constructed by Serre-Deligne) is irreducible. Then ρλ,f is conjugate to a repre-
sentation with image in GL2(Oλ), where Oλ is the ring of integers of Kλ (see
Section 2.5 below). Reducing mod λ gives a representation

ρλ,f : G→ GL2(Fλ)

which has a well-defined trace and det, i.e., the det and trace do not depend on
the choice of conjugate representation used to obtain the reduced representation.
One knows from representation theory (the Brauer-Nesbitt theorem – see [CR62])
that if such a representation is semisimple then it is completely determined by its
trace and det (more precisely, it is determined by the characteristic polynomials
of all of its elements). Thus if ρλ,f is irreducible (and hence semisimple) then it is
unique in the sense that it does not depend on the choice of conjugate.
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2.5 General remarks on mod p Galois representations

First, what are semisimple and irreducible representations? Remember that a rep-
resentation ρ is a map from a group G to the endomorphisms of some vector space
W (or a free module M if we are working over a ring instead of a field, but let’s
not worry about that for now). A subspace W ′ of W is said to be invariant un-
der ρ if ρ takes W ′ back into itself. (The point is that if W ′ is invariant, then ρ
induces representations on both W ′ and W/W ′.) An irreducible representation is
one whose only invariant subspaces are {0} and W . A semisimple representation
is one where for every invariant subspace W ′ there is a complementary invariant
subspace W ′′ – that is, you can write ρ as the direct sum of ρ|W ′ and ρ|W ′′ .

Another way to say this is that if W ′ is an invariant subspace then we get a
short exact sequence

0→ ρ|W/W ′ → ρ→ ρ|W ′ → 0.

Furthermore ρ is semisimple if and only if every such sequence splits.
Note that irreducible representations are semisimple. As mentioned above, two-

dimensional semisimple Galois representations are uniquely determined (up to iso-
morphism class) by their trace and determinant. In the case we are considering,
G = Gal(Q/Q) is compact, so the image of any Galois representation ρ into
GL2(Kλ) is compact. Thus we can conjugate it into GL2(Oλ). Irreducibility is not
needed for this.

Now that we have a representation into GL2(Oλ), we can reduce to get a repre-
sentation ρ to GL2(Fλ). This reduced representation is not uniquely determined
by ρ, since we made a choice of basis (via conjugation) so that ρ would have image
in GL2(Oλ), and a different choice may lead to a non-isomorphic representation
mod λ. However, the trace and determinant of a matrix are invariant under conju-
gation, so the trace and determinant of the reduced representation ρ are uniquely
determined by ρ.

So we know the trace and determinant of the reduced representation. If we also
knew that it was semisimple, then we would know its isomorphism class, and we
would be done. So we would be happy if the reduced representation is irreducible.
And in fact, it is easy to see that if the reduced representation is irreducible, then
ρ must also be irreducible. Most ρ of interest to us in this book will be irreducible.
Unfortunately, the opposite implication does not hold: ρ irreducible need not imply
that ρ is irreducible.

2.6 Serre’s conjecture

Serre has made the following conjecture which is now a theorem (see [KW08]).

Conjecture 2.6.1 (Serre). All irreducible representation of G over a finite field
which are odd, i.e., det(σ(c)) = −1, c complex conjugation, are of the form ρλ,f
for some representation ρλ,f constructed as above.

Example 2.6.2. Let E/Q be an elliptic curve and let σ` : G → GL2(F`) be the
representation induced by the action of G on the `-torsion of E. Then detσ` = ϕ` is
odd and σ` is usually irreducible, so Serre’s conjecture implies that σ` is modular.
From this one can, assuming Serre’s conjecture, prove that E is itself modular (see
[Rib92]).
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Definition 2.6.3 (Modular representation). Let σ : G → GL2(F) (F is a finite
field) be an irreducible representation of the Galois group G. Then we say that
the representation σ is modular if there is a modular form f , a prime λ, and an
embedding F ↪→ Fλ such that σ ∼= ρλ,f over Fλ.

For more details, see Chapter 21 and [RS01].

2.7 Wiles’s perspective

Suppose E/Q is an elliptic curve and ρ`,E : G → GL2(Z`) the associated `-
adic representation on the Tate module T`. Then by reducing we obtain a mod `
representation

ρ`,E = σ`,E : G→ GL2(F`).

If we can show this representation is modular for infinitely many ` then we will
know that E is modular.

Theorem 2.7.1 (Langlands and Tunnel). If σ2,E and σ3,E are irreducible, then
they are modular.

This is proved by using that GL2(F2) and GL2(F3) are solvable so we may apply
something called “base change for GL2.”

Theorem 2.7.2 (Wiles). If ρ is an `-adic representation which is irreducible and
modular mod ` with ` > 2 and certain other reasonable hypothesis are satisfied,
then ρ itself is modular.
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3
Modular Forms of Level 1

In this chapter, we view modular forms of level 1 both as holomorphic functions
on the upper half plane and functions on lattices. We then define Hecke operators
on modular forms, and derive explicit formulas for the action of Hecke operators
on q-expansions. An excellent reference for the theory of modular forms of level 1
is Serre [Ser73, Ch. 7].

3.1 The Definition

Let k be an integer. The space Sk = Sk(1) of cusp forms of level 1 and weight k
consists of all functions f that are holomorphic on the upper half plane h and such
that for all

(
a b
c d

)
∈ SL2(Z) one has

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), (3.1.1)

and f vanishes at infinity, in a sense which we will now make precise. The matrix
( 1 1

0 1 ) is in SL2(Z), so f(τ + 1) = f(τ). Thus f passes to a well-defined function
of q(τ) = e2πiτ . Since for τ ∈ h we have |q(τ)| < 1, we may view f(z) = F (q) as
a function of q on the punctured open unit disc {q : 0 < |q| < 1}. The condition
that f(τ) vanishes at infinity means that F (q) extends to a holomorphic function
on the open disc {q : |q| < 1} so that F (0) = 0. Because holomorphic functions
are represented by power series, there is a neighborhood of 0 such that

f(q) =

∞∑
n=1

anq
n,

so for all τ ∈ h with sufficiently large imaginary part (but see Remark 3.1.1 below),
f(τ) =

∑∞
n=1 ane

2πinτ .
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It will also be useful to consider the slightly larger space Mk(1) of holomorphic
functions on h that transform as above and are merely required to be holomorphic
at infinity.

Remark 3.1.1. In fact, the series
∑∞
n=1 ane

2πinτ converges for all τ ∈ h. This is
because the Fourier coefficients an are O(nk/2) (see [Miy89, Cor. 2.1.6, pg. 43]).

Remark 3.1.2. In [Ser73, Ch. 7], the weight is defined in the same way, but in the
notation our k is twice his k.

3.2 Some examples and conjectures

The space Sk(1) of cusp forms is a finite-dimensional complex vector space. For k
even we have dimSk(1) = bk/12c if k 6≡ 2 (mod 12) and bk/12c − 1 if k ≡ 2
(mod 12), except when k = 2 in which case the dimension is 0. For even k, the
space Mk(1) has dimension 1 more than the dimension of Sk(1), except when k = 2
when both have dimension 0. (For proofs, see, e.g., [Ser73, Ch. 7, §3].)

By the dimension formula mentioned above, the first interesting example is the
space S12(1), which is a 1-dimensional space spanned by

∆(q) = q

∞∏
n=1

(1− qn)24

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + 84480q8

− 113643q9 − 115920q10 + 534612q11 − 370944q12 − 577738q13 + · · ·

That ∆ lies in S12(1) is proved in [Ser73, Ch. 7, §4.4] by expressing ∆ in terms
of elements of M4(1) and M6(1), and computing the q-expansion of the resulting
expression.

Example 3.2.1. We compute the q-expansion of ∆ in Sage:

sage: delta_qexp (7)

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7)

In Sage, computing delta_qexp(10^6) only takes a few seconds, and computing up
to precision 10^8 is even reasonable. Sage does not use the formula q

∏∞
n=1(1−qn)24

given above, which would take a very long time to directly evaluate, but instead
uses the identity

∆(q) =

∑
n≥0

(−1)n(2n+ 1)qn(n+1)/2

8

,

and computes the 8th power using asymptotically fast polynomial arithmetic in
Z[q], which involves a discrete fast Fourier transform (implemented in [HH]).

The Ramanujan τ function τ(n) assigns to n the nth coefficient of ∆(q).

Conjecture 3.2.2 (Lehmer). τ(n) 6= 0 for all n ≥ 1.

This conjecture has been verified for n ≤ 22798241520242687999 (Bosman, 2007
– see http://en.wikipedia.org/wiki/Tau-function).

http://en.wikipedia.org/wiki/Tau-function
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Theorem 3.2.3 (Edixhoven et al.). Let p be a prime. There is a polynomial time
algorithm to compute τ(p), polynomial in the number of digits of p.

Edixhoven’s idea is to use `-adic cohomology and Arakelov theory to find an
analogue of the Schoof-Elkies-Atkin algorithm (which counts the number Nq of
points on an elliptic curves over a finite field Fq by computing Nq mod ` for
many primes `). Here’s some of what Edixhoven has to say about his result:

“You need to compute on varying curves such as X1(`) for ` up to
log(p) say. An important by-product of my method is the computation
of the mod ` Galois representations associated to ∆ in time polyno-
mial in `. So, it should be seen as an attempt to make the Langlands
correspondence for GL2 over Q available computationally.”

If f ∈ Mk(1) and g ∈ Mk′(1), then it is easy to see from the definitions that
fg ∈ Mk+k′(1). Moreover,

⊕
k≥0Mk(1) is a commutative graded ring generated

freely by E4 = 1+240
∑∞
n=1 σ3(n)qn and E6 = 1−504

∑∞
n=1 σ5(n)qn, where σd(n)

is the sum of the dth powers of the positive divisors of n (see [Ser73, Ch.7, §3.2]).

Example 3.2.4. Because E4 and E6 generate, it is straightforward to write down
a basis for any space Mk(1). For example, the space M36(1) has basis

f1 = 1 + 6218175600q4 + 15281788354560q5 + · · ·
f2 = q + 57093088q4 + 37927345230q5 + · · ·
f3 = q2 + 194184q4 + 7442432q5 + · · ·
f4 = q3 − 72q4 + 2484q5 + · · ·

3.3 Modular forms as functions on lattices

In order to define Hecke operators, it will be useful to view modular forms as
functions on lattices in C.

Definition 3.3.1 (Lattice). A lattice L ⊂ C is a subgroup L = Zω1 + Zω2 for
which ω1, ω2 ∈ C are linearly independent over R.

We may assume that ω1/ω2 ∈ h = {z ∈ C : Im(z) > 0}. Let R be the set of all
lattices in C. Let E be the set of isomorphism classes of pairs (E,ω), where E is
an elliptic curve over C and ω ∈ Ω1

E is a nonzero holomorphic differential 1-form
on E. Two pairs (E,ω) and (E′, ω′) are isomorphic if there is an isomorphism
ϕ : E → E′ such that ϕ∗(ω′) = ω.

Proposition 3.3.2. There is a bijection between R and E under which L ∈ R
corresponds to (C/L, dz) ∈ E.

Proof. We describe the maps in each direction, but leave the proof that they induce
a well-defined bijection as an exercise for the reader [[add ref to actual exercise]].
Given L ∈ R, by Weierstrass theory the quotient C/L is an elliptic curve, which is
equipped with the distinguished differential ω induced by the differential dz on C.

Conversely, if E is an elliptic curve over C and ω ∈ Ω1
E is a nonzero differential,

we obtain a lattice L in C by integrating homology classes:

L = Lω =

{∫
γ

ω : γ ∈ H1(E(C),Z)

}
.
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Let
B = {(ω1, ω2) : ω1, ω2 ∈ C, ω1/ω2 ∈ h} ,

be the set of ordered basis of lattices in C, ordered so that ω1/ω2 ∈ h. There is a
left action of SL2(Z) on B given by(

a b
c d

)
(ω1, ω2) 7→ (aω1 + bω2, cω1 + dω2)

and SL2(Z)\B ∼= R. (The action is just the left action of matrices on column
vectors, except we write (ω1, ω2) as a row vector since it takes less space.)

Give a modular form f ∈Mk(1), associate to f a function F : R → C as follows.
First, on lattices of the special form Zτ + Z, for τ ∈ h, let F (Zτ + Z) = f(τ).

In order to extend F to a function on all lattices, note that F satisfies the
homogeneity condition F (λL) = λ−kF (L), for any λ ∈ C and L ∈ R. Then

F (Zω1 + Zω2) = ω−k2 F (Zω1/ω2 + Z) := ω−k2 f(ω1/ω2).

That F is well-defined exactly amounts to the transformation condition (3.1.1)
that f satisfies.

Lemma 3.3.3. The lattice function F : R → C associated to f ∈ Mk(1) is well
defined.

Proof. Suppose Zω1 + Zω2 = Zω′1 + Zω′2 with ω1/ω2 and ω′1/ω
′
2 both in h. We

must verify that ω−k2 f(ω1/ω2) = (ω′2)−kf(ω′1/ω
′
2). There exists

(
a b
c d

)
∈ SL2(Z)

such that ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2. Dividing, we see that ω′1/ω
′
2 =(

a b
c d

)
(ω1/ω2). Because f is a weight k modular form, we have

f

(
ω′1
ω′2

)
= f

((
a b
c d

)(
ω1

ω2

))
=

(
c
ω1

ω2
+ d

)k
f

(
ω1

ω2

)
.

Multiplying both sides by ωk2 yields

ωk2f

(
ω′1
ω′2

)
= (cω1 + dω2)kf

(
ω1

ω2

)
.

Observing that ω′2 = cω1 + dω2 and dividing again completes the proof.

Since f(τ) = F (Zτ+Z), we can recover f from F , so the map f 7→ F is injective.
Moreover, it is surjective in the sense that if F is homogeneous of degree −k, then
F arises from a function f : h → C that transforms like a modular form. More
precisely, if F : R → C satisfies the homogeneity condition F (λL) = λ−kF (L),
then the function f : h→ C defined by f(τ) = F (Zτ+Z) transforms like a modular
form of weight k, as the following computation shows: For any

(
a b
c d

)
∈ SL2(Z) and

τ ∈ h, we have

f

(
aτ + b

cτ + d

)
= F

(
Z
aτ + b

cτ + d
+ Z

)
= F ((cτ + d)−1 (Z(aτ + b) + Z(cτ + d)))

= (cτ + d)kF (Z(aτ + b) + Z(cτ + d))

= (cτ + d)kF (Zτ + Z)

= (cτ + d)kf(τ).
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Say that a function F : R → C is holomorphic on h ∪ {∞} if the function f(τ) =
F (Zτ + Z) is. We summarize the above discussion in a proposition.

Proposition 3.3.4. There is a bijection between Mk(1) and functions F : R →
C that are homogeneous of degree −k and holomorphic on h ∪ {∞}. Under this
bijection F : R → C corresponds to f(τ) = F (Zτ + Z).

3.4 Hecke operators

Define a map Tn from the free abelian group generated by all C-lattices into itself
by

Tn(L) =
∑
L′⊂L

[L:L′]=n

L′,

where the sum is over all sublattices L′ ⊂ L of index n. For any function F : R → C
on lattices, define Tn(F ) : R → C by

(Tn(F ))(L) = nk−1
∑
L′⊂L

[L:L′]=n

F (L′).

If F is homogeneous of degree −k, then Tn(F ) is also homogeneous of degree −k.
We will next show that (n,m) = 1 implies TnTm = Tnm and Tpk is a polynomial

in Z[Tp] (see [Ser73, Cor. 1, pg. 99]); the essential case to consider is n prime.
Suppose L′ ⊂ L with [L : L′] = n. Then every element of L/L′ has order

dividing n, so nL ⊂ L′ ⊂ L and

L′/nL ⊂ L/nL ≈ (Z/nZ)2.

Thus the subgroups of (Z/nZ)2 of order n correspond to the sublattices L′ of L of
index n. When n = ` is prime, there are `+ 1 such subgroups, since the subgroups
correspond to nonzero vectors in F` modulo scalar equivalence, and there are
(`2 − 1)/(`− 1) = `+ 1 of them.

Recall from Proposition 3.3.2 that there is a bijection between the set R of
lattices in C and the set E of isomorphism classes of pairs (E,ω), where E is an
elliptic curve over C and ω is a nonzero differential on E.

Suppose F : R → C is homogeneous of degree −k, so F (λL) = λ−kF (L). Then
we may also view T` as a sum over lattices that contain L with index `, as follows.
Suppose L′ ⊂ L is a sublattice of index ` and set L′′ = `−1L′. Then we have a
chain of inclusions

`L ⊂ L′ ⊂ L ⊂ `−1L′ = L′′.

Since [`−1L′ : L′] = `2 and [L : L′] = `, it follows that [L′′ : L] = `. Because F is
homogeneous of degree −k,

T`(F )(L) = `k−1
∑

[L:L′]=`

F (L′) =
1

`

∑
[L′′:L]=`

F (L′′). (3.4.1)
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3.5 Hecke operators directly on q-expansions

Recall that the nth Hecke operator Tn of weight k on the free abelian group on
lattices is given by

Tn(L) = nk−1
∑
L′⊂L

[L:L′]=n

L′.

Modular forms of weight k correspond to holomorphic functions of degree −k on
lattices, and each Tn extends to an operator on these functions on lattices, so Tn
defines on operator on Mk(1).

A holomorphic function on the unit disk is determined by its Fourier expansion,
so Fourier expansion defines an injective map Mk(1) ↪→ C[[q]]. In this section, we
describe Tn(

∑
amq

m) explicitly as a q-expansion.

3.5.1 Explicit description of sublattices

In order to describe Tn more explicitly, we enumerate the sublattices L′ ⊂ L of
index n. More precisely, we give a basis for each L′ in terms of a basis for L. Note
that L/L′ is a group of order n and

L′/nL ⊂ L/nL = (Z/nZ)2.

Write L = Zω1 + Zω2, let Y2 be the cyclic subgroup of L/L′ generated by ω2 and
let d = #Y2. If Y1 = (L/L′)/Y2, then Y1 is generated by the image of ω1, so it is a
cyclic group of order a = n/d. Our goal is to exhibit a basis of L′. Let ω′2 = dω2 ∈ L′
and use that Y1 is generated by the image of ω1 to write aω1 = ω′1 − bω2 for some
integer b and some ω′1 ∈ L′. Since b is only well-defined modulo d we may assume
0 ≤ b ≤ d− 1. Thus (ω′1

ω′2

)
=
(a b

0 d

)(ω1

ω2

)
and the change of basis matrix has determinant ad = n. Since

Zω′1 + Zω′2 ⊂ L′ ⊂ L = Zω1 + Zω2

and [L : Zω′1 + Zω′2] = n (since the change of basis matrix has determinant n) and
[L : L′] = n we see that L′ = Zω′1 + Zω′2.

Proposition 3.5.1. Let n be a positive integer. There is a one-to-one correspon-
dence between sublattices L′ ⊂ L of index n and matrices

(
a b
0 d

)
with ad = n and

0 ≤ b ≤ d− 1.

Proof. The correspondence is described above. To check that it is a bijection, we
just need to show that if γ =

(
a b
0 d

)
and γ′ =

(
a′ b′

0 d′

)
are two matrices satisfying

the listed conditions, and

Z(aω1 + bω2) + Zdω2 = Z(aω′1 + bω′2) + Zdω′2,

then γ = γ′. Equivalently, if σ ∈ SL2(Z) and σγ = γ′, then σ = 1. To see this, we
compute

σ = γ′γ−1 =
1

n

(
a′d ab′ − a′b

0 ad′

)
.
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Since σ ∈ SL2(Z), we have n | a′d, and n | ad′, and aa′dd′ = n2. If a′d > n, then
because aa′dd′ = n2, we would have ad′ < n, which would contradict the fact
that n | ad′; also, a′d < n is impossible since n | a′d. Thus a′d = n and likewise
ad′ = n. Since ad = n as well, it follows that a′ = a and d′ = d, so σ = ( 1 t

0 1 ) for
some t ∈ Z. Then σγ =

(
a b+dt
0 d

)
, which implies that t = 0, since 0 ≤ b ≤ d − 1

and 0 ≤ b+ dt ≤ d− 1.

Remark 3.5.2. As mentioned earlier, when n = ` is prime, there are `+1 sublattices
of index `. In general, the number of such sublattices is the sum of the positive
divisors of n (exercise)1 . 1

3.5.2 Hecke operators on q-expansions

Recall that if f ∈Mk(1), then f is a holomorphic function on h ∪ {∞} such that

f(τ) = f

(
aτ + b

cτ + d

)
(cτ + d)−k

for all
(
a b
c d

)
∈ SL2(Z). Using Fourier expansion we write

f(τ) =

∞∑
m=0

cme
2πiτm,

and say f is a cusp form if c0 = 0. Also, there is a bijection between modular
forms f of weight k and holomorphic lattice functions F : R → C that satisfy
F (λL) = λ−kF (L); under this bijection F corresponds to f(τ) = F (Zτ + Z).

Now assume f(τ) =
∑∞
m=0 cmq

m is a modular form with corresponding lattice
function F . Using the explicit description of sublattices from Section 3.5.1 above,
we can describe the action of the Hecke operator Tn on the Fourier expansion of

1Put reference to actual exercise
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f(τ), as follows:

TnF (Zτ + Z) = nk−1
∑
a,b,d
ad=n

0≤b≤d−1

F ((aτ + b)Z + dZ)

= nk−1
∑

d−kF

(
aτ + b

d
Z + Z

)
= nk−1

∑
d−kf

(
aτ + b

d

)
= nk−1

∑
a,d,b,m

d−kcme
2πi( aτ+bd )m

= nk−1
∑
a,d,m

d1−kcme
2πiamτ

d
1

d

d−1∑
b=0

(
e

2πim
d

)b
= nk−1

∑
ad=n
m′≥0

d1−kcdm′e
2πiam′τ

=
∑
ad=n
m′≥0

ak−1cdm′q
am′ .

In the second to the last expression we let m = dm′ for m′ ≥ 0, then use that the
sum 1

d

∑d−1
b=0 (e

2πim
d )b is only nonzero if d | m, in which case the sum equals 1.

Thus

Tnf(q) =
∑
ad=n
m≥0

ak−1cdmq
am.

Put another way, if µ is a nonnegative integer, then the coefficient of qµ is∑
a|n
a|µ

ak−1cnµ
a2
.

(To see this, let m = a/µ and d = n/a and substitute into the formula above.)

Remark 3.5.3. When k ≥ 1 the coefficients of qµ for all µ belong to the Z-module
generated by the cm.

Remark 3.5.4. Setting µ = 0 gives the constant coefficient of Tnf which is∑
a|n

ak−1c0 = σk−1(n)c0.

Thus if f is a cusp form so is Tnf . (Tnf is holomorphic since its original definition
is as a finite sum of holomorphic functions.)

Remark 3.5.5. Setting µ = 1 shows that the coefficient of q in Tnf is
∑
a|1 a

k−1cn =
cn. As an immediate corollary we have the following important result.

Corollary 3.5.6. If f is a cusp form such that Tnf has 0 as coefficient of q for
all n ≥ 1, then f = 0.
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In the special case when n = p is prime, the action action of Tp on the q-
expansion of f is given by the following formula:

Tpf =
∑
µ≥0

∑
a|p
a|µ

ak−1cnµ
a2
qµ.

Since p is prime, either a = 1 or a = p. When a = 1, cpµ occurs in the coefficient
of qµ and when a = p, we can write µ = pλ and we get terms pk−1cλ in qpλ. Thus

Tpf =
∑
µ≥0

cpµq
µ + pk−1

∑
λ≥0

cλq
pλ.

3.5.3 The Hecke algebra and eigenforms

Definition 3.5.7 (Hecke Algebra). The Hecke algebra T associated to Mk(1) is
the subring of End(Mk(1)) generated by the operators Tn for all n. Similarly, the
Hecke algebra associated to Sk(1) is the subring of End(Sk(1)) generated by all
Hecke operators Tn.

The Hecke algebra is commutative because Tpν is a polynomial in Tp and when
gcd(n,m) = 1 we have TnTm = Tnm = Tmn = TmTn. Also, T is of finite rank
over Z, because of Remark 3.5.3 and that the finite dimensional space Sk(1) has a
basis with q-expansions in Z[[q]].

Definition 3.5.8 (Eigenform). An eigenform f ∈ Mk(1) is a nonzero element
such that f is an eigenvector for every Hecke operator Tn. If f ∈ Sk(1) is an
eigenform, then f is normalized if the coefficient of q in the q-expansion of f is 1.
We sometimes called a normalized cuspidal eigenform a newform.

If f =
∑∞
n=1 cnq

n is a normalized eigenform, then Remark 3.5.5 implies that
Tn(f) = cnf . Thus the coefficients of a newform are exactly the system of eigen-
values of the Hecke operators acting on the newform.

Remark 3.5.9. It follows from Victor Miller’s thesis [[ref my modform book??]]
that T1, . . . , Tn generate T ⊂ End(Sk(1)), where n = dimSk(1).

3.5.4 Examples

We compute the space of weight 12 modular forms of level 1, along with its cuspidal
subspace:

sage: M = ModularForms (1,12, prec =3)

sage: M.basis ()

[

q - 24*q^2 + O(q^3),

1 + 65520/691*q + 134250480/691*q^2 + O(q^3)

]

sage: M.hecke_matrix (2)

[ -24 0]

[ 0 2049]

sage: S = M.cuspidal_subspace ()

sage: S.hecke_matrix (2)
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[-24]

sage: factor(M.hecke_polynomial (2))

(x - 2049) * (x + 24)

We also compute the space of forms of weight 40:

sage: M = ModularForms (1 ,40)

sage: M.basis ()

[

q + 19291168*q^4 + 37956369150*q^5 + O(q^6),

q^2 + 156024*q^4 + 57085952*q^5 + O(q^6),

q^3 + 168*q^4 - 12636*q^5 + O(q^6),

1 + 1082400/261082718496449122051*q + ...

]

sage: M.hecke_matrix (2)

[ 0 549775105056 14446985236992 0]

[ 1 156024 1914094476 0]

[ 0 168 392832 0]

[ 0 0 0 549755813889]

sage: factor(M.hecke_polynomial (2))

(x - 549755813889) *

(x^3 - 548856*x^2 - 810051757056*x + 213542160549543936)

3.6 Two Conjectures about Hecke operators on level 1
modular forms

3.6.1 Maeda’s conjecture

Conjecture 3.6.1 (Maeda). Let k be a positive integer such that Sk(1) has positive
dimension and let T ⊂ End(Sk(1)) be the Hecke algebra. Then there is only one
Gal(Q/Q) orbit of normalized eigenforms of level 1.

There is some numerical evidence for this conjecture. It is true for k ≤ 2000,
according to [FJ02]. The MathSciNet reviewer of [FJ02] said “In the present paper
the authors take a big step forward towards proving Maeda’s conjecture in the
affirmative by establishing that the Hecke polynomial Tp,k(x) is irreducible and
has full Galois group over Q for k ≤ 2000 and p < 2000, p prime.” Using Sage,
Alex Ghitza verified the conjecture for k ≤ 4096 (see [Ghi]). Buzzard shows in
[Buz96] that for the weights k ≤ 228 with k/12 a prime, the Galois group of the
characteristic polynomial of T2 is the full symmetric group, and is, in particular,
irreducible.

3.6.2 The Gouvea-Mazur conjecture

Fix a prime p, and let Fp,k ∈ Z[x] be the characteristic polynomial of Tp acting on
Mk(1). The slopes of Fp,k are the p-adic valuations ordp(α) ∈ Q of the roots α ∈ Qp
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of Fp,k. They can be computed easily using Newton polygons.2 For example, the 2
p = 5 slopes for F5,12 are 0, 1, 1, for F5,12+4·5 they are 0, 1, 1, 4, 4, and for F5,12+4·52

they are 0, 1, 1, 5, 5, 5, 5, 5, 5, 10, 10, 11, 11, 14, 14, 15, 15, 16, 16.

sage: def s(k,p):

... M = ModularForms (1,k)

... v = M.hecke_polynomial(p). newton_slopes(p)

... return list(sorted(v))

sage: s(12 ,5)

[0, 1]

sage: s(12 + 4*5, 5)

[0, 1, 4]

sage: s(12 + 4*5^2, 5)

[0, 1, 5, 5, 5, 10, 11, 14, 15, 16]

sage: s(12 + 4*5^3, 5) # long time

!! WAY TOO SLOW -- TODO -- see trac 9749 !!

Instead, we compute the slopes more directly as follows (this is fast):

sage: def s(k,p):

... d = dimension_modular_forms (1, k)

... B = victor_miller_basis(k, p*d+1)

... T = hecke_operator_on_basis(B, p, k)

... return list(sorted(T.charpoly (). newton_slopes(p)))

sage: s(12 ,5)

[0, 1]

sage: s(12 + 4*5, 5)

[0, 1, 4]

sage: s(12 + 4*5^2, 5)

[0, 1, 5, 5, 5, 10, 11, 14, 15, 16]

sage: s(12 + 4*5^3, 5)

[0, 1, 5, 5, 5, 10, 11, 14, 15, 16, 20, 21, 24, 25, 27,

30, 31, 34, 36, 37, 40, 41, 45, 46, 47, 50, 51, 55, 55,

55, 59, 60, 63, 64, 65, 69, 70, 73, 74, 76, 79, 80, 83]

Let d(k, α, p) be the multiplicity of α as a slope of Fp,k.

Conjecture 3.6.2 (Gouvea-Mazur, 1992). Fix a prime p and a nonnegative ra-
tional number α. Suppose k1 and k2 are integers with k1, k2 ≥ 2α+ 2, and k1 ≡ k2

(mod pn(p− 1)) for some integer n ≥ α. Then d(k1, α, p) = d(k2, α, p).

Notice that the above examples, with p = 5 and k1 = 12, are consistent with
this conjecture. However, it came as a huge surprise that the conjecture is false in
general!

Frank Calegari and Kevin Buzzard [BC04] found the first counterexample, when
p = 59, k1 = 16, α = 1, and k2 = 16 + 59 · 58 = 3438. We have d(16, 0, 59) = 0,
d(16, 1, 59) = 1, and d(16, α, 59) = 0 for all other α. However, initial computations
strongly suggest (but do not prove!) that d(3438, 1, 59) = 2. It is a finite, but
difficult, computation to decide what d(3438, 1, 59) really is (see Section 3.7). Using

2Jared Weinstein suggests we add some background explaining newton polygons and why they
are helpful.
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a trace formula, Calegari and Buzzard at least showed that either d(3438, 1, 59) ≥
2 or there exists α < 1 such that d(3438, α, 59) > 0, both of which contradict
Conjecture 3.6.2.

There are many theorems about more general formulations of the Gouvea-Mazur
conjecture, and a whole geometric theory “the Eigencurve” [CM98] that helps
explain it, but discussing this further is beyond the scope of this book.

3.7 An Algorithm for computing characteristic
polynomials of Hecke operators

In computational investigations, it is frequently useful to compute the character-
istic polynomial of the Hecke operator Tp,k of Tp acting on Sk(1). This can be
accomplished in several ways, each of which has advantages. The Eichler-Selberg
trace formula (see Zagier’s appendix to [Lan95, Ch. III]), can be used to compute
the trace of Tn,k, for n = 1, p, p2, . . . , pd−1, where d = dimSk(1), and from these
traces it is straightforward to recover the characteristic polynomial of Tp,k. Using
the trace formula, the time required to compute Tr(Tn,k) grows “very quickly”
in n (though not in k), so this method becomes unsuitable when the dimension
is large or p is large, since pd−1 is huge. Another alternative is to use modular
symbols of weight k, as in [Mer94], but if one is only interested in characteristic
polynomials, little is gained over more naive methods (modular symbols are most
useful for investigating special values of L-functions).

In this section, we describe an algorithm to compute the characteristic polyno-
mial of the Hecke operator Tp,k, which is adapted for the case when p > 2. It could
be generalized to modular forms for Γ1(N), given a method to compute a basis
of q-expansions to “low precision” for the space of modular forms of weight k and
level N . By “low precision” we mean to precision O(qdp+1), where T1, T2, . . . , Td
generate the Hecke algebra T as a ring. The algorithm described here uses nothing
more than the basics of modular forms and some linear algebra; in particular, no
trace formulas or modular symbols are involved.

3.7.1 Review of basic facts about modular forms

We briefly recall the background for this section. Fix an even integer k. Let Mk(1)
denote the space of weight k modular forms for SL2(Z) and Sk(1) the subspace of
cusp forms. Thus Mk(1) is a C-vector space that is equipped with a ring

T = Z[. . . Tp,k . . .] ⊂ End(Mk(1))

of Hecke operators. Moreover, there is an injective q-expansion map Mk(1) ↪→
C[[q]]. For example, when k ≥ 4 there is an Eisenstein series Ek, which lies in
Mk(1). The first two Eisenstein series are

E4(q) =
1

240
+
∑
n≥1

σ3(n)qn and E6(q) =
1

504
+
∑
n≥1

σ5(n)qn,
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where q = e2πiz, σk−1(n) is the sum of the k − 1st power of the positive divisors.
For every prime number p, the Hecke operator Tp,k acts on Mk(1) by

Tp,k

∑
n≥0

anq
n

 =
∑
n≥0

anpq
n + pk−1anq

np. (3.7.1)

Proposition 3.7.1. The set of modular forms Ea4E
b
6 is a basis for Mk(1), where a

and b range through nonnegative integers such that 4a+6b = k. Moreover, Sk(1) is
the subspace of Mk(1) of elements whose q-expansions have constant coefficient 0.

3.7.2 The Naive approach

Let k be an even positive integer and p be a prime. Our goal is to compute the
characteristic polynomial of the Hecke operator Tp,k acting on Sk(1). In practice,
when k and p are both reasonably large, e.g., k = 886 and p = 59, then the co-
efficients of the characteristic polynomial are huge (the roots of the characteristic
polynomial are O(pk/2−1)). A naive way to compute the characteristic polynomial
of Tp,k is to use (3.7.1) to compute the matrix [Tp,k] of Tp,k on the basis of Propo-
sition 3.7.1, where E4 and E6 are computed to precision p dimMk(1), and to then
compute the characteristic polynomial of [Tp,k] using, e.g., a modular algorithm
(compute the characteristic polynomial modulo many primes, and use the Chinese
Remainder Theorem). The difficulty with this approach is that the coefficients
of the q-expansions of Ea4E

b
6 to precision pdimMk(1) quickly become enormous,

so both storing them and computing with them is costly, and the components of
[Tp,k] are also huge so the characteristic polynomial is difficult to compute. See
Example 3.2.4 above, where the coefficients of the q-expansions are already large.

3.7.3 The Eigenform method

We now describe another approach to computing characteristic polynomials, which
gets just the information required. Recall Maeda’s conjecture from Section 3.6.1,
which asserts that Sk(1) is spanned by the Gal(Q/Q)-conjugates of a single eigen-
form f =

∑
bnq

n. For simplicity of exposition below, we assume this conjecture,
though the algorithm can probably be modified to deal with the general case. We
will refer to this eigenform f , which is well-defined up to Gal(Q/Q)-conjugacy, as
Maeda’s eigenform.

Lemma 3.7.2. The characteristic polynomial of the pth coefficient bp of Maeda’s
eigenform f , in the field Q(b1, b2, . . .), is equal to the characteristic polynomial of
Tp,k acting on Sk(1).

Proof. The map T⊗Q→ Q(b1, b2, . . .) that sends Tn → bn is an isomorphism of
Q-algebras.

Victor Miller shows in his thesis that Sk(1) has a unique basis f1, . . . , fd ∈ Z[[q]]
with ai(fj) = δij , i.e., the first d × d block of coefficients is the identity matrix.
Again, in the general case, the requirement that there is such a basis can be avoided,
but for simplicity of exposition we assume there is such a basis. We refer to the
basis f1, . . . , fd as Miller’s basis.
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Algorithm 3.7.3. We assume in the algorithm that the characteristic polynomial
of T2 has no multiple roots (this is easy to check, and if false, then you have found
an interesting counterexample to the conjecture that the characteristic polynomial
of T2 has Galois group the full symmetric group).

1. Using Proposition 3.7.1 and Gauss elimination, we compute Miller’s basis
f1, . . . , fd to precision O(q2d+1), where d = dimSk(1). This is exactly the
precision needed to compute the matrix of T2.

2. Using Definition 3.7.1, we compute the matrix [T2] of T2 with respect to
Miller’s basis f1, . . . , fd. We compute the matrix with respect to the Miller
basis mainly because it makes the linear algebra much simpler.

3. Using Algorithm 3.7.5 below we write down an eigenvector e = (e1, . . . , ed) ∈
Kd for [T2]. In practice, the components of T2 are not very large, so the
numbers involved in computing e are also not very large.

4. Since e1f1 + · · ·+edfd is an eigenvector for T2, our assumption that the char-
acteristic polynomial of T2 is square free (and the fact that T is commutative)
implies that e1f1 + · · ·+ edfd is also an eigenvector for Tp. Normalizing, we
see that up to Galois conjugacy,

bp =

d∑
i=1

ei
e1
· ap(fi),

where the bp are the coefficients of Maeda’s eigenform f . For example, since
the fi are Miller’s basis, if p ≤ d then

bp =
ep
e1

if p ≤ d,

since ap(fi) = 0 for all i 6= p and ap(fp) = 1.

5. Finally, once we have computed bp, we can compute the characteristic poly-
nomial of Tp, because it is the minimal polynomial of bp. We spend the rest
of this section discussing how to make this step practical.

Computing bp directly in step 4 is extremely costly because the divisions ei/e1

lead to massive coefficient explosion, and the same remark applies to computing
the minimal polynomial of bp. Instead we compute the reductions bp modulo `
and the characteristic polynomial of bp modulo ` for many primes `, then recover
only the characteristic polynomial of bp using the Chinese Remainder Theorem.
Deligne’s bound on the magnitude of Fourier coefficients tells us how many primes
we need as moduli (we leave this analysis to the reader)3 . 3

More precisely, the reduction modulo ` steps are as follows. The field K can be
viewed as Q[x]/(f(x)) where f(x) ∈ Z[x] is the characteristic polynomial of T2.
We work only modulo primes such that

1. f(x) has no repeated roots modulo `,

2. ` does not divide any denominator involved in our representation of e, and

3Say more later.
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3. the image of e1 in F`[x]/(f(x)) is invertible.

For each such prime, we compute the image bp of bp in the reduced Artin ring
F`[x]/(f(x)). Then the characteristic polynomial of Tp modulo ` equals the char-
acteristic polynomial of bp. This modular arithmetic is fast and requires negligible
storage. Most of the time is spent doing the Chinese Remainder Theorem com-
putations, which we do each time we do a few computations of the characteristic
polynomial of Tp modulo `.

Remark 3.7.4. If k is really large, so that steps 1 and 2 of the algorithm take too
long or require too much memory, steps 1 and 2 can be performed modulo the
prime `. Since the characteristic polynomial of Tp,k modulo ` does not depend on
any choices, we will still be able to recover the original characteristic polynomial.

3.7.4 How to write down an eigenvector over an extension field

The following algorithm, which was suggested to the author by H. Lenstra, pro-
duces an eigenvector defined over an extension of the base field.

Algorithm 3.7.5. Let A be an n×n matrix over an arbitrary field k and suppose
that the characteristic polynomial f(x) = xn + · · ·+ a1x+ a0 of A is irreducible.
Let α be a root of f(x) in an algebraic closure k of k. Factor f(x) over k(α) as
f(x) = (x − α)g(x). Then for any element v ∈ kn the vector g(A)v is either 0 or
it is an eigenvector of A with eigenvalue α. The vector g(A)v can be computed by
finding Av, A(Av), A(A(Av)), and then using that

g(x) = xn−1 + cn−2x
n−2 + · · ·+ c1x+ c0,

where the coefficients ci are determined by the recurrence

c0 = −a0

α
, ci =

ci−1 − ai
α

.

We prove below that g(A)v 6= 0 for all vectors v not in a proper subspace of
kn. Thus with high probability, a “randomly chosen” v will have the property that
g(A)v 6= 0. Alternatively, if v1, . . . vn form a basis for kn, then g(A)vi must be
nonzero for some i.

Proof. By the Cayley-Hamilton theorem [Lan93, XIV.3] we have that f(A) = 0.
Consequently, for any v ∈ kn, we have (A − α)g(A)v = 0 so that Ag(A)v =
αv. Since f is irreducible it is the polynomial of least degree satisfied by A and
so g(A) 6= 0. Therefore g(A)v 6= 0 for all v not in the proper closed subspace
ker(g(A)).
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3.7.5 Simple example: weight 36, p = 3

We compute the characteristic polynomial of T3 acting on S36(1) using the algo-
rithm described above. A basis for M36(1) to precision 6 = 2 dim(S36(1)) is

E9
4 = 1 + 2160q + 2093040q2 + 1198601280q3 + 449674832880q4

+ 115759487504160q5 + 20820305837344320q6 +O(q7)

E6
4E

2
6 = 1 + 432q − 353808q2 − 257501376q3 − 19281363984q4

+ 28393576094880q5 + 11565037898063424q6 +O(q7)

E3
4E

4
6 = 1− 1296q + 185328q2 + 292977216q3 − 52881093648q4

− 31765004621280q5 + 1611326503499328q6 +O(q7)

E6
6 = 1− 3024q + 3710448q2 − 2309743296q3 + 720379829232q4

− 77533149038688q5 − 8759475843314112q6 +O(q7)

The reduced row-echelon form (Miller) basis is:

f0 = 1 + 6218175600q4 + 15281788354560q5 + 9026867482214400q6 +O(q7)

f1 = q + 57093088q4 + 37927345230q5 + 5681332472832q6 +O(q7)

f2 = q2 + 194184q4 + 7442432q5 − 197264484q6 +O(q7)

f3 = q3 − 72q4 + 2484q5 − 54528q6 +O(q7)

The matrix of T2 with respect to the basis f1, f2, f3 is

[T2] =

 0 34416831456 5681332472832
1 194184 −197264484
0 −72 −54528


This matrix has (irreducible) characteristic polynomial

g = x3 − 139656x2 − 59208339456x− 1467625047588864.

If a is a root of this polynomial, then one finds that

e = (2a+ 108984, 2a2 + 108984a, a2 − 394723152a+ 11328248114208)

is an eigenvector with eigenvalue a. The characteristic polynomial of T3 is then
the characteristic polynomial of e3/e1, which we can compute modulo ` for any
prime ` such that g ∈ F`[x] is square free. For example, when ` = 11,

e3

e1
=
a2 + a+ 3

2a2 + 7
= 9a2 + 2a+ 3,

which has characteristic polynomial

x3 + 10x2 + 8x+ 2.

If we repeat this process for enough primes ` and use the Chinese remainder
theorem, we find that the characteristic polynomial of T3 acting on S36(1) is

x3 + 104875308x2 − 144593891972573904x− 21175292105104984004394432.
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4.1 Modular forms for SL2(Z)

Let Γ = Γ1(1) = SL2(Z) and for k ≥ 0 let

Mk = {f =

∞∑
n=0

anq
n : f is a modular form for Γ}

⊂ Sk = {f =

∞∑
n=1

anq
n}

These are finite dimensional C-vector spaces whose dimensions are easily com-
puted. Furthermore, they are generated by familiar elements (see Serre [Ser73] or
Lang [Lan95].) The main tool is the formula∑

p∈D∪{∞}

1

e(p)
ordp(f) =

k

12

where D is the fundamental domain for Γ and

e(p) =


1 otherwise

2 if p = i

3 if p = ρ

One can alternatively define e(p) as follows. If p = τ and E = C/(Zτ + Z) then
e(p) = 1

2# Aut(E).
For k ≥ 4 we define the Eisenstein series Gk by

Gk(q) =
1

2
ζ(1− k) +

∞∑
n=1

σk−1(n)qn,
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then the map

τ 7→
∑

(m,n)6=(0,0)
m,n∈Z

1

(mτ + n)k

differs from Gk by a constant (no proof). Also, ζ(1 − k) ∈ Q and one may say,

symbolically at least, “ζ(1− k) =

∞∑
d=1

dk−1 = σk−1(0).” The nth Bernoulli number

Bn is defined by the equation

x

ex − 1
=

∞∑
n=0

Bnx
n

n!
.

One can show that ζ(1−k) = −Bkk so the constant coefficient of Gk is −Bk2k which
is rational.

4.2 Inner product

In what follows we assume k ≥ 2 to avoid trivialities.. The Hecke operators Tn
acts on the space Mk. Fix a subspace V ⊂Mk which is stable under the action of
the Tn. Let T(V ) be the C-algebra generated by the endomorphism Tn acting on
V and note that T(V ) is actually a finite dimensional C-vector space since it is a
subspace of End(V ) and V is finite dimensional. Recall that T is commutative.

There is a bilinear form

T× V → C

〈T, f〉 7→ a1(f |T )

where f |T =
∑∞
n=0 an(f |T )qn. We thus get maps

V → Hom(T,C) = T∗

T→ Hom(V,C) = V ∗.

Theorem 4.2.1. The above maps are isomorphisms.

Proof. It just remains to show each map is injective. Then since a finite dimensional
vector space and its dual have the same dimension the result follows. First suppose
f 7→ 0 ∈ Hom(T,C), then a1(f |T ) = 0 for all T ∈ T so, in particular, an =
a1(f |Tn) = 0 for all n ≥ 1. Thus f is a constant, but since k ≥ 2 this implies
f = 0 (otherwise f wouldn’t transform correctly with respect to the action of the
modular group).

Next suppose T 7→ 0 ∈ Hom(V,C), then a1(f |T ) = 0 for all f ∈ V . Substituting
f |Tn for f and using the commutativity of T we have

a1((f |Tn)|T ) = 0 for all f , n ≥ 1

a1((f |T )|Tn) = 0 by commutativity

an(f |T ) = 0 n ≥ 1

f |T = 0 since k ≥ 2, as above

Thus T = 0 which completes the proof.
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Remark 4.2.2. The above isomorphisms are T-equivariant. Hom(T,C) is a T-
module if we let T ∈ T act on ϕ ∈ Hom(T,C) by (T · ϕ)(T ′) = ϕ(TT ′). If
α : V → Hom(T,C) is the above isomorphism (so α : f 7→ ϕf := (T ′ 7→ a1(f |T ′)))
then equivariance is the statement that α(Tf) = Tα(f). This follows since

α(Tf)(T ′) = ϕTf (T ′) = a1(Tf |T ′) = a1(f |T ′T )

= ϕf (T ′T ) = Tϕ(T ′) = Tα(f)(T ′).

4.3 Eigenforms

We continue to assume that k ≥ 2. A modular form f ∈Mk is an eigenform for T
if f |Tn = λnf for all n ≥ 1 and some complex numbers λn. Let f be an eigenform,
then an(f) = a1(f |Tn) = λna1(f) so if a1(f) = 0 then an(f) = 0 for all n ≥ 1 so
since k ≥ 2 this would imply f = 0. Thus a1(f) 6= 0 and we may as well divide
through by a1(f) to obtain the normalized eigenform 1

a1(f)f . We thus assume that

a1(f) = 1, then the formula becomes an(f) = λn and so f |Tn = an(f)f , for all
n ≥ 1.

Theorem 4.3.1. Let f ∈ V and let ψ be the image of f in Hom(T,C), thus
ψ(T ) = a1(f |T ). Then f is a normalized eigenform if and only if ψ is a ring
homomorphism.

Proof. First suppose f is a normalized eigenform so f |Tn = an(f)f . Then

ψ(TnTm) = a1(f |TnTm) = am(f |Tn)

= am(an(f)f) = am(f)an(f)

= ψ(Tn)ψ(Tm),

so ψ is a homomorphism.
Conversely, assume ψ is a homomorphism. Then f |Tn =

∑
am(f |Tn)qm, so to

show that f |Tn = an(f)f we must show that am(f |Tn) = an(f)am(f). Recall that
ψ(Tn) = a1(f |Tn) = an, thus

an(f)am(f) = a1(f |Tn)a1(f |Tm) = ψ(Tn)ψ(Tm)

= ψ(TnTm) = a1(f |Tn|Tm)

= am(f |Tn)

as desired.

4.4 Integrality

In the previous sections, we looked at subspaces V ⊂ Mk ⊂ C[[q]], (k ≥ 4), and
considered the space T = T(V ) = C[. . . , Tn, . . .] ⊂ EndC V of Hecke operators
on V . We defined a pairing T × V → C by (T, f) 7→ a1(f |T ) and showed this
pairing is nondegenerate and that it induces isomorphisms T ∼= Hom(V,C) and
V ∼= Hom(T,C).
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Fix k ≥ 4 and let S = Sk be the space of weight k cusp forms with respect to
the action of SL2(Z). Let

S(Q) = Sk ∩Q[[q]]

S(Z) = Sk ∩ Z[[q]].

Theorem 4.4.1. There is a C-basis of Mk consisting of forms with integral coef-
ficients.

Proof. This is seen by exhibiting a basis. Recall that for all k ≥ 4

Gk = − bk
2k

+

∞∑
k=1

∑
d|k

dk−1qn

is the kth Eisenstein series which is a modular form of weight k and

Ek = −2k

bk
·Gk = 1 + · · ·

is its normalization. Since the Bernoulli numbers b2, . . . , b8 have 1 as numerator
(this isn’t always the case, b10 = 5

66 ) we see that E4 and E6 have coefficients in
Z and constant term 1. Furthermore one shows by dimension and independence
arguments that the modular forms

{Ea4Eb6 : 4a+ 6b = k}

form a basis for Mk.

4.5 A Result from Victor Miller’s thesis

Set d = dimC Sk. Victor Miller showed in his thesis (see [Lan95], Ch. X, Theo-
rem 4.4) that there exists

f1, . . . , fd ∈ Sk(Z) such that ai(fj) = δij

for 1 ≤ i, j ≤ d. The fi then form a basis for Sk(Z).

Example 4.5.1. The space S36(Z) has basis

f1 = q + 57093088q4 + 37927345230q5 + 5681332472832q6 + · · ·
f2 = q2 + 194184q4 + 7442432q5 − 197264484q6 + 722386944q7 · · ·
f3 = q3 − 72q4 + 2484q5 − 54528q6 + 852426q7 − 10055232q8 + · · ·

Let T = Z[. . . , Tn, . . .] ⊂ End(Sk) be the Hecke algebra associated to Sk. Miller’s
thesis implies the following result about T.

Proposition 4.5.2. We have T =
⊕d

i=1 ZTi, as Z-modules.

Proof. To see that T1, . . . , Td ∈ T = T(Sk) are linearly independent over C sup-

pose
∑d
i=1 ciTi = 0, then

0 = a1(fj |
∑

ciTi) =
∑
i

ciai(fj) =
∑
i

ciδij = cj .
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From the isomorphism T ∼= Hom(Sk,C) we know that dimC T = d, so we can
write any Tn as a C-linear combination

Tn =

d∑
i=1

cniTi, cni ∈ C.

But

Z 3 an(fj) = a1(fj |Tn) =

d∑
i=1

cnia1(fj |Ti) =

d∑
i=1

cniai(fj) = cnj

so the cni all lie in Z which completes the proof.

Thus R is an integral Hecke algebra of finite rank d over Z. We have a map

S(Z)×R→ Z

(f, T ) 7→ a1(f |T )

which induces an embedding

S(Z) ↪→ Hom(R,Z) ∼= Zd.

Exercise 4.5.3. Prove that the map S(Z) ↪→ Hom(R,Z) is in fact an isomorphism
of T-modules. [Hint: Show the cokernel is torsion free.]

4.6 The Petersson inner product

The main theorem is

Theorem 4.6.1. The Tn ∈ T(Sk) are all diagonalizable over C.

To prove this we note that Sk supports a non-degenerate positive definite Her-
mitean inner product (the Petersson inner product)

(f, g) 7→ 〈f, g〉 ∈ C

such that 〈f |Tn, g〉 = 〈f, g|Tn〉. We need some background facts.
An operator T is normal if it commutes with its adjoint, thus TT ∗ = T ∗T . Tn

is clearly normal since T ∗n = Tn,

Theorem 4.6.2. A normal operator is diagonalizable.

Thus each Tn is diagonalizable.

Theorem 4.6.3. A commuting family of semisimple (=diagonalizable) operators
can be simultaneously diagonalized.

Since the Tn commute this implies Sk has a basis consisting of normalized eigen-
forms f . Their eigenvalues are real since

an(f)〈f, f〉 = 〈an(f)f, f〉 = 〈f |Tn, f〉

= 〈f, an(f)f〉 = an(f)〈f, f〉.
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Exercise 4.6.4. The coefficients an of the eigenforms are totally real algebraic
integers. [Hint: The space Sk is stable under the action of Aut(C) on coefficients:
if f =

∑∞
n=1 cnq

n ∈ Sk and σ ∈ Aut(C) then σ(f) =
∑∞
n=1 σ(cn)qn is again in Sk

(check this by writing f in terms of a basis f1, . . . , fd ∈ S(Z)). Next use that f is
an eigenform if and only if σ(f) is an eigenform.]

Let
h = {x+ iy : x, y ∈ R, and y > 0}

be the upper half plane. Then the volume form dx∧dy
y2 is invariant under the action

of
GL+

2 (R) = {M ∈ GL2(R)|det(M) > 0}.

If α =
(
a b
c d

)
∈ GL+

2 (R) then
(
a b
c d

)
acts on h by(

a b
c d

)
: z 7→ az + b

cz + d

and one has

Im(
az + b

cz + d
) =

det(α)

|cz + d|2
y.

Differentiating az+b
cz+d gives

d(
az + b

cz + d
) =

a(cz + d)dz − c(az + b)dz

(cz + d)2

=
(ad− bc)dz
(cz + d)2

=
det(α)

(cz + d)2
dz

Thus, under the action of α, dz ∧ dz takes on a factor of

det(α)2

(cz + d)2(cz + d)2
=
( det(α)

|cz + d|2
)2

.

The Petersson inner product of forms f, g ∈ Sk is defined by

< f, g >=

∫
Γ\h

(f(z)g(z)yk)
dx ∧ dy
y2

,

where Γ = SL2(Z).
Integrating over Γ\h can be taken to mean integrating over a fundamental do-

main for the action of h. Showing that the operators Tn are self-adjoint with respect
to the Petersson inner product is a harder computation than [Ser73] might lead
one to believe — it takes a bit of thought.
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Analytic Theory of Modular Curves

5.1 The Modular group

This section very closely follows Sections 1.1–1.2 of [Ser73]. We introduce the
modular group G = PSL2(Z), describe a fundamental domain for the action of G
on the upper half plane, and use it to prove that G is generated by

S =

(
0 − 1
1 0

)
and T =

(
1 1
0 1

)
.

5.1.1 The Upper half plane

Let
h = {z ∈ C : Im(z) > 0}

be the open complex upper half plane. The group

SL2(R) =

{(
a b
c d

)
: a, b, c, d ∈ R and ad− bc = 1

}
acts by linear fractional transformations (z 7→ (az + b)/(cz + d)) on C ∪ {∞}. By
the following lemma, SL2(R) also acts on h:

i

R

FIGURE 5.1.1. The upper half plane h
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Lemma 5.1.1. Suppose g ∈ SL2(R) and z ∈ h. Then

Im(gz) =
Im(z)

|cz + d|2
.

Proof. Apply the identity Im(z) = 1
2i (z − z) to both sides of the asserted equality

and simplify.

The only element of SL2(R) that acts trivially on h is −1, so

G = PSL2(Z) = SL2(Z)/〈−1〉

acts faithfully on h. Let S and T be as above and note that S and T induce the
linear fractional transformations z 7→ −1/z and z 7→ z + 1, respectively. We prove
below that S and T generate G.

5.2 Points on modular curves parameterize elliptic
curves with extra structure

The classical theory of the Weierstass ℘-function sets up a bijection between
isomorphism classes of elliptic curves over C and isomorphism classes of one-
dimensional complex tori C/Λ. Here Λ is a lattice in C, i.e., a free abelian group
Zω1 + Zω2 of rank 2 such that Rω1 + Rω2 = C.

Any homomorphism ϕ of complex tori C/Λ1 → C/Λ2 is determined by a C-
linear map T : C→ C that sends Λ1 into Λ2.

Lemma 5.2.1. Suppose ϕ : C/Λ1 → C/Λ2 is nonzero. Then the kernel of ϕ is
isomorphic to Λ2/T (Λ1).

Lemma 5.2.2. Two complex tori C/Λ1 and C/Λ2 are isomorphic if and only if
there is a complex number α such that αΛ1 = Λ2.

Proof. Any C-linear map C→ C is multiplication by a scalar α ∈ C.

Suppose Λ = Zω1 +Zω2 is a lattice in C, and let τ = ω1/ω2. Then Λτ = Zτ +Z
defines an elliptic curve that is isomorphic to the elliptic curve determined by Λ.
By replacing ω1 by −ω1, if necessary, we may assume that τ ∈ h. Thus every
elliptic curve is of the form Eτ = C/Λτ for some τ ∈ h and each τ ∈ h determines
an elliptic curve.

Proposition 5.2.3. Suppose τ, τ ′ ∈ h. Then Eτ ∼= Eτ ′ if and only if there exists
g ∈ SL2(Z) such that τ = g(τ ′). Thus the set of isomorphism classes of elliptic
curves over C is in natural bijection with the orbit space SL2(Z)\h.

Proof. Suppose Eτ ∼= Eτ ′ . Then there exists α ∈ C such that αΛτ = Λτ ′ , so
ατ = aτ ′ + b and α1 = cτ ′ + d for some a, b, c, d ∈ Z. The matrix g =

(
a b
c d

)
has

determinant ±1 since aτ ′+ b and cτ ′+d form a basis for Zτ +Z; this determinant
is positive because g(τ ′) = τ and τ, τ ′ ∈ h. Thus det(g) = 1, so g ∈ SL2(Z).

Conversely, suppose τ, τ ′ ∈ h and g =
(
a b
c d

)
∈ SL2(Z) is such that

τ = g(τ ′) =
aτ ′ + b

cτ ′ + d
.



5.2 Points on modular curves parameterize elliptic curves with extra structure 37

Let α = cτ ′ + d, so ατ = aτ ′ + b. Since det(g) = 1, the scalar α defines an
isomorphism from Λτ to Λτ ′ , so Eτ ∼= E′τ , as claimed.

Let E = C/Λ be an elliptic curve over C and N a positive integer. Using
Lemma 5.2.1, we see that

E[N ] := {x ∈ E : Nx = 0} ∼=
(

1

N
Λ

)
/Λ ∼= (Z/NZ)2.

If Λ = Λτ = Zτ + Z, this means that τ/N and 1/N are a basis for E[N ].
Suppose τ ∈ h and recall that Eτ = C/Λτ = C/(Zτ + Z). To τ , we associate

three “level N structures”. First, let Cτ be the subgroup of Eτ generated by 1/N .
Second, let Pτ be the point of order N in Eτ defined by 1/N ∈ Λτ . Third, let Qτ
be the point of order N in Eτ defined by τ/N , and consider the basis (Pτ , Qτ ) for
E[N ].

In order to describe the third level structure, we introduce the Weil pairing

e : E[N ]× E[N ]→ Z/NZ

as follows. If E = C/(Zω1 + Zω2) with ω1/ω2 ∈ h, and P = aω1/N + bω2/N ,
Q = cω1/N + dω2/N , then

e(P,Q) = ad− bc ∈ Z/NZ.

Notice that e(Pτ , Qτ ) = −1 ∈ Z/NZ. Also if C/Λ ∼= C/Λ′ via multiplication by α,
and P,Q ∈ (C/Λ)[N ], then e(α(P ), α(Q)) = e(P,Q), so e does not depend on the
choice of Λ or a basis for it.

Remark 5.2.4. There is a canonical Nth root of 1 in C, namely ζ = e2πi/N .
Using ζ as a canonical generator of µN , we can view the transcendental Weil
pairing indifferently as a map with values in Z/NZ or as a map with values in
µN . However, for generalizations it is important to use µN rather than Z/NZ.
There are several intrinsic algebraic definitions of the Weil pairing on N -division
points for an elliptic curve (or, more generally, an abelian variety) over a field k
whose characteristic is prime to N . In all cases, the Weil pairing takes values in the
group of Nth roots of unity with values in the algebraic closure of k. The various
definitions all coincide “up to sign” in the sense that and any two of them either
coincide or are inverse to each other. There is a discussion of the Weil pairing in
[Kat81, §5.2].

Theorem 5.2.5. Let N be a positive integer.

1. The non-cuspidal points on X0(N) correspond to isomorphism classes of
pairs (E,C) where C is a cyclic subgroup of E of order N . (Two pairs
(E,C), (E′, C ′) are isomorphic if there is an isomorphism ϕ : E → E′

such that ϕ(C) = C ′.)

2. The non-cuspidal points on X1(N) correspond to pairs (E,P ) where P is a
point on E of exact order N . (Two pairs (E,P ) and (E′, P ′) are isomorphic
if there is an isomorphism ϕ : E → E′ such that ϕ(P ) = P ′.)

3. The non-cuspidal points on X(N) correspond to triples (E,P,Q) where P,Q
is a basis for E[N ] such that e(P,Q) = −1 ∈ Z/NZ. (Triples (E,P,Q) and
(E,P ′, Q′) are isomorphic if there is an isomorphism ϕ : E → E′ such that
ϕ(P ) = P ′ and ϕ(Q) = Q′.)
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This theorem follows from Propositions 5.2.6 and 5.2.8 below.

Proposition 5.2.6. Let E be an elliptic curve over C. If C is a cyclic subgroup of
E of order N , then there exists τ ∈ h such that (E,C) is isomorphic to (Eτ , Cτ ).
If P is a point on E of order N , then there exists τ ∈ C such that (E,P ) is
isomorphic to (Eτ , Pτ ). If P,Q is a basis for E[N ] and e(P,Q) = −1 ∈ Z/NZ,
then there exists τ ∈ C such that (E,P,Q) is isomorphic to (Eτ , Pτ , Qτ ).

Proof. Write E = C/Λ with Λ = Zω1 + Zω2 and ω1/ω2 ∈ h.
Suppose P = aω1/N + bω2/N is a point of order N . Then gcd(a, b,N) = 1,

otherwise P would have order strictly less than N , a contradiction. Thus we can
modify a and b by adding multiples of N to them (this follows from the fact that
SL2(Z)→ SL2(Z/NZ) is surjective), so that P = aω1/N + bω2/N and gcd(a, b) =
1. There exists c, d ∈ Z such that ad−bc = 1, so ω′1 = aω1+bω2 and ω′2 = cω1+dω2

form a basis for Λ, and C is generated by P = ω′1/N . If necessary, replace ω′2 by
−ω′2 so that τ = ω′2/ω

′
1 ∈ h. Then (E,P ) is isomorphic to (Eτ , Pτ ). Also, if C is

the subgroup generated by P , then (E,C) is isomorphic to (Eτ , Cτ ).
Suppose P = aω1/N + bω2/N and Q = cω1/N + dω2/N are a basis for E[N ]

with e(P,Q) = −1. Then the matrix
(
a b
−c −d

)
has determinant 1 modulo N , so

because the map SL2(Z) → SL2(Z/NZ) is surjective, we can replace a, b, c, d by
integers which are equivalent to them modulo N (so P and Q are unchanged) and
so that ad − bc = −1. Thus ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 form a basis for
Λ. Let

τ = ω′2/ω
′
1 =

cω1

ω2
+ d

aω1

ω2
+ b

.

Then τ ∈ h since ω1/ω2 ∈ h and
(
c d
a b

)
has determinant +1. Finally, division by

ω′1 defines an isomorphism E → Eτ that sends P to 1/N and Q to τ/N .

Remark 5.2.7. Part 3 of Theorem 2.4 in Chapter 11 of Husemöller’s book on
elliptic curves is wrong, since he neglects the Weil pairing condition. Also the
first paragraph of his proof of the theorem is incomplete.

The following proposition completes the proof of Theorem 5.2.5.

Proposition 5.2.8. Suppose τ, τ ′ ∈ h. Then (Eτ , Cτ ) is isomorphic (Eτ ′ , Cτ ′) if
and only if there exists g ∈ Γ0(N) such that g(τ) = τ ′. Also, (Eτ , Pτ ) is isomorphic
(Eτ ′ , Pτ ′) if and only if there exists g ∈ Γ1(N) such that g(τ) = τ ′. Finally,
(Eτ , Pτ , Qτ ) is isomorphic (Eτ ′ , Pτ ′ , Qτ ′) if and only if there exists g ∈ Γ(N) such
that g(τ) = τ ′.

Proof. We prove only the first assertion, since the others are proved in a similar
way. Suppose (Eτ , Cτ ) is isomorphic to (E′τ , C

′
τ ). Then there is λ ∈ C such that

λΛτ = Λτ ′ . Thus λτ = aτ ′ + b and λ1 = cτ ′ + d with g =
(
a b
c d

)
∈ SL2(Z) (as

we saw in the proof of Proposition 5.2.3). Dividing the second equation by N we
get λ 1

N = c
N τ
′ + d

N , which lies in Λτ ′ = Zτ ′ + 1
NZ, by hypothesis. Thus c ≡ 0

(mod N), so g ∈ Γ0(N), as claimed. For the converse, note that if N | c, then
c
N τ
′ + d

N ∈ Λτ ′ .
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5.3 The Genus of X(N)

Let N be a positive integer. The aim of this section is to establish some facts
about modular curves associated to congruence subgroups and compute the genus
of X(N). Similar methods can be used to compute the genus of X0(N) and X1(N)
(for X0(N) see [Shi94, §1.6] and for X1(N) see [DI95, §9.1]).

The groups Γ0(1), Γ1(1), and Γ(1) are all equal to SL2(Z), so X0(1) = X1(1) =
X(1) = P1. Since P1 has genus 0, we know the genus for each of these three
cases. For general N we obtain the genus by determining the ramification of the
corresponding cover of P1 and applying the Hurwitz formula, which we assume
the reader is familiar with, but which we now recall.

Suppose f : X → Y is a surjective morphism of Riemann surfaces of degree d.
For each point x ∈ X, let ex be the ramification exponent at x, so ex = 1 precisely
when f is unramified at x, which is the case for all but finitely many x. (There is a
point over y ∈ Y that is ramified if and only if the cardinality of f−1(y) is less than
the degree of f .) Let g(X) and g(Y ) denote the genera of X and Y , respectively.

Theorem 5.3.1 (Hurwitz Formula). Let f : X → Y be as above. Then

2g(X)− 2 = d(2g(Y )− 2) +
∑
x∈X

(ex − 1).

If X → Y is Galois, so the ex in the fiber over each fixed y ∈ Y are all equal, then
this formula becomes

2g(X)− 2 = d

2g(Y )− 2 +
∑
y∈Y

(
1− 1

ey

) .

Let X be one of the modular curves X0(N), X1(N), or X(N) corresponding to a
congruence subgroup Γ, and let Y = X(1) = P1. There is a natural map f : X → Y
got by sending the equivalence class of τ modulo the congruence subgroup Γ to the
equivalence class of τ modulo SL2(Z). This is “the” map X → P1 that we mean
everywhere below.

Because PSL2(Z) acts faithfully on h, the degree of f is the index in PSL2(Z)
of the image of Γ in PSL2(Z) (see Exercise X). Using that the map SL2(Z) →
SL2(Z/NZ) is surjective, we can compute these indices (Exercise X), and obtain
the following lemma:

Proposition 5.3.2. Suppose N > 2. The degree of the map X0(N) → P1 is
N
∏
p|N (1 + 1/p). The degree of the map X1(N) → P1 is 1

2N
2
∏
p|N (1 − 1/p2).

The degree of the map from X(N) → P1 is 1
2N

3
∏
p|N (1 − 1/p2). If N = 2, then

the degrees are 3, 3, and 6, respectively.

Proof. This follows from the discussion above, Exercise X about indices of congru-
ence subgroups in SL2(Z), and the observation that for N > 2 the groups Γ(N)
and Γ1(N) do not contain −1 and the group Γ0(N) does.

Proposition 5.3.3. Let X be X0(N), X1(N) or X(N). Then the map X → P1

is ramified at most over ∞ and the two points corresponding to elliptic curves with
extra automorphisms (i.e., the two elliptic curves with j-invariants 0 and 1728).
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Proof. Since we have a tower X(N)→ X1(N)→ X0(N)→ P1, it suffices to prove
the assertion for X = X(N). Since we do not claim that there is no ramification
over ∞, we may restrict to Y (N). By Theorem 5.2.5, the points on Y (N) cor-
respond to isomorphism classes of triples (E,P,Q), where E is an elliptic curve
over C and P,Q are a basis for E[N ]. The map from Y (N) to P1 sends the iso-
morphism class of (E,P,Q) to the isomorphism class of E. The equivalence class
of (E,P,Q) also contains (E,−P,−Q), since −1 : E → E is an isomorphism. The
only way the fiber over E can have cardinality smaller than the degree is if there
is an extra equivalence (E,P,Q) → (E,ϕ(P ), ϕ(Q)) with ϕ an automorphism of
E not equal to ±1. The theory of CM elliptic curves shows that there are only two
isomorphism classes of elliptic curves E with automorphisms other than ±1, and
these are the ones with j-invariant 0 and 1728. This proves the proposition.

Theorem 5.3.4. For N > 2, the genus of X(N) is

g(X(N)) = 1 +
N2(N − 6)

24

∏
p|N

(
1− 1

p2

)
,

where p runs through the prime divisors of N . For N = 1, 2, the genus is 0.

Thus if gN = g(X(N)), then g1 = g2 = g3 = g4 = g5 = 0, g6 = 1, g7 = 3, g8 = 5,
g9 = 10, g389 = 2414816, and g2003 = 333832500.

Proof. Since X(N) is a Galois covering of X(1) = P1, the ramification indices ex
are all the same for x over a fixed point y ∈ P1; we denote this common index
by ey. The fiber over the curve with j-invariant 0 has size one-third of the degree,
since the automorphism group of the elliptic curve with j-invariant 0 has order 6,
so the group of automorphisms modulo ±1 has order three, hence e0 = 3. Similarly,
the fiber over the curve with j-invariant 1728 has size half the degree, since the
automorphism group of the elliptic curve with j-invariant 1728 is cyclic of order 4,
so e1728 = 2.

To compute the ramification degree e∞ we use the orbit stabilizer theorem.
The fiber of X(N) → X(1) over ∞ is exactly the set of Γ(N) equivalence classes
of cusps, which is Γ(N)∞,Γ(N)g2∞, . . . ,Γ(N)gr∞, where g1 = 1, g2, . . . , gr are
coset representatives for Γ(N) in SL2(Z). By the orbit-stabilizer theorem, the
number of cusps equals #(Γ(1)/Γ(N))/#S, where S is the stabilizer of Γ(N)∞
in Γ(1)/Γ(N) ∼= SL2(Z/NZ). Thus S is the subgroup {± ( 1 n

0 1 ) : 0 ≤ n < N − 1},
which has order 2N . Since the degree of X(N) → X(1) equals #(Γ(1)/Γ(N))/2,
the number of cusps is the degree divided by N . Thus e∞ = N .

The Hurwitz formula for X(N)→ X(1) with e0 = 3, e1728 = 2, and e∞ = N , is

2g(X(N))− 2 = d

(
0− 2 +

(
1− 1

3
+ 1− 1

2
+ 1− 1

N

))
,

where d is the degree of X(N)→ X(1). Solving for g(X(N)) we obtain

2g(X)− 2 = d

(
1− 5

6
− 1

N

)
= d

(
N − 6

6N

)
,

so

g(X) = 1 +
d

2

(
N − 6

6N

)
=

d

12N
(N − 6) + 1.
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Substituting the formula for d from Proposition 5.3.2 yields the claimed formula.
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6
Modular Curves

6.1 Cusp Forms

Recall that if N is a positive integer we define the congruence subgroups Γ(N) ⊂
Γ1(N) ⊂ Γ0(N) by

Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)}

Γ1(N) = {
(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1, c ≡ 0 (mod N)}

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)}.

Let Γ be one of the above subgroups. One can give a construction of the space
Sk(Γ) of cusp forms of weight k for the action of Γ using the language of algebraic
geometry. Let XΓ = Γ\H∗ be the compactification of the upper half plane (union
the cusps) modulo the action of Γ. Then XΓ can be given the structure of Riemann
surface and S2(Γ) = H0(XΓ,Ω

1) where Ω1 is the sheaf of differential 1-forms
on XΓ. This works since an element of H0(XΓ,Ω

1) is a differential form f(z)dz,
holomorphic on H and the cusps, which is invariant with respect to the action of
Γ. If γ =

(
a b
c d

)
∈ Γ then

d(γ(z))/dz = (cz + d)−2

so

f(γ(z))d(γ(z)) = f(z)dz

if and only if f satisfies the modular condition

f(γ(z)) = (cz + d)2f(z).

There is a similar construction of Sk for k > 2.
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6.2 Modular curves

One knows that SL2(Z)\h parameterizes isomorphism classes of elliptic curves.
The other congruence subgroups also give rise to similar parameterizations. Thus
Γ0(N)\h parameterizes pairs (E,C) where E is an elliptic curve and C is a cyclic
subgroup of order N , and Γ1(N)\H parameterizes pairs (E,P ) where E is an
elliptic curve and P is a point of exact order N . Note that one can also give a point
of exact order N by giving an injection Z/NZ ↪→ E[N ] or equivalently an injection
µN ↪→ E[N ] where µN denotes the Nth roots of unity. Γ(N)\h parameterizes pairs
(E, {α, β}) where {α, β} is a basis for E[N ] ∼= (Z/NZ)2.

The above quotients spaces are called moduli spaces for the moduli problem of
determining equivalence classes of pairs (E+ extra structure).

6.3 Classifying Γ(N)-structures

Let S be an arbitrary scheme. An elliptic curve E/S is a proper smooth curve

E

f

��
S

with geometrically connected fibers all of genus one, give with a section “0”.
Loosely speaking, proper is a generalization of projective and smooth generalizes

nonsingularity. See Hartshorne [Har77, III.10] for the precise definitions.
Let S be any scheme and E/S an elliptic curve. A Γ(N)-structure on E/S is

a group homomorphism

ϕ : (Z/NZ)2 → E[N ](S)

whose image “generates” E[N ](S).
A good reference is [KM85, III].
Define a functor from the category of Q-schemes to the category of sets by

sending a scheme S to the set of isomorphism classes of pairs

(E,Γ(N)-structure)

where E is an elliptic curve defined over S and isomorphisms (preserving the
Γ(N)-structure) are taken over S. An isomorphism preserves the Γ(N)-structure
if it takes the two distinguished generators to the two distinguished generators in
the image (in the correct order).

Theorem 6.3.1. For N ≥ 4 the functor defined above is representable and the
object representing it is the modular curve X corresponding to Γ(N).

What this means is that given a Q-scheme S, the set

X(S) = MorQ-schemes(S,X)

is isomorphic to the image of the functor’s value on S.
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There is a natural way to map a pair (E,Γ(N)-structure) to an Nth root of unity.
If P,Q are the distinguished basis of E[N ] we send the pair (E,Γ(N)-structure)
to

eN (P,Q) ∈ µN

where eN : E[N ]×E[N ]→ µN is the Weil pairing. For the definition of this pairing
see [Sil92, III.8]. The Weil pairing is bilinear, alternating, non-degenerate, Galois
invariant, and maps surjectively onto µN .

6.4 More on integral Hecke operators

We are considering the algebra of integral Hecke operators T = TZ on the space
of cusp forms Sk(C) with respect to the action of the full modular group SL2(Z).
Our goal is to see why T ∼= Zd where d = dimC Sk(C).

Suppose A ⊂ C is any subring of C and recall that

TA = A[. . . , Tn, . . .] ⊂ EndC Sk.

We have a natural map

TA ⊗A C→ TC

but we do not yet know that it is an isomorphism.

6.5 Complex conjugation

We have a conjugate linear map on functions

f(τ) 7→ f(−τ).

Since (e−2πiτ ) = e2πiτ , it follows that

∞∑
n=1

anq
n 7→

∞∑
n=1

anq
n

so it is reasonable to call this map “complex conjugation”. Furthermore, if we know
that

Sk(C) = C⊗Q Sk(Q)

then it follows that complex conjugation takes Sk(C) into Sk(C). To see this note
that if we have the above equality then every element of Sk(C) is a C-linear
combination of elements of Sk(Q) and conversely, and it is clear that the set of
such C-linear combinations is invariant under the action of complex conjugation.

6.6 Isomorphism in the real case

Proposition 6.6.1. TR ⊗R C ∼= TC, as C-vector spaces.
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Proof. Since Sk(R) = Sk(C)∩R[[q]] and since theorem 5.1 assures us that there is a
C-basis of Sk(C) consisting of forms with integral coefficients, we see that Sk(R) ∼=
Rd where d = dimC Sk(C). (Any element of Sk(R) is a C-linear combination of the
integral basis, hence equating real and imaginary parts, an R-linear combination of
the integral basis, and the integral basis stays independent over R.) By considering
the explicit formula for the action of the Hecke operators Tn on Sk (see section 3)
we see that TR leaves Sk(R) invariant, thus

TR = R[. . . , Td, . . .] ⊂ EndR Sk(R).

In section 4 we defined a “perfect” pairing

TC × Sk(C)→ C

which allowed us to show that TC
∼= Sk(C). By restricting to R we again get a

perfect pairing so we see that TR
∼= Sk(R) ∼= Rd which implies that

TR ⊗R C
∼−→ TC.

This also shows that Sk(C) ∼= C⊗RSk(R) so we have complex conjugation over
R.

6.7 The Eichler-Shimura isomorphism

Our goal in this section is to outline a homological interpretation of Sk. For details
see [Lan95, VI], the original paper [Shi59], or [Shi94, VIII].

How is Sk(C) sort of isomorphic to H1(XΓ,R)? Suppose k = 2 and Γ ⊂ SL2(Z)
is a congruence subgroup, let XΓ = Γ\H be the Riemann surface obtained by com-
pactifying the upper half plane modulo the action of Γ. Then Sk(C) = H0(XΓ,Ω

1)
so we have a pairing

H1(XΓ,Z)× Sk(C)→ C

given by integration

(γ, ω) 7→
∫
γ

ω.

This gives an embedding

Z2d ∼= H1(XΓ,Z) ↪→ HomC(Sk(C),C) ∼= Cd

of a “lattice” in Cd. (We say “lattice” since there were some comments by Ribet
that Z2d isn’t a lattice because the rank might be too small since a subring of
Cd having Z-rank 2d might not spans Cd over C). Passing to the quotient (and
compactifying) gives a complex torus called the Jacobian of XΓ. Again using the
above pairing we get an embedding

Cd ∼= Sk(C) ↪→ Hom(H1(XΓ,Z),C) ∼= C2d

which, upon taking the real part, gives

Sk(C)→ Hom(H1(XΓ,Z),R) ∼= H1(XΓ,R) ∼= H1
p (Γ,R)
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where H1
p (Γ,R) denotes the parabolic group cohomology of Γ with respect to the

trivial action. It is this result, that we may view Sk(C) as the cohomology group
H1
p (Γ,R), that was alluded to above.
Shimura generalized this for arbitrary k ≥ 2 so that

Sk(C) ∼= H1
p (Γ, Vk)

where Vk is a k − 1 dimensional R-vector space. The isomorphism is (approxi-
mately) the following: f ∈ Sk(C) is sent to the map

γ 7→ Re

∫ γτ0

τ0

f(τ)τ idτ, i = 0, . . . , k − 2.

Let W = R⊕R, then Γ acts on W by(
a b
c d

)
:

(
x
y

)
7→
(
ax+ by
cx+ dy

)
so Γ acts on

Vk = Symk−2W = W⊗k−2/Sk−2

where Sk−2 is the symmetric group on k − 2 symbols (note that dimVk = k − 1).
Let

L = H1
p (Γ,Symk−2(Z⊕ Z))

then under the isomorphism

Sk(C) ∼= H1
p (Γ,R)

L is a sublattice of Sk(C) of Z-rank 2 which is Tn-stable for all n. Thus we have
an embedding

TZ = T ↪→ EndL

and so TR ⊂ EndR(L⊗R) and TZ ⊗Z R ∼= TR which has rank d.

6.8 The Petterson inner product is Hecke compatible

Theorem 6.8.1. Let Γ = SL2(Z), let f, g ∈ Sk(C), and let

〈f, g〉 =

∫
Γ\H

f(τ)g(τ)yk
dxdy

y2
.

Then this integral is well-defined and Hecke compatible, that is, 〈f |Tn, g〉 = 〈f, g|Tn〉
for all n.

Proof. See [Lan95, III].
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7
Modular Symbols

This chapter is about how to explicitly compute the homology of modular curves
using modular symbols.

We assume the reader is familiar with basic notions of algebraic topology, in-
cluding homology groups of surfaces and triangulation. We also assume that the
reader has read XXX about the fundamental domain for the action of PSL2(Z) on
the upper half plane, and XXX about the construction of modular curves.

Some standard references for modular symbols are [Man72] [Lan95, IV], [Cre97],
and [Mer94]. Sections 7.1–7.2 below very closely follow Section 1 of Manin’s paper
[Man72].

For the rest of this chapter, let Γ = PSL2(Z) and let G be a subgroup of Γ
of finite index. Note that we do not require G to be a congruence subgroup. The
quotient X(G) = G\h∗ of h∗ = h ∪ P1(Q) by G has an induced structure of a
compact Riemann surface. Let π : h∗ → X(G) denote the natural projection. The
matrices

s =

(
0 − 1
1 0

)
and t =

(
1 − 1
1 0

)
together generate Γ; they have orders 2 and 3, respectively.

7.1 Modular symbols

Let H0(X(G),Ω1) denote the complex vector space of holomorphic 1-forms on
X(G). Integration of differentials along homology classes defines a perfect pairing

H1(X(G),R)×H0(X(G),Ω1)→ C,

hence an isomorphism

H1(X(G),R) ∼= HomC(H0(X(G),Ω1),C).
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For more details, see [Lan95, §IV.1].
Given two elements α, β ∈ h∗, integration from α to β induces a well-defined

element of HomC(H0(X(G),Ω1),C), hence an element

{α, β} ∈ H1(X(G),R).

Definition 7.1.1 (Modular symbol). The homology class {α, β} ∈ H1(X(G),R)
associated to α, β ∈ h∗ is called the modular symbol attached to α and β.

Proposition 7.1.2. The symbols {α, β} have the following properties:

1. {α, α} = 0, {α, β} = −{β, α}, and {α, β}+ {β, γ}+ {γ, α} = 0.

2. {gα, gβ} = {α, β} for all g ∈ G

3. If X(G) has nonzero genus, then {α, β} ∈ H1(X(G),Z) if and only if Gα =
Gβ (i.e., we have π(α) = π(β)).

Remark 7.1.3. We only have {α, β} = {β, α} if {α, β} = 0, so the modular symbols
notation, which suggests “unordered pairs,” is actively misleading.

Proposition 7.1.4. For any α ∈ h∗, the map G → H1(X(G),Z) that sends g to
{α, gα} is a surjective group homomorphism that does not depend on the choice
of α.

Proof. If g, h ∈ G and α ∈ h∗, then

{α, gh(α)} = {α, gα}+ {gα, ghα} = {α, gα}+ {α, hα},

so the map is a group homomorphism. To see that the map does not depend on
the choice of α, suppose β ∈ h∗. By Proposition 7.1.2, we have {α, β} = {gα, gβ}.
Thus

{α, gα}+ {gα, β} = {gα, β}+ {β, gβ},
so cancelling {gα, β} from both sides proves the claim.

The fact that the map is surjective follows from general facts from algebraic
topology. Let h0 be the complement of Γi ∪ Γρ in h, fix α ∈ h0, and let X(G)0 =
π(h0). The map h0 → X(G)0 is an unramified covering of (noncompact) Riemann
surfaces with automorphism group G. Thus α determines a group homomorphism
π1(X(G)0, π(α)) → G. When composed with the morphism G → H1(X(G),Z)
above, the composition

π1(X(G)0, π(α))→ G→ H1(X(G),Z)

is the canonical map from the fundamental group of X(G)0 to the homology of
the corresponding compact surface, which is surjective. This forces the map G→
H1(X(G),Z) to be surjective, which proves the claim.

7.2 Manin symbols

We continue to assume that G is a finite-index subgroup of Γ = PSL2(Z), so the
set G\Γ = {Gg1, . . . Ggd} of right cosets of G in Γ is finite. Manin symbols are a
certain finite subset of modular symbols that are indexed by right cosets of G in
Γ.
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7.2.1 Using continued fractions to obtain surjectivity

Let R = G\Γ be the set of right cosets of G in Γ. Define

[ ] : R→ H1(X(G),R)

by [r] = {r0, r∞}, where r0 means the image of 0 under any element of the coset
r (it doesn’t matter which). For g ∈ Γ, we also write [g] = [gG].

Proposition 7.2.1. Any element of H1(X(G),Z) is a sum of elements of the form
[r], and the representation

∑
nr{αr, βr} of h ∈ H1(X(G),Z) can be chosen so that∑

nr(π(βr)− π(αr)) = 0 ∈ Div(X(G)).

Proof. By Proposition 7.1.4, every element h of H1(X(G),Z) is of the form {0, g(0)}
for some g ∈ G. If g(0) = ∞, then h = [G] and π(∞) = π(0), so we may assume
g(0) = a/b 6=∞, with a/b in lowest terms and b > 0. Also assume a > 0, since the
case a < 0 is treated in the same way. Let

0 =
p−2

q−2
=

0

1
,
p−1

q−1
=

1

0
,
p0

1
=
p0

q0
,
p1

q1
,
p2

q2
, . . . ,

pn
qn

=
a

b

denote the continued fraction convergents of the rational number a/b. Then

pjqj−1 − pj−1qj = (−1)j−1 for − 1 ≤ j ≤ n.

If we let gj =

(
(−1)j−1pj pj−1

(−1)j−1qj qj−1

)
, then gj ∈ SL2(Z) and

{
0,
a

b

}
=

n∑
j=−1

{
pj−1

qj−1
,
pj
qj

}

=

n∑
j=−1

{gj0, gj∞})

=

r∑
j=−1

[gj ].

For the assertion about the divisor sum equaling zero, notice that the endpoints
of the successive modular symbols cancel out, leaving the difference of 0 and g(0)
in the divisor group, which is 0.

Lemma 7.2.2. If x =
∑t
j=1 nj{αj , βj} is a Z-linear combination of modular

symbols for G and
∑
nj(π(βj)− π(αj)) = 0 ∈ Div(X(G)), then x ∈ H1(X(G),Z).

Proof. We may assume that each nj is ±1 by allowing duplication. We may further
assume that each nj = 1 by using that {α, β} = −{β, α}. Next reorder the sum so
π(βj) = π(αj+1) by using that the divisor is 0, so every βj must be equivalent to
some αj′ , etc. The lemma should now be clear.
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i 1+i

10

oo

E'

t2E' tE'

(1+i)/2

rho

FIGURE 7.2.1.

7.2.2 Triangulating X(G) to obtain injectivity

Let C be the abelian group generated by symbols (r) for r ∈ G\Γ, subject to the
relations

(r) + (rs) = 0, and (r) = 0 if r = rs.

For (r) ∈ C, define the boundary of (r) to be the difference π(r∞) − π(r0) ∈
Div(X(G)). Since s swaps 0 and ∞, the boundary map is a well-defined map on
C. Let Z be its kernel.

Let B be the subgroup of C generated by symbols (r), for all r ∈ G\Γ that
satisfy r = rt, and by (r) + (rt) + (rt2) for all other r. If r = rt, then rt(0) = r(0),
so r(∞) = r(0), so (r) ∈ Z. Also, using (7.2.1) below, we see that for any r, the
element (r) + (rt) + (rt2) lies in Z.

The map G\Γ → H1(X(G),R) that sends (r) to [r] induces a homomorphism
C → H1(X(G),R), so by Proposition 7.2.1 we obtain a surjective homomorphism

ψ : Z/B → H1(X(G),Z).

Theorem 7.2.3 (Manin). The map ψ : Z/B → H1(X(G),Z) is an isomorphism.

Proof. We only have to prove that ψ is injective. Our proof follows the proof
of [Man72, Thm. 1.9] very closely. We compute the homology H1(X(G),Z) by
triangulating X(G) to obtain a simplicial complex L with homology Z1/B1, then
embed Z/B in the homology Z1/B1 of X(G). Most of our work is spent describing
the triangulation L.

Let E denote the interior of the triangle with vertices 0, 1, and∞, as illustrated
in Figure 7.2.1. Let E′ denote the union of the interior of the region bounded by
the path from i to ρ = eπi/3 to 1 + i to ∞ with the indicated path from i to ρ, not
including the vertex i.

When reading the proof below, it will be helpful to look at the following ta-
ble, which illustrates what s =

(
0 −1
1 0

)
, t =

(
1 −1
1 0

)
, and t2 do to the vertices in
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Figure 7.2.1:

1 0 1 ∞ i 1 + i (1 + i)/2 ρ

s ∞ −1 0 i (−1 + i)/2 −1 + i −ρ
t ∞ 0 1 1 + i (1 + i)/2 i ρ

t2 1 ∞ 0 (1 + i)/2 i 1 + i ρ

(7.2.1)

Note that each of E′, tE′, and t2E′ is a fundamental domain for Γ, in the sense
that every element of the upper half plane is conjugate to exactly one element in
the closure of E′ (except for identifications along the boundaries). For example,
E′ is obtained from the standard fundamental domain for Γ, which has vertices
ρ2, ρ, and ∞, by chopping it in half along the imaginary axis, and translating the
piece on the left side horizontally by 1.

If (0,∞) is the path from 0 to ∞, then t(0,∞) = (∞, 1) and t2(0,∞) = (1, 0).
Also, s(0,∞) = (∞, 0). Thus each half side of E is Γ-conjugate to the side from
i to ∞. Also, each 1-simplex in Figure 7.2.1, i.e., the sides that connected two
adjacent labeled vertices such as i and ρ, maps homeomorphically into X(Γ). This
is clear for the half sides, since they are conjugate to a path in the interior of the
standard fundamental domain for Γ, and for the medians (lines from midpoints to
ρ) since the path from i to ρ is on an edge of the standard fundamental domain
with no self identifications.

We now describe our triangulation L of X(G):

0-cells The 0 cells are the cusps π(P1(Q)) and i-elliptic points π(Γi). Note that
these are the images under π of the vertices and midpoints of sides of the
triangles gE, for all g ∈ Γ.

1-cells The 1 cells are the images of the half-sides of the triangles gE, for g ∈ Γ,
oriented from the edge to the midpoint (i.e., from the cusp to the i-elliptic
point). For example, if r = Gg is a right coset, then

e1(r) = π(g(∞), g(i)) ∈ X(G)

is a 1 cell in L. Since, as we observed above, every half side is Γ-conjugate
to e1(G), it follows that every 1-cell is of the form e(r) for some right coset
r ∈ G\Γ.

Next observe that if r 6= r′ then

e1(r) = e1(r′) implies r′ = rs. (7.2.2)

Indeed, if π(g(∞), g(i)) = π(g′(∞), g′(i)), then ri = r′i (note that the end-
points of a path are part of the definition of the path). Thus there exists
h, h′ ∈ G such that hg(i) = h′g′(i). Since the only nontrivial element of Γ
that stabilizes i is s, this implies that (hg)−1h′g′ = s. Thus h′g′ = hgs, so
Gg′ = Ggs, so r′ = rs.

2-cells There are two types of 2-cells, those with 2 sides and those with 3.

2-sided: The 2-sided 2-cells e2(r) are indexed by the cosets r = Gg such
that rt = r. Note that for such an r, we have π(rE′) = π(rtE′) = π(rt2E′).
The 2-cell e2(r) is π(gE′). The image g(ρ, i) of the half median maps to a
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line from the center of e2(r) to the edge π(g(i)) = π(g(1 + i)). Orient e2(r)
in a way compatible with the e1. Since Ggt = Gg,

π(g(1 + i), g(∞)) = π(gt2(1 + i), gt2(∞)) = π(g(i), g(0)) = π(gs(i), gs(∞)),

so

e1(r)−e1(rs) = π(g(∞), g(i))+π(gs(i), gs(∞)) = π(g(∞), g(i))+π(g(1+i), g(∞)).

Thus
∂e2(r) = e1(r)− e1(rs).

Finally, note that if r′ 6= r also satisfies r′t = r′, then e2(r) 6= e2(r′) (to see
this use that E′ is a fundamental domain for Γ).

3-sided: The 3-sided 2-cells e2(r) are indexed by the cosets r = Gg such
that rt 6= r. Note that for such an r, the three triangles rE′, rtE′, and rt2E′

are distinct (since they are nontrivial translates of a fundamental domain).
Orient e2(r) in a way compatible with the e1 (so edges go from cusps to
midpoints). Then

∂e2(r) =

2∑
n=0

(e1(rtn)− e1(rtns)) .

We have now defined a complex L that is a triangulation of X(G). Let C1, Z1,
and B1 be the group of 1-chains, 1-cycles, and 1-boundaries of the complex L.
Thus C1 is the abelian group generated by the paths e1(r), the subgroup Z1 is the
kernel of the map that sends e1(r) = π(r(∞), r(0)) to π(r(0)) − π((∞)), and B1

is the subgroup of Z1 generated by boundaries of 2-cycles.
Let C,Z,B be as defined before the statement of the Theorem 7.2.3. We have

H1(X(G),Z) ∼= Z1/B1, and would like to prove that Z/B ∼= Z1/B1.
Define a map ϕ : C → C1 by (r) 7→ e1(rs) − e1(r). The map ϕ is well defined

because if r = rs, then clearly (r) 7→ 0, and (r) + (rs) maps to e1(rs) − e1(r) +
e1(r) − e1(rs) = 0. To see that f is injective, suppose

∑
nr(r) 6= 0. Since in C

we have the relations (r) = −(rs) and (r) = 0 if rs = r, we may assume that
nrnrs = 0 for all r. We have

ϕ
(∑

nr(r)
)

=
∑

nr(e1(rs)− e1(r)).

If nr 6= 0 then r 6= rs, so (7.2.2) implies that e1(r) 6= e1(rs). If nr 6= 0 and nr′ 6= 0
with r′ 6= r, then r 6= rs and r′ 6= r′s, so e1(r), e1(rs), e1(r′), e1(r′s) are all distinct.
We conclude that

∑
nr(e1(rs)− e1(r)) 6= 0, which proves that ϕ is injective.

Suppose (r) ∈ C. Then

ϕ(r) +B1 = ψ(r) = {r(0), r(∞)} ∈ H1(X(G),Z) = C1/B1,

since

ϕ(r) = e1(rs)−e1(r) = π(rs(∞), rs(i))−π(r(∞), r(i)) = π(r(0), r(i))−π(r(∞), r(i))

belongs to the homology class {r(0), r(∞)}. Extending linearly, we have, for any
z ∈ C, that ϕ(z) +B1 = ψ(z).
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The generators for B1 are the boundaries of 2-cells e2(r). As we saw above, these
have the form ϕ(r) for all r such that r = rt, and ϕ(r) + ϕ(rt) + ϕ(rt2) for the
r such that rt 6= r. Thus B1 = ϕ(B) ⊂ ϕ(Z), so the map ϕ induces an injection
Z/B ↪→ Z1/B1. This completes the proof of the theorem.

7.3 Hecke operators

In this section we will only consider the modular curve X0(N) associated to the
subgroup Γ0(N) of SL2(Z) of matrices that are upper triangular modulo N . Much
of what we say will also be true, possibly with slight modification, for X1(N), but
not for arbitrary finite-index subgroups.

There is a commutative ring

T = Z[T1, T2, T3, . . .]

of Hecke operators that acts on H1(X0(N),R). We will frequently revisit this ring,
which also acts on the Jacobian J0(N) of X0(N), and on modular forms. The ring
T is generated by Tp, for p prime, and as a free Z-module T is isomorphic to Zg,
where g is the genus of X0(N). We will not prove these facts here (see 1 ). 1

Suppose
{α, β} ∈ H1(X0(N),R),

is a modular symbol, with α, β ∈ P1(Q). For g ∈ M2(Z), write g({α, β}) =
{g(α), g(β)}. This is not a well-defined action of M2(Z) on H1(X0(N),R), since
{α′, β′} = {α, β} ∈ H1(X0(N),R) does not imply that {g(α′), g(β′)} = {g(α), g(β)}.
Example 7.3.1. Using Magma we see that the homology H1(X0(11),R) is gener-
ated by {−1/7, 0} and {−1/5, 0}.

> M := ModularSymbols(11); // Homology relative to cusps,

// with Q coefficients.

> S := CuspidalSubspace(M); // Homology, with Q coefficients.

> Basis(S);

[ {-1/7, 0}, {-1/5, 0} ]

Also, we have 5{0,∞} = {−1/5, 0}.

> pi := ProjectionMap(S); // The natural map M --> S.

> M.3;

{oo, 0}

> pi(M.3);

-1/5*{-1/5, 0}

Let g = ( 2 0
0 1 ). Then 5{g(0), g(∞)} is not equal to {g(−1/5), g(0)}, so g does not

define a well-defined map on H1(X0(11),R).

> x := 5*pi(M!<1,[Cusps()|0,Infinity()]>);

> y := pi(M!<1,[-2/5,0]>);

> x;

1Add some references and pointers to other parts of this book.
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{-1/5, 0}

> y;

-1*{-1/7, 0} + -1*{-1/5, 0}

> x eq y;

false

Definition 7.3.2 (Hecke operators). We define the Hecke operator Tp on H1(X0(N),R)
as follows. When p is a prime with p - N , we have

Tp({α, β}) =

(
p 0
0 1

)
({α, β}) +

p−1∑
r=0

(
1 r
0 p

)
({α, β}).

When p | N , the formula is the same, except that the first summand, which involves(
p 0
0 1

)
, is omitted.

Example 7.3.3. We continue with Example 7.3.1. If we apply the Hecke operator
T2 to both 5{0,∞} and {−1/5, 0}, the “non-well-definedness” cancels out.

> x := 5*pi(M!<1,[Cusps()|0,Infinity()]> +

M!<1,[Cusps()|0,Infinity()]> + M!<1,[Cusps()|1/2,Infinity()]>);

> x;

-2*{-1/5, 0}

> y := pi(M!<1,[-2/5,0]>+ M!<1,[-1/10,0]> + M!<1,[2/5,1/2]>);

> y;

-2*{-1/5, 0}

Examples 7.3.1 shows that it is not clear that the definition of Tp given above
makes sense. For example, if {α, β} is replaced by an equivalent modular symbol
{α′, β′}, why does the formula for Tp give the same answer? We will not address
this question further here, but will revisit it later2 when we have a more natural 2
and intrinsic definition of Hecke operators. We only remark that Tp is induced by
a “correspondence” from X0(N) to X0(N), so Tp preserve H1(X0(N),Z).

7.4 Modular symbols and rational homology

In this section we sketch a beautiful proof, due to Manin, of a result that is crucial
to our understanding of rationality properties of special values of L-functions. For
example, Mazur and Swinnerton-Dyer write in [MSD74, §6], “The modular symbol
is essential for our theory of p-adic Mellin transforms,” right before discussing this
rationality result. Also, as we will see in the next section, this result implies that if
E is an elliptic curve over Q, then L(E, 1)/ΩE ∈ Q, which confirms a consequence
of the Birch and Swinnerton-Dyer conjecture.

Theorem 7.4.1 (Manin). For any α, β ∈ P1(Q), we have

{α, β} ∈ H1(X0(N),Q).

Proof (sketch). Since {α, β} = {α,∞}−{β,∞}, it suffices to show that {α,∞} ∈
H1(X0(N),Q) for all α ∈ Q. We content ourselves with proving that {0,∞} ∈
H1(X0(N),Z), since the proof for general {0, α} is almost the same.

2Say where, when I write this later.
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We will use that the eigenvalues of Tp on H1(X0(N),R) have absolute value
bounded by 2

√
p, a fact that was proved by Weil (the Riemann hypothesis for

curves over finite fields). Let p - N be a prime. Then

Tp({0,∞}) = {0,∞}+

p−1∑
r=0

{
r

p
,∞
}

= (1 + p){0,∞}+

p−1∑
r=0

{
r

p
, 0

}
,

so

(1 + p− Tp)({0,∞}) =

p−1∑
r=0

{
0,
r

p

}
.

Since p - N , the cusps 0 and r/p are equivalent (use the Euclidean algorithm
to find a matrix in SL2(Z) of the form ( r ∗p ∗ )), so the modular symbols {0, r/p},
for r = 0, 1, . . . , p − 1 all lie in H1(X0(N),Z). Since the eigenvalues of Tp have
absolute value at most 2

√
p, the linear transformation 1 + p− Tp of H1(X0(N),Z)

is invertible. It follows that some integer multiple of {0,∞} lies in H1(X0(N),Z),
as claimed.

There are general theorems about the denominator of {α, β} in some cases.
Example 7.3.1 above demonstrated the following theorem in the case N = 11.

Theorem 7.4.2 (Ogg [Ogg71]). Let N be a prime. Then the image

[{0,∞}] ∈ H1(X0(N),Q)/H1(X0(N),Z)

has order equal to the numerator of (N − 1)/12.

7.5 Special values of L-functions

This section is a preview of one of the central arithmetic results we will discuss in
more generality later in this book.3 3

The celebrated modularity theorem of Wiles et al. asserts that there is a cor-
respondence between isogeny classes of elliptic curves E of conductor N and nor-
malized new modular eigenforms f =

∑
anq

n ∈ S2(Γ0(N)) with an ∈ Z. This
correspondence is characterized by the fact that for all primes p - N , we have
ap = p+ 1−#E(Fp).

Recall that a modular form for Γ0(N) of weight 2 is a holomorphic function
f : h→ C that is “holomorphic at the cusps” and such that for all

(
a b
c d

)
∈ Γ0(N),

f

(
az + b

cz + d

)
= (cz + d)2f(z).

Suppose E is an elliptic curve that corresponds to a modular form f . If L(E, s)
is the L-function attached to E, then

L(E, s) = L(f, s) =
∑ an

ns
,

so, by a theorem of Hecke which we will prove [later]4 , L(f, s) is holomorphic on 4

3Where?
4where?
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all C. Note that L(f, s) is the Mellin transform of the modular form f :

L(f, s) = (2π)sΓ(s)−1

∫ i∞

0

(−iz)sf(z)
dz

z
. (7.5.1)

The Birch and Swinnerton-Dyer conjecture concerns the leading coefficient of
the series expansion of L(E, s) about s = 1. A special case is that if L(E, 1) 6= 0,
then

L(E, 1)

ΩE
=

∏
cp ·#X(E)

#E(Q)2
tor

.

Here ΩE = |
∫
E(R)

ω|, where ω is a “Néron” differential 1-form on E, i.e., a gen-

erator for H0(E ,Ω1
E/Z), where E is the Néron model of E. (The Néron model of

E is the unique, up to unique isomorphism, smooth group scheme E over Z, with
generic fiber E, such that for all smooth schemes S over Z, the natural map
HomZ(S, E)→ HomQ(S×Spec(Q), E) is an isomorphism.) In particular, the con-
jecture asserts that for any elliptic curve E we have L(E, 1)/ΩE ∈ Q.

Theorem 7.5.1. Let E be an elliptic curve over Q. Then L(E, 1)/ΩE ∈ Q.

Proof (sketch). By the modularity theorem of Wiles et al., E is modular, so there
is a surjective morphism πE : X0(N) → E, where N is the conductor of E. This
implies that there is a newform f that corresponds to (the isogeny class of) E, with
L(f, s) = L(E, s). Also assume, without loss of generality, that E is “optimal” in
its isogeny class, which means that if X0(N)→ E′ → E is a sequence of morphism
whose composition is πE and E′ is an elliptic curve, then E′ = E.

By Equation 7.5.1, we have

L(E, 1) = 2π

∫ i∞

0

−izf(z)dz/z. (7.5.2)

If q = e2πiz, then dq = 2πiqdz, so 2πif(z)dz = dq/q, and (7.5.2) becomes

L(E, 1) = −
∫ i∞

0

f(q)dq.

Recall that ΩE = |
∫
E(R)

ω|, where ω is a Néron differential on E. The expression

f(q)dq defines a differential on the modular curve X0(N), and there is a rational
number c, the Manin constant, such that π∗Eω = cf(q)dq. More is true: Edixhoven
proved (as did Ofer Gabber) that c ∈ Z; also Manin conjectured that c = 1 and
Edixhoven proved (unpublished) that if p | c, then p = 2, 3, 5, 7.

A standard fact is that if

L =

{∫
γ

ω : γ ∈ H1(E,Z)

}
is the period lattice of E associated to ω, then E(C) ∼= C/L. Note that ΩE is
either the least positive real element of L or twice this least positive element (if
E(R) has two real components).

The next crucial observation is that by Theorem 7.4.1, there is an integer n such
that n{0,∞} ∈ H1(X0(N),Z). This is relevant because if

L′ =

{∫
γ

f(q)dq : γ ∈ H1(X0(N),Z)

}
⊂ C.
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then L = 1
cL
′ ⊂ L′. This assertion follows from our hypothesis that E is optimal

and standard facts about complex tori and Jacobians, which we will prove later
[in this course/book].

One can show that L(E, 1) ∈ R, for example, by writing down an explicit real
convergent series that converges to L(E, 1). This series is used in algorithms to
compute L(E, 1), and the derivation of the series uses properties of modular forms
that we have not yet developed. Another approach is to use complex conjugation
to define an involution ∗ on H1(X0(N),R), then observe that {0,∞} is fixed by
∗. (The involution ∗ is given on modular symbols by ∗{α, β} = {−α,−β}.)

Since L(E, 1) ∈ R, the integral∫
n{0,∞}

f(q)dq = n

∫ i∞

0

f(q)dq = −nL(E, 1) ∈ L′

lies in the subgroup (L′)+ of elements fixed by complex conjugation. If c is the
Manin constant, we have cnL(E, 1) ∈ L+. Since ΩE is the least nonzero element of
L+ (or twice it), it follows that 2cnL(E, 1)/ΩE ∈ Z, which proves the proposition.
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8
Modular Forms of Higher Level

8.1 Modular Forms on Γ1(N)

Fix integers k ≥ 0 and N ≥ 1. Recall that Γ1(N) is the subgroup of elements of
SL2(Z) that are of the form ( 1 ∗

0 1 ) when reduced modulo N .

Definition 8.1.1 (Modular Forms). The space of modular forms of level N and
weight k is

Mk(Γ1(N)) =
{
f : f(γτ) = (cτ + d)kf(τ) all γ ∈ Γ1(N)

}
,

where the f are assumed holomorphic on h ∪ {cusps} (see below for the precise
meaning of this). The space of cusp forms of level N and weight k is the subspace
Sk(Γ1(N)) of Mk(Γ1(N)) of modular forms that vanish at all cusps.

Suppose f ∈Mk(Γ1(N)). The group Γ1(N) contains the matrix ( 1 1
0 1 ), so

f(z + 1) = f(z),

and for f to be holomorphic at infinity means that f has a Fourier expansion

f =

∞∑
n=0

anq
n.

To explain what it means for f to be holomorphic at all cusps, we introduce
some additional notation. For α ∈ GL+

2 (R) and f : h→ C define another function
f|[α]k as follows:

f|[α]k(z) = det(α)k−1(cz + d)−kf(αz).

It is straightforward to check that f|[αα′]k = (f|[α]k)|[α′]k . Note that we do not have
to make sense of f|[α]k(∞), since we only assume that f is a function on h and
not h∗.
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Using our new notation, the transformation condition required for f : h → C
to be a modular form for Γ1(N) of weight k is simply that f be fixed by the [ ]k-
action of Γ1(N). Suppose x ∈ P1(Q) is a cusp, and choose α ∈ SL2(Z) such that
α(∞) = x. Then g = f|[α]k is fixed by the [ ]k action of α−1Γ1(N)α.

Lemma 8.1.2. Let α ∈ SL2(Z). Then there exists a positive integer h such that
( 1 h

0 1 ) ∈ α−1Γ1(N)α.

Proof. This follows from the general fact that the set of congruence subgroups of
SL2(Z) is closed under conjugation by elements α ∈ SL2(Z), and every congruence
subgroup contains an element of the form ( 1 h

0 1 ). If G is a congruence subgroup,
then Γ(N) ⊂ G for some N , and α−1Γ(N)α = Γ(N), since Γ(N) is normal, so
Γ(N) ⊂ α−1Gα.

Letting h be as in the lemma, we have g(z + h) = g(z). Then the condition
that f be holomorphic at the cusp x is that

g(z) =
∑
n≥0

bn/hq
1/h

on the upper half plane. We say that f vanishes at x if bn/h = 0, so a cusp form
is a form that vanishes at every cusp.

8.2 The Diamond bracket and Hecke operators

In this section we consider the spaces of modular forms Sk(Γ1(N), ε), for Dirichlet
characters ε mod N , and explicitly describe the action of the Hecke operators on
these spaces.

8.2.1 Diamond bracket operators

The group Γ1(N) is a normal subgroup of Γ0(N), and the quotient Γ0(N)/Γ1(N)
is isomorphic to (Z/NZ)∗. From this structure we obtain an action of (Z/NZ)∗ on
Sk(Γ1(N)), and use it to decompose Sk(Γ1(N)) as a direct sum of more manageable
chunks Sk(Γ1(N), ε).

Definition 8.2.1 (Dirichlet character). A Dirichlet character ε modulo N is a
homomorphism

ε : (Z/NZ)∗ → C∗.

We extend ε to a map ε : Z → C by setting ε(m) = 0 if (m,N) 6= 1 and
ε(m) = ε(m mod N) otherwise. If ε : Z→ C is a Dirichlet character, the conductor
of ε is the smallest positive integer N such that ε arises from a homomorphism
(Z/NZ)∗ → C∗.

Remarks 8.2.2.

1. If ε is a Dirichlet character modulo N and M is a multiple of N then ε induces
a Dirichlet character mod M . If M is a divisor of N then ε is induced by a
Dirichlet character modulo M if and only if M divides the conductor of ε.
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2. The set of Dirichlet characters forms a group, which is non-canonically iso-
morphic to (Z/NZ)∗ (it is the dual of this group).

3. The mod N Dirichlet characters all take values in Q(e2πi/e) where e is the
exponent of (Z/NZ)∗. When N is an odd prime power, the group (Z/NZ)∗

is cyclic, so e = ϕ(ϕ(N)). This double-ϕ can sometimes cause confusion.

4. There are many ways to represent Dirichlet characters with a computer. I
think the best way is also the simplest—fix generators for (Z/NZ)∗ in any
way you like and represent ε by the images of each of these generators. As-
sume for the moment thatN is odd. To make the representation more “canon-
ical”, reduce to the prime power case by writing (Z/NZ)∗ as a product of
cyclic groups corresponding to prime divisors of N . A “canonical” generator
for (Z/prZ)∗ is then the smallest positive integer s such that s mod pr gen-
erates (Z/prZ)∗. Store the character that sends s to e2πin/ϕ(ϕ(pr)) by storing
the integer n. For general N , store the list of integers np, one p for each prime
divisor of N (unless p = 2, in which case you store two integers n2 and n′2,
where n2 ∈ {0, 1}).

Definition 8.2.3. Let d ∈ (Z/NZ)∗ and f ∈ Sk(Γ1(N)). The map SL2(Z) →
SL2(Z/NZ) is surjective, so there exists a matrix γ =

(
a b
c d

)
∈ Γ0(N) such that

d ≡ d (mod N). The diamond bracket d operator is then

f(τ)|〈d〉 = f|[γ]k = f(γτ)(cτ + d)−k.

The definition of 〈d〉 does not depend on the choice of lift matrix
(
a b
c d

)
, since

any two lifts differ by an element of Γ(N) and f is fixed by Γ(N) since it is fixed
by Γ1(N).

For each Dirichlet character ε mod N let

Sk(Γ1(N), ε) = {f : f |〈d〉 = ε(d)f all d ∈ (Z/NZ)∗}
= {f : f|[γ]k = ε(dγ)f all γ ∈ Γ0(N)},

where dγ is the lower-left entry of γ.
When f ∈ Sk(Γ1(N), ε), we say that f has Dirichlet character ε. In the literature,

sometimes f is said to be of “nebentypus” ε.

Lemma 8.2.4. The operator 〈d〉 on the finite-dimensional vector space Sk(Γ1(N))
is diagonalizable.

Proof. There exists n such that I = 〈1〉 = 〈dn〉 = 〈d〉n, so the characteristic
polynomial of 〈d〉 divides the square-free polynomial Xn − 1.

Note that Sk(Γ1(N), ε) is the ε(d) eigenspace of 〈d〉. Thus we have a direct sum
decomposition

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)∗→C∗

Sk(Γ1(N), ε).

We have
(−1 0

0 −1

)
∈ Γ0(N), so if f ∈ Sk(Γ1(N), ε), then

f(τ)(−1)−k = ε(−1)f(τ).

Thus Sk(Γ1(N), ε) = 0, unless ε(−1) = (−1)k, so about half of the direct sum-
mands Sk(Γ1(N), ε) vanish.
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8.2.2 Hecke Operators on q-expansions

Suppose

f =

∞∑
n=1

anq
n ∈ Sk(Γ1(N), ε),

and let p be a prime. Then

f |Tp =


∞∑
n=1

anpq
n + pk−1ε(p)

∞∑
n=1

anq
pn, p - N

∞∑
n=1

anpq
n + 0. p | N.

Note that ε(p) = 0 when p | N , so the second part of the formula is redundant.
When p | N , Tp is often denoted Up in the literature, but we will not do so

here. Also, the ring T generated by the Hecke operators is commutative, so it is
harmless, though potentially confusing, to write Tp(f) instead of f |Tp.

We record the relations

TmTn = Tmn, (m,n) = 1,

Tpk =

{
(Tp)

k, p | N
Tpk−1Tp − ε(p)pk−1Tpk−2 , p - N.

WARNING: When p | N , the operator Tp on Sk(Γ1(N), ε) need not be diago-
nalizable.

8.3 Old and new subspaces

Let M and N be positive integers such that M | N and let t | N
M . If f(τ) ∈

Sk(Γ1(M)) then f(tτ) ∈ Sk(Γ1(N)). We thus have maps

Sk(Γ1(M))→ Sk(Γ1(N))

for each divisor t | NM . Combining these gives a map

ϕM :
⊕

t|(N/M)

Sk(Γ1(M))→ Sk(Γ1(N)).

Definition 8.3.1 (Old Subspace). The old subspace of Sk(Γ1(N)) is the subspace
generated by the images of the ϕM for all M | N with M 6= N .

Definition 8.3.2 (New Subspace). The new subspace of Sk(Γ1(N)) is the com-
plement of the old subspace with respect to the Petersson inner product.

1 Since I haven’t introduced the Petersson inner product yet, note that the new 1
subspace of Sk(Γ1(N)) is the largest subspace of Sk(Γ1(N)) that is stable under the
Hecke operators and has trivial intersection with the old subspace of Sk(Γ1(N)).

1Remove from book.
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Definition 8.3.3 (Newform). A newform is an element f of the new subspace of
Sk(Γ1(N)) that is an eigenvector for every Hecke operator, which is normalized so
that the coefficient of q in f is 1.

If f =
∑
anq

n is a newform then the coefficient an are algebraic integers, which
have deep arithmetic significance. For example, when f has weight 2, there is an
associated abelian variety Af over Q of dimension [Q(a1, a2, . . .) : Q] such that∏
L(fσ, s) = L(Af , s), where the product is over the Gal(Q/Q)-conjugates of F .

The abelian variety Af was constructed by Shimura as follows. Let J1(N) be the
Jacobian of the modular curve X1(N). As we will see tomorrow, the ring T of Hecke
operators acts naturally on J1(N). Let If be the kernel of the homomorphism
T→ Z[a1, a2, . . .] that sends Tn to an. Then

Af = J1(N)/IfJ1(N).

In the converse direction, it is a deep theorem of Breuil, Conrad, Diamond,
Taylor, and Wiles that if E is any elliptic curve over Q, then E is isogenous to Af
for some f of level equal to the conductor N of E.

When f has weight greater than 2, Scholl constructs2 , in an analogous way, 2
a Grothendieck motive (=compatible collection of cohomology groups3 ) Mf at- 3
tached to f .

2add reference
3remove
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9
Newforms and Euler Products

In this chapter we discuss the work of Atkin, Lehner, and W. Li on newforms and
their associated L-series and Euler products. Then we discuss explicitly how Up, for
p | N , acts on old forms, and how Up can fail to be diagonalizable. Then we describe
a canonical generator for Sk(Γ1(N)) as a free module over TC. Finally, we observe
that the subalgebra of TQ generated by Hecke operators Tn with (n,N) = 1 is
isomorphic to a product of number fields.

9.1 Atkin-Lehner-Li theory

The results of [Li75] about newforms are proved using many linear transforma-
tions that do not necessarily preserve Sk(Γ1(N), ε). Thus we introduce more gen-
eral spaces of cusp forms, which these transformations preserve. These spaces are
also useful because they make precise how the space of cusp forms for the full
congruence subgroup Γ(N) can be understood in terms of spaces Sk(Γ1(M), ε) for
various M and ε, which justifies our usual focus on these latter spaces. This section
follows [Li75] closely.

Let M and N be positive integers and define

Γ0(M,N) =

{(
a b
c d

)
∈ SL2(Z) : M | c,N | b

}
,

and

Γ(M,N) =

{(
a b
c d

)
∈ Γ0(M,N) : a ≡ d ≡ 1 (mod MN)

}
.

Note that Γ0(M, 1) = Γ0(M) and Γ(M, 1) = Γ1(M). Let Sk(M,N) denote the
space of cusp forms for Γ(M,N).

If ε is a Dirichlet character moduloMN such that ε(−1) = (−1)k, let Sk(M,N, ε)
denote the space of all cups forms for Γ(M,N) of weight k and character ε. This
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is the space of holomorphic functions f : h → C that satisfy the usual vanishing
conditions at the cusps and such that for all

(
a b
c d

)
∈ Γ0(M,N),

f |
(
a b
c d

)
= ε(d)f.

We have

Sk(M,N) = ⊕εSk(M,N, ε).

We now introduce operators between various Sk(M,N). Note that, except when
otherwise noted, the notation we use for these operators below is as in [Li75],
which conflicts with notation in various other books. When in doubt, check the
definitions.

Let

f |
(
a b
c d

)
(τ) = (ad− bc)k/2(cτ + d)−kf

(
aτ + b

cτ + d

)
.

This is like before, but we omit the weight k from the bar notation, since k will be
fixed for the whole discussion.

For any d and f ∈ Sk(M,N, ε), define

f |UNd = dk/2−1f
∣∣∣( ∑

u mod d

(
1 uN
0 d

))
,

where the sum is over any set u of representatives for the integers modulo d. Note
that the N in the notation is a superscript, not a power of N . Also, let

f |Bd = d−k/2f |
(
d 0
0 1

)
,

and

f |Cd = dk/2f |
(

1 0
0 d

)
.

In [Li75], Cd is denoted Wd, which would be confusing, since in the literature Wd is
usually used to denote a completely different operator (the Atkin-Lehner operator,
which is denoted VMd in [Li75]).

Since ( 1 N
0 1 ) ∈ Γ(M,N), any f ∈ Sk(M,N, ε) has a Fourier expansion in terms

of powers of qN = q1/N . We have(∑
anq

n
N

)
|UNd =

∑
n≥1

andq
n
N ,

(∑
anq

n
N

)
|Bd =

∑
n≥1

anq
nd
N ,

and (∑
anq

n
N

)
|Cd =

∑
n≥1

anq
n
Nd.

The second two equalities are easy to see; for the first, write everything out and
use that for n ≥ 1, the sum

∑
u e

2πiun/d is 0 or d if d - n, d | n, respectively.
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The maps Bd and Cd define injective maps between various spaces Sk(M,N, ε).
To understand Bd, use the matrix relation(

d 0
0 1

)(
x y
z w

)
=

(
x dy

z/d w

)(
d 0
0 1

)
,

and a similar one for Cd. If d | N then Bd : Sk(M,N, ε) → Sk(dM,N/d, ε) is
an isomorphism, and if d | M , then Cd : Sk(M,N) → Sk(M/d,Nd, ε) is also an
isomorphism. In particular, taking d = N , we obtain an isomorphism

BN : Sk(M,N, ε)→ Sk(MN, 1, ε) = Sk(Γ1(MN), ε). (9.1.1)

Putting these maps together allows us to completely understand the cusp forms
Sk(Γ(N)) in terms of spaces Sk(Γ1(N2), ε), for all Dirichlet characters ε that arise
from characters modulo N . (Recall that Γ(N) is the principal congruence subgroup
Γ(N) = ker(SL2(Z) → SL2(Z/NZ)). This is because Sk(Γ(N)) is isomorphic to
the direct sum of Sk(N,N, ε), as ε various over all Dirichlet characters modulo N .

For any prime p, the pth Hecke operator on Sk(M,N, ε) is defined by

Tp = UNp + ε(p)pk−1Bp.

Note that Tp = UNp when p | N , since then ε(p) = 0. In terms of Fourier expansions,
we have (∑

anq
n
N

)
|Tp =

∑
n≥1

(
anp + ε(p)pk−1an/p

)
qnN ,

where an/p = 0 if p - n.
The operators we have just defined satisfy several commutativity relations. Sup-

pose p and q are prime. Then TpBq = BqTp, TpCq = CqTp, and TpU
N
q = UNq Tp if

(p, qMN) = 1. Moreover UNd Bd′ = Bd′U
N
d if (d, d′) = 1.

Remark 9.1.1. Because of these relations, (9.1.1) describe Sk(Γ(N)) as a module
over the ring generated by Tp for p - N .

Definition 9.1.2 (Old Subspace). The old subspace Sk(M,N, ε)old is the sub-
space of Sk(M,N, ε) generated by all f |Bd and g|Ce where f ∈ Sk(M ′, N), g ∈
Sk(M,N ′), and M ′, N ′ are proper factors of M , N , respectively, and d | M/M ′,
e | N/N ′.

Since Tp commutes withBd and Ce, the Hecke operators Tp all preserve Sk(M,N, ε)old,
for p -MN . Also, BN defines an isomorphism

Sk(M,N, ε)old
∼= Sk(MN, 1, ε)old.

Definition 9.1.3 (Petersson Inner Product). If f, g ∈ Sk(Γ(N)), the Petersson
inner product of f and g is

〈f, g〉 =
1

[SL2(Z) : Γ(N)]

∫
D

f(z)g(z)yk−2 dx dy,

where D is a fundamental domain for Γ(N) and z = x+ iy.

This Petersson pairing is normalized so that if we consider f and g as elements
of Γ(N ′) for some multiple N ′ of N , then the resulting pairing is the same (since
the volume of the fundamental domain shrinks by the index).
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Proposition 9.1.4 (Petersson). If p - N and f ∈ Sk(Γ1(N), ε), then 〈f |Tp, g〉 =
ε(p)〈f, g|Tp〉.

Remark 9.1.5. The proposition implies that the Tp, for p - N , are diagonalizable.
Be careful, because the Tp, with p | N , need not be diagonalizable.

Definition 9.1.6 (New Subspace). The new subspace Sk(M,N, ε)new is the or-
thogonal complement of Sk(M,N, ε)old in Sk(M,N, ε) with respect to the Peters-
son inner product.

Both the old and new subspaces of Sk(M,N, ε) are preserved by the Hecke
operators Tp with (p,NM) = 1.

Remark 9.1.7. Li [Li75] also gives a purely algebraic definition of the new subspace
as the intersection of the kernels of various trace maps from Sk(M,N, ε), which
are obtained by averaging over coset representatives.

Definition 9.1.8 (Newform). A newform f =
∑
anq

n
N ∈ Sk(M,N, ε) is an ele-

ment of Sk(M,N, ε)new that is an eigenform for all Tp, for p - NM , and is normal-
ized so that a1 = 1.

Li introduces the crucial “Atkin-Lehner operator” WM
q (denoted VMq in [Li75]),

which plays a key roll in all the proofs, and is defined as follows. For a posi-
tive integer M and prime q, let α = ordq(M) and find integers x, y, z such that
q2αx − yMz = qα. Then WM

q is the operator defined by slashing with the ma-

trix

(
qαx y
Mz qα

)
. Li shows that if f ∈ Sk(M, 1, ε), then f |WM

q |WM
q = ε(qα)f , so

WM
q is an automorphism. Care must be taken, because the operator WM

q need not

commute with Tp = UNp , when p |M .
After proving many technical but elementary lemmas about the operators Bd,

Cd, U
N
p , Tp, and WM

q , Li uses the lemmas to deduce the following theorems. The
proofs are all elementary, but there is little I can say about them, except that you
just have to read them.1 1

Theorem 9.1.9. Suppose f =
∑
anq

n
N ∈ Sk(M,N, ε) and an = 0 for all n with

(n,K) = 1, where K is a fixed positive integer. Then f ∈ Sk(M,N, ε)old.

From the theorem we see that if f and g are newforms in Sk(M,N, ε), and if for
all but finitely many primes p, the Tp eigenvalues of f and g are the same, then
f−g is an old form, so f−g = 0, hence f = g. Thus the eigenspaces corresponding
to the systems of Hecke eigenvalues associated to the Tp, with p -MN , each have
dimension 1. This is known as “multiplicity one”.

Theorem 9.1.10. Let f =
∑
anq

n
N be a newform in Sk(M,N, ε), p a prime with

(p,MN) = 1, and q |MN a prime. Then

1. f |Tp = apf , f |UNq = aqf , and for all n ≥ 1,

apan = anp + ε(p)pk−1an/p,

aqan = anq.

1Remove from book.
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If L(f, s) =
∑
n≥1 ann

−s is the Dirichlet series associated to f , then L(f, s)
has an Euler product

L(f, s) =
∏
q|MN

(1− aqq−s)−1
∏
p-MN

(1− app−s + ε(p)pk−1p−2s)−1.

2. (a) If ε is not a character mod MN/q, then |aq| = q(k−1)/2.

(b) If ε is a character mod MN/q, then aq = 0 if q2 | MN , and a2
q =

ε(q)qk−2 if q2 -MN .

9.2 The Up operator

Let N be a positive integer and M a divisor of N . For each divisor d of N/M we
define a map

αd : Sk(Γ1(M))→ Sk(Γ1(N)) : f(τ) 7→ f(dτ).

We verify that f(dτ) ∈ Sk(Γ1(N)) as follows. Recall that for γ =
(
a b
c d

)
, we write

(f |[γ]k)(τ) = det(γ)k−1(cz + d)−kf(γ(τ)).

The transformation condition for f to be in Sk(Γ1(N)) is that f |[γ]k(τ) = f(τ). Let
f(τ) ∈ Sk(Γ1(M)) and let ιd =

(
d 0
0 1

)
. Then f |[ιd]k(τ) = dk−1f(dτ) is a modular

form on Γ1(N) since ι−1
d Γ1(M)ιd contains Γ1(N). Moreover, if f is a cusp form

then so is f |[ιd]k.

Proposition 9.2.1. If f ∈ Sk(Γ1(M)) is nonzero, then{
αd(f) : d | N

M

}
is linearly independent.

Proof. If the q-expansion of f is
∑
anq

n, then the q-expansion of αd(f) is
∑
anq

dn.
The matrix of coefficients of the q-expansions of αd(f), for d | (N/M), is upper
triangular. Thus the q-expansions of the αd(f) are linearly independent, hence
the αd(f) are linearly independent, since the map that sends a cusp form to its
q-expansion is linear.

When p | N , we denote by Up the Hecke operator Tp acting on the image space
Sk(Γ1(N)). For clarity, in this section we will denote by Tp,M , the Hecke operator
Tp ∈ End(Sk(Γ1(M))). For f =

∑
anq

n ∈ Sk(Γ1(N)), we have

f |Up =
∑

anpq
n.

Suppose f =
∑
anq

n ∈ Sk(Γ1(M)) is a normalized eigenform for all of the Hecke
operators Tn and 〈n〉, and p is a prime that does not divide M . Then

f |Tp,M = apf and f |〈p〉 = ε(p)f.
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Assume N = prM , where r ≥ 1 is an integer. Let

fi(τ) = f(piτ),

so f0, . . . , fr are the images of f under the maps αp0 , . . . , αpr , respectively, and
f = f0. We have

f |Tp,M =
∑
n≥1

anpq
n + ε(p)pk−1

∑
anq

pn

= f0|Up + ε(p)pk−1f1,

so

f0|Up = f |Tp,M − ε(p)pk−1f1 = apf0 − ε(p)pk−1f1.

Also

f1|Up =
(∑

anq
pn
)
|Up =

∑
anq

n = f0.

More generally, for any i ≥ 1, we have fi|Up = fi−1.
The operator Up preserves the two dimensional vector space spanned by f0

and f1, and the matrix of Up with respect to the basis f0, f1 is

A =

(
ap 1

− ε(p)pk−1 0

)
,

which has characteristic polynomial

X2 − apX + pk−1ε(p). (9.2.1)

9.2.1 A Connection with Galois representations

This leads to a striking connection with Galois representations. Let f be a newform
and let K = Kf be the field generated over Q by the Fourier coefficients of f . Let
` be a prime and λ a prime lying over `. Then Deligne (and Serre, when k = 1)
constructed a representation

ρλ : Gal(Q/Q)→ GL(2,Kλ).

If p - N`, then ρλ is unramified at p, so if Frobp ∈ Gal(Q/Q) if a Frobenius element,
then ρλ(Frobp) is well defined, up to conjugation. Moreover, one can show that

det(ρλ(Frobp)) = pk−1ε(p), and

tr(ρλ(Frobp)) = ap.

(We will discuss the proof of these relations further in the case k = 2.) Thus the
characteristic polynomial of ρλ(Frobp) ∈ GL2(Eλ) is

X2 − apX + pk−1ε(p),

which is the same as (9.2.1).
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9.2.2 When is Up semisimple?

Question 9.2.2. Is Up semisimple on the span of f0 and f1?

If the eigenvalues of Up are distinct, then the answer is yes. If the eigenvalues
are the same, then X2 − apX + pk−1ε(p) has discriminant 0, so a2

p = 4pk−1ε(p),
hence

ap = 2p
k−1
2

√
ε(p).

Open Problem 9.2.3. Does there exist an eigenform f =
∑
anq

n ∈ Sk(Γ1(N))

such that ap = 2p
k−1
2

√
ε(p)?

It is a curious fact that the Ramanujan conjectures, which were proved by
Deligne in 1973, imply that |ap| ≤ 2p(k−1)/2, so the above equality remains taunt-
ing. When k = 2, Coleman and Edixhoven proved that |ap| < 2p(k−1)/2.

2 2

9.2.3 An Example of non-semisimple Up

Suppose f = f0 is a normalized eigenform. Let W be the space spanned by f0, f1

and let V be the space spanned by f0, f1, f2, f3. Then Up acts on V/W by f2 7→ 0
and f3 7→ f2. Thus the matrix of the action of Up on V/W is ( 0 1

0 0 ), which is
nonzero and nilpotent, hence not semisimple. Since W is invariant under Up this
shows that Up is not semisimple on V , i.e., Up is not diagonalizable.

9.3 The Cusp forms are free of rank one over TC

9.3.1 Level 1

Suppose N = 1, so Γ1(N) = SL2(Z). Using the Petersson inner product, we see
that all the Tn are diagonalizable, so Sk = Sk(Γ1(1)) has a basis

f1, . . . , fd

of normalized eigenforms where d = dimSk. This basis is canonical up to ordering.
Let TC = T ⊗C be the ring generated over C by the Hecke operator Tp. Then,
having fixed the basis above, there is a canonical map

TC ↪→ Cd : T 7→ (λ1, . . . , λd),

where fi|T = λifi. This map is injective and dim TC = d, so the map is an
isomorphism of C-vector spaces.

The form
v = f1 + · · ·+ fn

generates Sk as a T-module. Note that v is canonical since it does not depend on
the ordering of the fi. Since v corresponds to the vector (1, . . . , 1) and T ∼= Cd

2Look in Coleman-edixhoven and say more about this. Plus find the Weil reference. When
k = 2, Weil [?] showed that ρλ(Frobp) is semisimple, so if the eigenvalues of Up are equal then

ρλ(Frobp) is a scalar. But Edixhoven and Coleman [CE98] show that it is not a scalar by looking
at the abelian variety attached to f .



74 9. Newforms and Euler Products

acts on Sk ∼= Cd componentwise, this is just the statement that Cd is generated
by (1, . . . , 1) as a Cd-module.

There is a perfect pairing Sk ×TC → C given by〈∑
f, Tn

〉
= a1(f |Tn) = an(f),

where an(f) denotes the nth Fourier coefficient of f . Thus we have simultaneously:

1. Sk is free of rank 1 over TC, and

2. Sk ∼= HomC(TC,C) as T-modules.

Combining these two facts yields an isomorphism

TC
∼= HomC(TC,C). (9.3.1)

This isomorphism sends an element T ∈ T to the homomorphism

X 7→ 〈v|T,X〉 = a1(v|T |X).

Since the identification Sk = HomC(TC,C) is canonical and since the vector v is
canonical, we see that the isomorphism (9.3.1) is canonical.

Recall that Mk has as basis the set of products Ea4E
b
6, where 4a + 6b = k, and

Sk is the subspace of forms where the constant coefficient of their q-expansion is 0.
Thus there is a basis of Sk consisting of forms whose q-expansions have coefficients
in Q. Let Sk(Z) = Sk ∩ Z[[q]], be the submodule of Sk generated by cusp forms
with Fourier coefficients in Z, and note that Sk(Z)⊗Q ∼= Sk(Q). Also, the explicit
formula (

∑
anq

n)|Tp =
∑
anpq

n+pk−1
∑
anq

np implies that the Hecke algebra T
preserves Sk(Z).

Proposition 9.3.1. The Fourier coefficients of each fi are totally real algebraic
integers.

Proof. The coefficient an(fi) is the eigenvalue of Tn acting on fi. As observed
above, the Hecke operator Tn preserves Sk(Z), so the matrix [Tn] of Tn with respect
to a basis for Sk(Z) has integer entries. The eigenvalues of Tn are algebraic integers,
since the characteristic polynomial of [Tn] is monic and has integer coefficients.

The eigenvalues are real since the Hecke operators are self-adjoint with respect
to the Petersson inner product.

Remark 9.3.2. A CM field is a quadratic imaginary extension of a totally real field.
For example, when n > 2, the field Q(ζn) is a CM field, with totally real subfield
Q(ζn)+ = Q(ζn + 1/ζn). More generally, one shows that the eigenvalues of any
newform f ∈ Sk(Γ1(N)) generate a totally real or CM field.

Proposition 9.3.3. We have v ∈ Sk(Z).

Proof. This is because v =
∑

Tr(Tn)qn, and, as we observed above, there is a basis
so that the matrices Tn have integer coefficients.

Example 9.3.4. When k = 36, we have

v = 3q + 139656q2 − 104875308q3 + 34841262144q4 + 892652054010q5

− 4786530564384q6 + 878422149346056q7 + · · · .
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The normalized newforms f1, f2, f3 are

fi = q + aq2 + (−1/72a2 + 2697a+ 478011548)q3 + (a2 − 34359738368)q4

(a2 − 34359738368)q4 + (−69/2a2 + 14141780a+ 1225308030462)q5 + · · · ,

for a each of the three roots ofX3−139656X2−59208339456X−1467625047588864.

9.3.2 General level

Now we consider the case for general level N . Recall that there are maps

Sk(Γ1(M))→ Sk(Γ1(N)),

for all M dividing N and all divisor d of N/M .
The old subspace of Sk(Γ1(N)) is the space generated by all images of these

maps with M |N but M 6= N . The new subspace is the orthogonal complement of
the old subspace with respect to the Petersson inner product.

There is an algebraic definition of the new subspace. One defines trace maps

Sk(Γ1(N))→ Sk(Γ1(M))

for all M < N , M | N which are adjoint to the above maps (with respect to the
Petersson inner product). Then f is in the new part of Sk(Γ1(N)) if and only if f
is in the kernels of all of the trace maps.

It follows from Atkin-Lehner-Li theory that the Tn acts semisimply on the new
subspace Sk(Γ1(M))new for all M ≥ 1, since the common eigenspaces for all Tn
each have dimension 1. Thus Sk(Γ1(M))new has a basis of normalized eigenforms.
We have a natural map ⊕

M |N

Sk(Γ1(M))new ↪→ Sk(Γ1(N)).

The image in Sk(Γ1(N)) of an eigenform f for some Sk(Γ1(M))new is called a
newform of level Mf = M . Note that a newform of level less than N is not
necessarily an eigenform for all of the Hecke operators acting on Sk(Γ1(N)); in
particular, it can fail to be an eigenform for the Tp, for p | N .

Let

v =
∑
f

f(q
N
Mf ) ∈ Sk(Γ1(N)),

where the sum is taken over all newforms f of weight k and some level M | N . This
generalizes the v constructed above when N = 1 and has many of the same good
properties. For example, Sk(Γ1(N)) is free of rank 1 over T with basis element v.
Moreover, the coefficients of v lie in Z, but to show this we need to know that
Sk(Γ1(N)) has a basis whose q-expansions lie in Q[[q]]. This is true, but we will
not prove it here. One way to proceed is to use the Tate curve to construct a
q-expansion map H0(X1(N),ΩX1(N)/Q) → Q[[q]], which is compatible with the
usual Fourier expansion map.3 3

3Where will we?
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Example 9.3.5. The space S2(Γ1(22)) has dimension 6. There is a single newform
of level 11,

f = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + · · · .

There are four newforms of level 22, the four Gal(Q/Q)-conjugates of

g = q − ζq2 + (−ζ3 + ζ − 1)q3 + ζ2q4 + (2ζ3 − 2)q5

+ (ζ3 − 2ζ2 + 2 ζ − 1)q6 − 2ζ2q7 + ...

where ζ is a primitive 10th root of unity.

Warning 9.3.6. Let S = S2(Γ0(88)), and let v =
∑

Tr(Tn)qn. Then S has dimen-
sion 9, but the Hecke span of v only has dimension 7. Thus the more “canonical
looking” element

∑
Tr(Tn)qn is not a generator for S. 4 4

9.4 Decomposing the anemic Hecke algebra

We first observe that it make no difference whether or not we include the Diamond
bracket operators in the Hecke algebra. Then we note that the Q-algebra generated
by the Hecke operators of index coprime to the level is isomorphic to a product of
fields corresponding to the Galois conjugacy classes of newforms.

Proposition 9.4.1. The operators 〈d〉 on Sk(Γ1(N)) lie in Z[. . . , Tn, . . .].

Proof. It is enough to show 〈p〉 ∈ Z[. . . , Tn, . . .] for primes p, since each 〈d〉 can be
written in terms of the 〈p〉. Since p - N , we have that5 5

Tp2 = T 2
p − 〈p〉pk−1,

so 〈p〉pk−1 = T 2
p −Tp2 . By Dirichlet’s theorem on primes in arithmetic progression

[Lan94, VIII.4], there is another prime q congruent to p mod N . Since pk−1 and
qk−1 are relatively prime, there exist integers a and b such that apk−1 +bqk−1 = 1.
Then

〈p〉 = 〈p〉(apk−1 + bqk−1) = a(Tp
2 − Tp2) + b(Tq

2 − Tq2) ∈ Z[. . . , Tn, . . .].

Let S be a space of cusp forms, such as Sk(Γ1(N)) or Sk(Γ1(N), ε). Let

f1, . . . , fd ∈ S

be representatives for the Galois conjugacy classes of newforms in S of level Nfi
dividing N . For each i, let Ki = Q(. . . , an(fi), . . .) be the field generated by the
Fourier coefficients of fi.

4I think this because using my MAGMA program, I computed the image of v under T1,...,T25

and the span of the image has dimension 7. For example, there is an element of S whose q-
expansion has valuation 7, but no element of the T-span of v has q-expansion with valuation 7

or 9.
5See where?
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Definition 9.4.2 (Anemic Hecke Algebra). The anemic Hecke algebra is the sub-
algebra

T0 = Z[. . . , Tn, . . . : (n,N) = 1] ⊂ T

of T obtained by adjoining to Z only those Hecke operators Tn with n relatively
prime to N .

Proposition 9.4.3. We have T0 ⊗Q ∼=
∏d
i=1Ki.

The map sends Tn to (an(f1), . . . , an(fd)). The proposition can be proved using
the discussion above and Atkin-Lehner-Li theory, but we will not give a proof
here.6 6

Example 9.4.4. When S = S2(Γ1(22)), then T0 ⊗ Q ∼= Q × Q(ζ10) (see Exam-
ple 9.3.5). When S = S2(Γ0(37)), then T0 ⊗Q ∼= Q×Q.

6Add for book.
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10
Some Explicit Genus Computations

10.1 Computing the dimension of Sk(Γ)

Let k = 2 unless otherwise noted, and let Γ ⊂ SL2(Z) be a congruence subgroup.
Then

S2(Γ) = H0(XΓ,Ω
1)

where

XΓ = (Γ\H) ∪ (Γ\P1(Q)).

By definition dimH0(XΓ,Ω
1) is the genus of XΓ.

Exercise 10.1.1. Prove that when Γ = SL2(Z) then Γ\P1(Q) is a point.

Since Γ ⊂ Γ(1) there is a covering XΓ → XΓ(1) which is only ramified at points

above 0, 1728,∞, where 0 corresponds to ρ = e2πi/3 and 1728 to i under j. This is
illustrated as follows:

Γ\H //

��

XΓ

��
Γ(1)\H // XΓ(1)

j

��
P1(C)

Example 10.1.2. Suppose Γ = Γ0(N), then the degree of the covering is the index
(SL2(Z)/{±1} : Γ0(N)/{±1}). A point on YΓ(1) corresponds to an elliptic curve,
whereas a points on Y0(N) correspond to a pair consisting of an elliptic curve and
a subgroup of order N .
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10.2 Application of Riemann-Hurwitz

Now we compute the genus of XΓ by applying the Riemann-Hurwitz formula.
Intuitively the Euler characteristic should be totally additive, that is, if A and B
are disjoint spaces then

χ(A ∪B) = χ(A) + χ(B).

Let X be a compact Riemann surface of genus g, then χ(X) = 2 − 2g. Since
χ({point}) = 1 we should have that

χ(X − {p1, . . . , pn}) = χ(X)− nχ(1) = (2− 2g)− n.

If we have an unramified covering X → Y of degree d then χ(X) = d · χ(Y ).
Consider the covering

XΓ − {points over 0, 1728,∞}

��
XΓ(1) − {0, 1728,∞}

Since XΓ(1) has genus 0, XΓ(1)−{0, 1728,∞} has Euler characteristic 2−3 = −1. If
we let g = χ(XΓ) then χ(XΓ−{points over 0, 1728,∞} = 2−2g−n0−n1728−n∞,
where np denotes the number of points lying over p. Thus −d = 2 − 2g − n0 −
n1728 − n∞ whence

2g − 2 = d− n0 − n1728 − n∞.
Suppose Γ = Γ0(N) with N > 3, then n0 = d/3 and n1728 = d/2 (I’m not sure

why). The degree d of the covering is equal to the number of unordered ordered
basis of E[N ], thus

d = # SL2(Z/NZ)/2.

We still need to compute n∞. SL2(Z) acts on P1(Q) if we view P1(Q) as all
pairs (a, b) of relatively prime integers and suppose ∞ corresponds to (1, 0). The
stabilizer of (1, 0) is the sugroup {

(
a b
c d

)
∈ SL2(Z) : c = 0} of upper triangular

matrices. Since the points lying over ∞ are all conjugate by the Galois group of
the covering (which is SL2(Z/NZ)/{±1}),

number of cusps =
order of SL2(Z/NZ)/{±1}

order of stabilizer of ∞
.

We thus have

2g(X(N))− 2 =
d

6
− d

N

where d
N is the number of cusps.

10.3 Explicit genus computations

Let N > 3 and consider the modular curve X = X(N). There is a natural covering

map X → X(1)
j−→ C. Let d be the degree, then

2g − 2 = d−m0 −m1728 −m∞
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where g is the genus of X and mx is the number of points lying over x. Since m0

is approximately d
3 and m1728 is approximately d

2 ,

2g − 2 =
d

6
−m∞ ± small correction factor.

10.4 The Genus of X(N)

Now we count the number of cusps of X(N), that is, the size of Γ(N)\P1(Q).
There is a surjective map from SL2(Z) to P1(Q) given by(

a b
c d

)
7→
(
a b
c d

)(1
0

)
.

Let U be the kernel, thus U is the stabilizer of∞ =
(

1
0

)
, so U = {±

(
1 a
0 1

)
: a ∈ Z}.

Then the cusps of X(N) are the elements of

Γ(N)\(SL2(Z)/U) = (Γ(N)\ SL2(Z))/U = SL2(Z/NZ)/U

which has order
# SL2(Z/NZ)

2N
=

d

N
.

Substituting this into the above formula gives

2g − 2 =
d

6
− d

N
=

d

6N
(N − 6)

so

g = 1 +
d

12N
(N − 6).

When N is prime

d =
1

2
# SL2(Z/NZ) =

1

2
· (N2 − 1)(N2 −N)

N − 1
.

Thus when N = 5, d = 60 so g = 0, and when N = 7, d = 168 so g = 3.

10.5 The Genus of X0(N)

Suppose N > 3 and N is prime. The covering map X0(N) → X(1) is of degree
N+1 since a point of X0(N) corresponds to an elliptic curve along with a subgroup
of order N and there are N + 1 such subgroups because N is prime.

Exercise 10.5.1. X0(N) has two cusps; they are the orbit of∞ which is unramified
and 0 which is ramified of order N .

Thus
2g − 2 = N + 1− 2− n1728 − n0.

n0 is the number of pairs (E,C) (modulo isomorphism) such that E has j-invariant

0. So we consider E = C/Z[−1+i
√

3
2 ] which has endomorphism ring End(E) =
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Z[µ6]. Now µ6/±1 acts on the cyclic subgroups C so, letting ω be a primitive cube
root of unity, we have

(E,C) ∼= (E,ωC) ∼= (E,ω2C).

This might lead one to think that m0 is (N + 1)/3, but it may be bigger if, for
example, C = ωC. Thus we must count those C so that ωC = C or ω2C = C,

that is, those C which are stable under O = Z[−1+i
√

3
2 ]. So we must compute the

number of stable O/NO-submodules of order N . This depends on the structure of
O/NO:

O/NO =

{
FN ⊕ FN if (−3

N ) = 1 (N splits)

FN2 if (−3
N ) = −1 (N stays inert)

Since O/NO = FN2 is a field it has no submodules of order N , whereas FN ⊕FN
has two O/NO-submodules of order N , namely FN ⊕ 0 and 0⊕ FN . Thus

m0 =

{
N+1

3 if N ≡ 2 (mod 3)
N−1

3 + 2 if N ≡ 1 (mod 3)

Exercise 10.5.2. It is an exercise in elegance to write this as a single formula
involving the quadratic symbol.

By similar reasoning one shows that

m1728 =

{
N+1

2 if N ≡ 3 (mod 4)
N−1

2 + 2 if N ≡ 1 (mod 4)

We can now compute the genus of X0(N) for any prime N . For example, if N = 37
then 2g− 2 = 36− (2 + 18)− (14) = 2 so g = 2. Similarly, X0(13) has genus 0 and
X0(11) has genus 1. In general, X0(N) has genus approximately N/12.

Serre constructed a nice formula for the above genus. Suppose N > 3 is a prime
and write N = 12a+ b with 0 ≤ b ≤ 11. Then Serre’s formula is

b 1 5 7 11

g a− 1 a a a+ 1

10.6 Modular forms mod p

Let N be a positive integer, let p be a prime and assume Γ is either Γ0(N) or
Γ1(N).

Let Mk(Γ,Z) = Mk(Γ,C) ∩ Z[[q]], then

Mk(Γ,Fp) = Mk(Γ,Z)⊗Z Fp

is the space of modular forms mod p of weight k.
Suppose p = N , then one has Serre’s Equality:

Mp+1(SL2(Z),Fp) = M2(Γ0(p),Fp)
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The map from the right hand side to the left hand side is accomplished via a
certain normalized Eisenstein series. Recall that in SL2(Z),

Gk = −Bk
2k

+

∞∑
n=1

(
∑
d|n

dk−1)qn

and

Ek = 1− 2k

Bk

∞∑
n=1

(
∑
d|n

dk−1)qn.

One finds ordp(−Bk2k ) using Kummer congruences. In particular, ordp(Bp−1) = −1,
so Ep−1 ≡ 1 (mod p). Thus multiplication by Ep−1 raises the level by p − 1 but
does not change the q-expansion mod p. We thus get a map

M2(Γ0(p),Fp)→Mp+1(Γ0(p),Fp).

The map
Mp+1(Γ0(p),Fp)→Mp+1(SL2(Z),Fp)

is the trace map (which is dual to the natural inclusion going the other way) and
is accomplished by averaging in order to get a form invariant under SL2(Z).
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11
The Field of Moduli

In this chapter we will study the field of definition of the modular curves X(N),
X0(N), and X1(N).

The function field of X(1) = P1
Q is Q(t). If E is an elliptic curve given by a

Weierstrass equation y2 = 4x3 − g2x− g3 then

j(E) = j(g2, g3) =
1728g3

2

g3
2 − 27g2

3

.

The j invariant determines the isomorphism class of E over C. Pick an elliptic
curve E/Q(t) such that j(E) = t. In particular we could pick the elliptic curve
with Weierstrass equation

y2 = 4x3 − 27t

t− 1728
x− 27t

t− 1728
.

Let E/k be an arbitrary elliptic curve and N a positive integer prime to char k.
Then E[N ](k) ∼= (Z/NZ)2. Let k(E[N ]) be the field obtained by adjoining the co-
ordinates of the N -torsion points of E. Consider the tower of fields k ⊃ k(E[N ]) ⊃
k. There is a Galois representation on the N torsion of E:

Gal(k/k)
ρE,N−−−→ Aut(E[N ]) ∼= GL2(Z/NZ)

and Gal(k/k(E[N ])) = ker(ρE,N ). Thus the Galois group of the extension Q(t)(E[N ])
over Q(t) is contained in GL2(Z/NZ). Let X(N) be the curve corresponding to
the function field Q(t)(E[N ]) over Q. Since Q∩Q(t)(E[N ]) is contained in Q(µN ),
X(N) is defined over Q(µN ).

Composing ρE with the natural map GL2(Z/NZ)→ GL2(Z/NZ)/{±1} gives a
map

ρE : Gal(K/K)→ GL2(Z/NZ)/{±1}.

Proposition 11.0.1. ρE is surjective if and only if ρE is surjective.
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Proof. If ρE is surjective then either
(

0 −1
1 0

)
or its negative lies in the image of ρ.

Thus
(−1 0

0 −1

)
lie in the image of ρ. Since ρE is surjective this implies that ρ is

surjective. The converse is trivial.

11.1 Digression on moduli

X0(N)(K) is the set of K-isomorphisms classes of pairs (E,C) where E/K is
an elliptic curve and C is a cyclic subgroup of order N . X0(N)(K) is the set of
isomorphism classes of pairs (E,C) such that for all σ ∈ Gal(K/K), σ(E,C) =
(E,C). There is a map

{k-isomorphism classes of pairs (E,C)/K} → X0(N)(K)

which is “notoriously” non-injective. [DR73] prove the map is surjective. When
N = 1 they observe that the map is surjective, then for N > 1 they show that
certain obstructions vanish. A related question is

Question 11.1.1. If E/K is isomorphic to all its Galois conjugates, is there E′/K
which is isomorphic to E over K?

11.2 When is ρE surjective?

Proposition 11.2.1. Let E1 and E2 be elliptic curves defined over K with equal
j-invariants, thus E1

∼= E2 over K. Assume E1 and E2 do not have complex
multiplication over K. Then ρE1

is surjective if and only if ρE2
is surjective.

Proof. Assume ρE1
is surjective. Since E1 has no complex multiplication over K,

AutE1 = {±1}. Choose an isomorphism ϕ : E1
∼−→ E2 over K. Then for σ ∈

Gal(K/K) we have the diagram

E1
ϕ //

∼=
��

E2

∼=
��

σE1
σϕ // σE2

Thus σϕ = ±ϕ for all σ ∈ Gal(K/K), so ϕ : E1[N ]→ E2[N ] defines an equivalence
ρE1

∼= ρE2
. Since ρE1 is surjective this implies ρE2

is surjective which, by the
previous proposition, implies ρE2

is surjective.

Let K = C(j), with j transcendental over C. Let E/K be an elliptic curve with
j-invariant j. Fix a positive integer N and let

ρE : Gal(K/K)→ GL2(Z/NZ)

be the associated Galois representation. Then det ρE is the cyclotomic character
which is trivial since C contains the Nth roots of unity. Thus the image of ρE
lands inside of SL2(Z/NZ). Our next theorem states that a generic elliptic curve
has maximal possible Galois action on its division points.
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Theorem 11.2.2. ρE : Gal(K/K)→ SL2(Z/NZ) is surjective.

Igusa [Igu56] found an algebraic proof of this theorem We will now make some
comments on how an analytic proof goes.

Proof. Let C(j) = K = F1 be the field of modular functions for SL2(Z). Suppose
N ≥ 3 and let FN be the field of mereomorphic functions for Γ(N). Then FN/F1

is a Galois extension with Galois group SL2(Z/NZ)/{±1}.
Let E be an elliptic curve overK with j-invariant j. We will show that Gal(FN/F1) =

SL2(Z/NZ)/{±1} acts transitively on the x-coordinates of the N torsion points
of E. This will show that ρE maps surjectively onto SL2(Z/NZ)/{±1}. Then by
proposition 11.0.1, ρE maps surjectively onto SL2(Z/NZ), as claimed.

We will now construct the x-coordinates of E[N ] as functions on H which are
invariant under Γ(N). (Thus K(E[N ]/{±1}) ⊂ FN .)

Let τ ∈ H and let Lτ = Zτ + Z. Consider ℘(z, Lτ ) which gives the x coordinate
of C/Lτ in it standard form. Define, for each nonzero (r, s) ∈ ((Z/NZ)/{±1})2, a
function

f(r,s) : H → C : τ 7→ g2(τ)

g3(τ)
℘(
rτ + s

N
,Lτ ).

First notice that for any α =
(
a b
c d

)
∈ SL2(Z),

f(r,s)(ατ) = f
(r,s)

(
a b
c d

)(τ).

Indeed, ℘ is homogeneous of degree −2, g2 is modular of weight 4 and g3 is modular
of weight 6, so

f(r,s)(ατ) =
g2(ατ)

g3(ατ)
℘(
rατ + s

N
)

= (cτ + d)−2 g2(τ)

g3(τ)
℘(
raτ + rb+ csτ + sd

N(cτ + d)
)

=
g2(τ)

g3(τ)
℘(

(ra+ sc)τ + rb+ sd

N
) = f(r,s)α(τ)

If τ ∈ H with g2(τ), g3(τ) 6= 0 then the f(r,s)(τ) are the x-coordinates of
the nonzero N -division points of Ej(τ). The various f(r,s)(τ) are distinct. Thus
SL2(Z/NZ)/{±1} acts transitively on the f(r,s). The consequence is that the

N2 − 1 nonzero division points of Ej have x-coordinates in FN equal to the
f(r,s) ∈ FN .

11.3 Observations

Proposition 11.3.1. If E/Q(µN )(t) is an elliptic curve with j(E) = t, then ρE
has image SL2(Z/NZ).

Proof. Since Q(µN ) contains the Nth roots of unity Nth cyclotomic character
is trivial hence the determinant of ρE is trivial. Thus the image of ρE lies in
SL2(Z/NZ). In the other direction, there is a natural inclusion

SL2(Z/NZ) = Gal(C(t)(E[N ])/C(t)) ↪→ Gal(Q(µN )(t)(E[N ])/Q(µN )(t)).
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Proposition 11.3.2. If E/Q(t) is an elliptic curve with j(E) = t, then ρE has
image GL2(Z/NZ) and Q ∩Q(t)(E[N ]) = Q(µN ).

Proof. Since Q(t) contains no Nth roots of unity, the mod N cyclotomic charac-
ter, and hence detρE , is surjective onto (Z/NZ)∗. Since the image of ρE already
contains SL2(Z/NZ) it must equal GL2(Z/NZ). For the second assertion consider
the diagram

Q Q(t)(E[N ])

SL2

Q(µN )

(Z/NZ)∗

Q(µN )(t)

GL2/SL2=(Z/NZ)∗

Q Q(t)

This gives a way to view X0(N) as a projective algebraic curve over Q. Let
K = Q(t) and let L = K(E[N ]) = Q(µN )(t). Then

H = {
( ∗ ∗

0 ∗
)
} ⊂ GL2(Z/NZ) = Gal(L/K).

The fixed field LH is an extension of Q(t) of transcendence degree 1 with field of
constants Q ∩ LH = Q, i.e., a projective algebraic curve.

11.4 A descent problem

Consider the following exercise which may be approached in an honest or dishonest
way.

Exercise 11.4.1. Suppose L/K is a finite Galois extension and G = Gal(L/K). Let
E/L be an elliptic curve, assume AutLE = {±1}, and suppose that for all g ∈ G,
there is an isomorphism gE

∼−→ E over L. Show that there exists E0/K such that
E0
∼= E over L.

Caution! The exercise is false as stated. Both the dishonest and honest ap-
proaches below work only if L is a separable closure of K. Now: can one construct
a counterexample?

Discussion. First the hard, but “honest” way to look at this problem. For notions
on descent see [Ser88]. By descent theory, to give E0 is the same as to give a family
(λg)g∈G of maps λg : gE

∼−→ E such that λgh = λg ◦ gλh where gλh = g ◦ λh ◦ g−1.
Note that λg ◦gλh maps ghE → E. This is the natural condition to impose, because

if f : E0
∼−→ E and we let λg = f ◦ g(f−1) then λgh = λg ◦ gλh.

Using our hypothesis choose, for each g ∈ G, an isomorphism

λg : gE
∼−→ E.

Define a map c by

c(g, h) = λg ◦ gλh ◦ λ−1
gh .
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Note that c(g, h) ∈ AutE = {±1} so c defines an element of

H2(G, {±1}) ⊂ H2(Gal(L/K), {±1}) = Br(K)[2].

Here Br(K)[2] denotes the 2-torsion of the Brauer group

Br(K) = H2(Gal(L/K), L
∗
).

This probably leads to an honest proof.
The dishonest approach is to note that g(j(E)) = j(E) for all g ∈ G since all

conjugates of E are isomorphic and j(gE) = g(j(E)). Thus j(E) ∈ K so we can
define E0/K by substituting j(E) into the universal elliptic curve formula [Sil92,
III.1.4]. This gives an elliptic curve E0 defined over K but isomorphic to E over
K.

11.5 Second look at the descent exercise

Last time we talked about the following problem. Suppose L/K is a Galois ex-
tension with charK = 0, and let E/L be an elliptic curve. Suppose that for all
σ ∈ G = Gal(L/K), σE ∼= E over L. Conclude that there is an elliptic curve E0/K
such that E0

∼= E over L. The conclusion may fail to hold if L is a finite extension
of K, but the exercise is true when L = K. First we give a descent argument which
holds when L = K and then give a counterexample to the more general statement.

For g, h ∈ G = Gal(L/K) we define an automorphism c(g, h) ∈ AutE = {±1}.
Choose for every g ∈ Gal(L/K) some isomorphism

λg : gE
∼−→ E.

If the λg were to all satisfy the compatibility criterion λgh = λg ◦ gλh then by
descent theory we could find a K-structure on E, that is a model for E defined
over K and isomorphic to E over L. Define c(g, h) by c(g, h)λgh = λg◦gλh so c(g, h)
measures how much the λg fail to satisfy the compatibility criterion. Since c(g, h)
is a cocycle it defines an elements of H2(G, {±1}). We want to know that this
element is trivial. When L = K, the map H2(G, {±1}) → H2(G,L∗) is injective.
To see this first consider the exact sequence

0→ {±1} → K
∗ 2−→ K

∗ → 0

where 2 : K
∗ → K

∗
is the squaring map. Taking cohomology yields an exact

sequence
H1(G,K

∗
)→ H2(G, {±1})→ H2(G,K

∗
).

By Hilbert’s theorem 90 ([Ser79] Ch. X, Prop. 2), H1(G, {±1}) = 0. Thus we have
an exact sequence

0→ H2(G, {±1})→ H2(G,K
∗
)[2]→ 0.

Thus H2(G, {±1}) naturally sits inside H2(G,L∗).
To finish Ribet does something with differentials and H0(gE,Ω1) which I don’t

understand.
The counterexample in the case when L/K is finite was provided by Kevin

Buzzard (who said Coates gave it to him). Let L = Q(i), K = Q and E be the
elliptic curve with Weirstrass equation iy2 = x3 + x+ 1. Then E is isomorphic to
its conjugate over L but one can show directly that E has no model over Q.
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11.6 Action of GL2

Let N > 3 be an integer and E/Q(j) an elliptic curve with j-invariant j(E) = j.
Then there is a Galois extension

FN = Q(j)(E[N ]/{±1})
|

F1 = Q(j)

with Galois group GL2(Z/NZ)/{±1}. Think of Q(j)(E[N ]/{±1} as the field ob-
tained from Q(j) by adjoining the x-coordinates of the N -torsion points of E. Note
that this situation differs from the previous situation in that the base field C has
been replaced by Q.

Consider
F =

⋃
N

FN

which corresponds to a projective system of modular curves . Let Af be the ring
of finite adèles, thus

Af = Q̂ = Ẑ⊗Q ⊂
∏
p

Qp.

Af can be thought of as

{(xp) : xp ∈ Zp for almost all p}.

The group GL2(Af ) acts on F . To understand what this action is we first consider

the subgroup GL2(Ẑ) of GL2(Af ).
It can be shown that

F = Q(fN,(r,s) : (r, s) ∈ (Z/NZ)2 − {(0, 0)}, N ≥ 1)

where fN,(r,s) is a function

fN,(r,s) : H → C : τ 7→ g2(τ)

g3(τ)
℘(
rτ + s

N
,Lτ ).

We define the action of GL2(Ẑ) on F as follows. Let g ∈ GL2(Ẑ), then to give the
action of g on fN,(r,s) first map g into GL2(Z/NZ) via the natural reduction map,
then note that GL2(Z/NZ) acts on fN,(r,s) by(a b

c d

)
· fN,(r,s) = f

N,(r,s)
(
a b
c d

) = fN,(ra+sc,rb+sd).

Let E be an elliptic curve. Then the universal Tate module is

T (E) = lim←−E[N ] =
∏
p

Tp(E).

There is an isomorphism α : Ẑ2 ∼−→ T (E). Via right composition GL2(Ẑ) acts

on the collection of all such isomorphism α. So GL2(Ẑ) acts naturally on pairs
(E,α) but the action does nothing to E. An important point to be grasped when
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construction objects like Shimura varieties is that we must “free ourselves” and
allow GL2(Ẑ) to act on the E’s as well.

Let

g =
(a b
c d

)
∈ GL+

2 (Q)

(thus g has positive determinant). Let τ ∈ H and let E = Eτ be the elliptic curve
determined by the lattice Lτ = Z + Zτ . Let

ατ : Lτ = Z + Zτ
∼−→ Z2

be the isomorphism defined by τ 7→ (1, 0) and 1 7→ (0, 1). Now view α = ατ as a
map

α : Z2 ∼−→ H1(E(C),Z).

Tensoring with Q then gives another map (also denoted α)

α : Q2 ∼−→ H1(E,Q).

Then α ◦ g is another isomorphism

Q2 α◦g−−→ H1(E,Q)

which induces an isomorphism Z2 ∼−→ L′ ⊂ H1(E,Q) where L′ is a lattice. There
exists an elliptic curve E′/C and a map λ ∈ Hom(E′, E)⊗Q which induces a map
(also denoted λ)

λ : H1(E′,Z)
∼−→ L′ ⊂ H1(E,Q)

on homology groups.
Now we can define an action on pairs (E,α) by sending (E,α) to (E′, α′). Here

α′ is the map α′ : Z2 → H1(E′,Z) given by the composition

Z2 αg−−→ L′
λ−1

−−→ H1(E′,Z).

In more concrete terms the action is

g : (Eτ , ατ ) 7→ (E′τ , α
′
τ )

where τ ′ = gτ = aτ+b
cτ+d .
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12
Hecke Operators as Correspondences

Our goal is to view the Hecke operators Tn and 〈d〉 as objects defined over Q that
act in a compatible way on modular forms, modular Jacobians, and homology. In
order to do this, we will define the Hecke operators as correspondences.

12.1 The Definition

Definition 12.1.1 (Correspondence). Let C1 and C2 be curves. A correspondence
C1  C2 is a curve C together with nonconstant morphisms α : C → C1 and
β : C → C2. We represent a correspondence by a diagram

C
α

����
��

�� β

��?
??

??
?

C2C1

Given a correspondence C1  C2 the dual correspondence C2  C1 is obtained
by looking at the diagram in a mirror

C
β

����
��

�� α

��?
??

??
?

C1C2

In defining Hecke operators, we will focus on the simple case when the modular
curve is X0(N) and Hecke operator is Tp, where p - N . We will view Tp as a
correspondence X0(N)  X0(N), so there is a curve C = X0(pN) and maps α
and β fitting into a diagram

X0(pN)
α

����
��

� β

��?
??

??

X0(N).X0(N)
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The maps α and β are degeneracy maps which forget data. To define them, we view
X0(N) as classifying isomorphism classes of pairs (E,C), where E is an elliptic
curve and C is a cyclic subgroup of order N (we will not worry about what happens
at the cusps, since any rational map of nonsingular curves extends uniquely to a
morphism). Similarly, X0(pN) classifies isomorphism classes of pairs (E,G) where
G = C ⊕ D, C is cyclic of order N and D is cyclic of order p. Note that since
(p,N) = 1, the group G is cyclic of order pN and the subgroups C and D are
uniquely determined by G. The map α forgets the subgroup D of order p, and β
quotients out by D:

α : (E,G) 7→ (E,C) (12.1.1)

β : (E,G) 7→ (E/D, (C +D)/D) (12.1.2)

We translate this into the language of complex analysis by thinking of X0(N)
and X0(pN) as quotients of the upper half plane. The first map α corresponds to
the map

Γ0(pN)\h→ Γ0(N)\h

induced by the inclusion Γ0(pN) ↪→ Γ0(N). The second map β is constructed by
composing the isomorphism

Γ0(pN)\h ∼−→
(
p 0
0 1

)
Γ0(pN)

(
p 0
0 1

)−1

\h (12.1.3)

with the map to Γ0(N)\h induced by the inclusion(
p 0
0 1

)
Γ0(pN)

(
p 0
0 1

)−1

⊂ Γ0(N).

The isomorphism (12.1.3) is induced by z 7→
(
p 0
0 1

)
z = pz; explicitly, it is

Γ0(pN)z 7→
(
p 0
0 1

)
Γ0(pN)

(
p 0
0 1

)−1 ( p 0
0 1

)
z.

(Note that this is well-defined.)
The maps α and β induce pullback maps on differentials

α∗, β∗ : H0(X0(N),Ω1)→ H0(X0(pN),Ω1).

We can identify S2(Γ0(N)) with H0(X0(N),Ω1) by sending the cusp form f(z) to
the holomorphic differential f(z)dz. Doing so, we obtain two maps

α∗, β∗ : S2(Γ0(N))→ S2(Γ0(pN)).

Since α is induced by the identity map on the upper half plane, we have α∗(f) =
f , where we view f =

∑
anq

n as a cusp form with respect to the smaller group
Γ0(pN). Also, since β∗ is induced by z 7→ pz, we have

β∗(f) = p

∞∑
n=1

anq
pn.

The factor of p is because

β∗(f(z)dz) = f(pz)d(pz) = pf(pz)dz.
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Let X, Y , and C be curves, and α and β be nonconstant holomorphic maps, so
we have a correspondence

C
α

����
��

� β

��?
??

??

Y.X

By first pulling back, then pushing forward, we obtain induced maps on differentials

H0(X,Ω1)
α∗−−→ H0(C,Ω1)

β∗−→ H0(Y,Ω1).

The composition β∗ ◦α∗ is a map H0(X,Ω1)→ H0(Y,Ω1). If we consider the dual
correspondence, which is obtained by switching the roles of X and Y , we obtain a
map H0(Y,Ω1)→ H0(X,Ω1).

Now let α and β be as in (12.1.1). Then we can recover the action of Tp on
modular forms by considering the induced map

β∗ ◦ α∗ : H0(X0(N),Ω1)→ H0(X0(N),Ω1)

and using that S2(Γ0(N)) ∼= H0(X0(N),Ω1).

12.2 Maps induced by correspondences

In this section we will see how correspondences induce maps on divisor groups,
which in turn induce maps on Jacobians.

Suppose ϕ : X → Y is a morphism of curves. Let Γ ⊂ X × Y be the graph of ϕ.
This gives a correspondence

Γ
α

����
��

� β

��?
??

??

YX

We can reconstruct ϕ from the correspondence by using that ϕ(x) = β(α−1(x)).
[draw picture here]

More generally, suppose Γ is a curve and that α : Γ→ X has degree d ≥ 1. View
α−1(x) as a divisor on Γ (it is the formal sum of the points lying over x, counted
with appropriate multiplicities). Then β(α−1(x)) is a divisor on Y . We thus obtain
a map

Divn(X)
β◦α−1

−−−−→ Divdn(Y ),

where Divn(X) is the group of divisors of degree n on X. In particular, setting
d = 0, we obtain a map Div0(X)→ Div0(Y ).

We now apply the above construction to Tp. Recall that Tp is the correspondence

X0(pN)
α

����
��

� β

��?
??

??

X0(N),X0(N)
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where α and β are as in Section 12.1 and the induced map is

(E,C)
α∗7→

∑
D∈E[p]

(E,C ⊕D)
β∗7→

∑
D∈E[p]

(E/D, (C +D)/D).

Thus we have a map Div(X0(N)) → Div(X0(N)). This strongly resembles the
first definition we gave of Tp on level 1 forms, where Tp was a correspondence of
lattices.

12.3 Induced maps on Jacobians of curves

Let X be a curve of genus g over a field k. Recall that there is an important
association{

curves X/k
}
−→

{
Jacobians Jac(X) = J(X) of curves

}
between curves and their Jacobians.

Definition 12.3.1 (Jacobian). Let X be a curve of genus g over a field k. Then the
Jacobian of X is an abelian variety of dimension g over k whose underlying group
is functorially isomorphic to the group of divisors of degree 0 on X modulo linear
equivalence. (For a more precise definition, see Section ?? (Jacobians section)1 .) 1

There are many constructions of the Jacobian of a curve. We first consider the
Albanese construction. Recall that over C, any abelian variety is isomorphic to
Cg/L, where L is a lattice (and hence a free Z-module of rank 2g). There is an
embedding

ι : H1(X,Z) ↪→ H0(X,Ω1)∗

γ 7→
∫
γ

•

Then we realize Jac(X) as a quotient

Jac(X) = H0(X,Ω1)∗/ι(H1(X,Z)).

In this construction, Jac(X) is most naturally viewed as covariantly associated
to X, in the sense that if X → Y is a morphism of curves, then the resulting map
H0(X,Ω1)∗ → H0(Y,Ω1)∗ on tangent spaces induces a map Jac(X)→ Jac(Y ).

There are other constructions in which Jac(X) is contravariantly associated
to X. For example, if we view Jac(X) as Pic0(X), and X → Y is a morphism, then
pullback of divisor classes induces a map Jac(Y ) = Pic0(Y )→ Pic0(X) = Jac(X).

If F : X  Y is a correspondence, then F induces an a map Jac(X)→ Jac(Y )
and also a map Jac(Y ) → Jac(X). If X = Y , so that X and Y are the same, it
can often be confusing to decide which duality to use. Fortunately, for Tp, with p
prime to N , it does not matter which choice we make. But it matters a lot if p | N
since then we have non-commuting confusable operators and this has resulted in
mistakes in the literature.

1insert this
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12.4 More on Hecke operators

Our goal is to move things down to Q from C or Q. In doing this we want to
understand Tn (or Tp), that is, how they act on the associated Jacobians and
how they can be viewed as correspondences. In characteristic p the formulas of
Eichler-Shimura will play an important role.

We consider Tp as a correspondence on X1(N) or X0(N). To avoid confusion
we will mainly consider Tp on X0(N) with p - N . Thus assume, unless otherwise
stated, that p - N . Remember that Tp was defined to be the correspondence

X0(pN)
α

����
��

� β

��?
??

??

X0(N)X0(N)

Think of X0(pN) as consisting of pairs (E,D) where D is a cyclic subgroup of E of
order p and E is the enhanced elliptic curve consisting of an elliptic curve E along
with a cyclic subgroup of order N . The degeneracy map α forgets the subgroup D
and the degeneracy map β divides by it. By contravariant functoriality we have a
commutative diagram

H0(X0(N),Ω1)
T∗p=α∗◦β∗ // H0(X0(N),Ω1)

S2(Γ0(N))
Tp // S2(Γ0(N))

Our convention to define T ∗p as α∗ ◦ β∗ instead of β∗ ◦ α∗ was completely psy-
chological because there is a canonical duality relating the two. We chose the way
we did because of the analogy with the case of a morphism ϕ : Y → X with graph
Γ which induces a correspondence

Γ
π1

����
��

� π2

��?
??

??

XY

Since the morphism ϕ induces a map on global sections in the other direction

H0(X,Ω1) = Γ(X)
ϕ∗−−→ Γ(Y ) = H0(Y,Ω1)

it is psychologically natural for more general correspondence such as Tp to map
from the right to the left.

The morphisms α and β in the definition of Tp are defined over Q. This can be
seen using the general theory of representable functors. Thus since Tp is defined
over Q most of the algebraic geometric objects we will construct related to Tp will
be defined over Q.

12.5 Hecke operators acting on Jacobians

The Jacobian J(X0(N)) = J0(N) is an abelian variety defined over Q. There
are both covariant and contravariant ways to construct J0(N). Thus a map α :
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X0(pN)→ X0(N) induces maps

J0(pN) J0(pN)

α∗

��
J0(N)

α∗

OO

p+1
// J0(N)

Note that α∗ ◦ α∗ : J0(N)→ J0(N) is just multiplication by deg(α) = p+ 1, since
there are p + 1 subgroups of order p in E. (At least when p - N , when p|N there
are only p subgroups.)

There are two possible ways to define Tp as an endomorphism of J0(N). We
could either define Tp as β∗ ◦ α∗ or equivalently as α∗ ◦ β∗ (assuming still that
p - N).

12.5.1 The Albanese Map

There is a way to map the curve X0(N) into its Jacobian since the underlying
group structure of J0(N) is

J0(N) =

{
divisors of degree 0 on X0(N)

}
{

principal divisors
}

Once we have chosen a rational point, say ∞, on X0(N) we obtain the Albanese
map

θ : X0(N)→ J0(N) : x 7→ x−∞

which sends a point x to the divisor x−∞. The map θ gives us a way to pullback
differentials on J0(N). Let Cot J0(N) denote the cotangent space of J0(N) (or the
space of regular differentials). The diagram

Cot J0(N)

oθ∗

��

Cot J0(N)
ξ∗poo

θ∗o
��

H0(X0(N),Ω1) H0(X0(N),Ω1)
T∗poo

may be taken to give a definition of ξp since there is a unique endomorphism
ξp : J0(N)→ J0(N) inducing a map ξ∗p which makes the diagram commute.

Now suppose Γ is a correspondence X  Y so we have a diagram

Γ
α

����
��

� β

��?
??

??

YX

For example, think of Γ as the graph of a morphism ϕ : X → Y . Then Γ should
induce a natural map

H0(Y,Ω1) −→ H0(X,Ω1).
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Taking Jacobians we see that the composition

J(X)
α∗−−→ J(Γ)

β∗−→ J(Y )

gives a map β∗ ◦ α∗ : J(X)→ J(Y ). On cotangent spaces this induces a map

α∗ ◦ β∗ : H0(Y,Ω1)→ H0(X,Ω1).

Now, after choice of a rational point, the map X → J(X) induces a map
Cot J(X)→ H0(X,Ω1). This is in fact independent of the choice of rational point
since differentials on J(X) are invariant under translation.

The map J(X)→ J(Y ) is preferred in the literature. It is said to be induced by
the Albanese functoriality of the Jacobian. We could have just as easily defined a
map from J(Y )→ J(X). To see this let

ψ = β∗ ◦ α∗ : J(X)→ J(Y ).

Dualizing induces a map ψ∨ = α∗ ◦ β∗:

J(X)∨

∼=
��

J(Y )∨
ψ∨oo

J(X) J(Y )

∼=

OO

Here we have used autoduality of Jacobians. This canonical duality is discussed in
[MFK94] and [Mum70] and in Milne’s article in [Sch65].

12.5.2 The Hecke algebra

We now have ξp = Tp ∈ End J0(N) for every prime p. If p|N , then we must decide
between α∗ ◦β∗ and β∗ ◦α∗. The usual choice is the one which induces the usual Tp
on cusp forms. If you don’t like your choice you can get out of it with Atkin-Lehner
operators.

Let

T = Z[. . . , Tp, . . .] ⊂ End J0(N)

then T is the same as TZ ⊂ End(S2(Γ0(N))). To see this first note that there
is a map T → TZ which is not a prior injective, but which is injective because
elements of End J0(N) are completely determined by their action on Cot J0(N).

12.6 The Eichler-Shimura relation

Suppose p - N is a prime. The Hecke operator Tp and the Frobenius automorphism
Frobp induce, by functoriality, elements of End(J0(N)Fp), which we also denote
Tp and Frobp. The Eichler-Shimura relation asserts that the relation

Tp = Frobp +pFrob∨p (12.6.1)
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B

A

FIGURE 12.6.1. The reduction mod p of the Deligne-Rapoport model of X0(Np)

holds in End(J0(N)Fp). In this section we sketch the main idea behind why (12.6.1)
holds. For more details and a proof of the analogous statement for J1(N), see
[Con01].2 2

Since J0(N) is an abelian variety defined over Q, it is natural to ask for the
primes p such that J0(N) have good reduction. In the 1950s Igusa showed3 that 3
J0(N) has good reduction for all p - N . He viewed J0(N) as a scheme over Spec(Q),
then “spread things out” to make an abelian scheme over Spec(Z[1/N ]). He did
this by taking the Jacobian of the normalization of X0(N) (which is defined over
Z[1/N ]) in Pn

Z[1/N ].
The Eichler-Shimura relation is a formula for Tp in characteristic p, or more

precisely, for the corresponding endomorphisms in End(J0(N)Fp)) for all p for
which J0(N) has good reduction at p. If p - N , then X0(N)Fp has many of the
same properties as X0(N)Q. In particular, the noncuspidal points on X0(N)Fp
classify isomorphism classes of enhanced elliptic curves E = (E,C), where E is an
elliptic curve over Fp and C is a cyclic subgroup of E of order N . (Note that two
pairs are considered isomorphic if they are isomorphic over Fp.)

Next we ask what happens to the map Tp : J0(N) → J0(N) under reduction
modulo p. To this end, consider the correspondence

X0(Np)
α

����
��

� β

��?
??

??

X0(N)X0(N)

that defines Tp. The curve X0(N) has good reduction at p, but X0(Np) typically
does not. Deligne and Rapaport [DR73] showed that X0(Np) has relatively benign
reduction at p. Over Fp, the reduction X0(Np)Fp can be viewed as two copies of
X0(N) glued at the supersingular points, as illustrated in Figure 12.6.1.

The set of supersingular points

Σ ⊂ X0(N)(Fp)

is the set of points in X0(N) represented by pairs E = (E,C), where E is a
supersingular elliptic curve (so E(Fp)[p] = 0). There are exactly g+1 supersingular
points, where g is the genus of X0(N).4 4

Consider the correspondence Tp : X0(N)  X0(N) which takes an enhanced
elliptic curve E to the sum

∑
E/D of all quotients of E by subgroups D of order p.

2Add more references to original source materials...
3Ken, what’s a reference for this?
4Reference.
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This is the correspondence

X0(pN)
α

����
��

� β

��?
??

??

X0(N),X0(N)

(12.6.2)

where the map α forgets the subgroup of order p, and β quotients out by it. From
this one gets Tp : J0(N)→ J0(N) by functoriality.

Remark 12.6.1. There are many ways to think of J0(N). The cotangent space
Cot J0(N) of J0(N) is the space of holomorphic (or translation invariant) differen-
tials on J0(N), which is isomorphic to S2(Γ0(N)). This gives a connection between
our geometric definition of Tp and the definition, presented earlier,5 of Tp as an 5
operator on a space of cusp forms.

The Eichler-Shimura relation takes place in End(J0(N)Fp). Since X0(N) reduces
“nicely” in characteristic p, we can apply the Jacobian construction to X0(N)Fp .

Lemma 12.6.2. The natural reduction map

End(J0(N)) ↪→ End(J0(N)Fp)

is injective.

Proof. Let ` - Np be a prime. By [ST68, Thm. 1, Lem. 2], the reduction to char-
acteristic p map induces an isomorphism

J0(N)(Q)[`∞] ∼= J0(N)(Fp)[`
∞].

If ϕ ∈ End(J0(N)) reduces to the 0 map in End(J0(N)Fp), then J0(N)(Q)[`∞]
must be contained in ker(ϕ). Thus ϕ induces the 0 map on Tate`(J0(N)), so
ϕ = 0.

Let F : X0(N)Fp → X0(N)Fp be the Frobenius map in characteristic p. Thus,
if K = K(X0(N)) is the function field of the nonsingular curve X0(N), then
F : K → K is induced by the pth power map a 7→ ap.

Remark 12.6.3. The Frobenius map corresponds to the pth powering map on
points. For example, if X = Spec(Fp[t]), and z = (Spec(Fp) → X) is a point
defined by a homomorphism α : Fp[t] 7→ Fp, then F (z) is the composite

Fp[t]
x 7→xp−−−−−−−→ Fp[t]

α−−−−→ Fp.

If α(t) = ξ, then F (z)(t) = α(tp) = ξp.

By both functorialities, F induces maps on the Jacobian of X0(N)Fp :

Frobp = F∗ and Verp = Frob∨p = F ∗,

which we illustrate as follows:

J0(N)Fp

Verp
++
J0(N)Fp

Frobp

kk

5more precise



102 12. Hecke Operators as Correspondences

Note that Verp ◦Frobp = Frobp ◦Verp = [p] since p is the degree of F (for example,
if K = Fp(t), then F (K) = Fp(t

p) is a subfield of degree p, so the map induced
by F has degree p).

Theorem 12.6.4 (Eichler-Shimura Relation). Let N be a positive integer and
p - N be a prime. Then the following relation holds:

Tp = Frobp + Verp ∈ End(J0(N)Fp).

Sketch of Proof. We view X0(pN)Fp as two copies of X0(N)Fp glued along corre-
sponding supersingular points Σ, as in Figure 12.6.1. This diagram and the corre-
spondence (12.6.2) that defines Tp translate into the following diagram of schemes
over Fp:

ΣJ j

wwoooooooooooo
� t

''NNNNNNNNNNNN

X0(N)Fp � t

r

''NNNNNNNNNNN

∼=

��

X0(N)Fp
K k

s

xxqqqqqqqqqqq

∼=

��

X0(pN)Fp

α

wwppppppppppp
β

&&MMMMMMMMMMM

X0(N)Fp X0(N)Fp

The maps r and s are defined as follows. Recall that a point of X0(N)Fp is an
enhanced elliptic curve E = (E,C) consisting of an elliptic curve E (not necessarily
defined over Fp) along with a cyclic subgroup C of order N . We view a point on
X0(Np) as a triple (E,C,E → E′), where (E,C) is as above and E → E′ is
an isogeny of degree p. We use an isogeny instead of a cyclic subgroup of order p
because E(Fp)[p] has order either 1 or p, so the data of a cyclic subgroup of order p
holds very little information.

The map r sends E to (E,ϕ), where ϕ is the isogeny of degree p,

ϕ : E
Frob−−−→ E(p).

Here E(p) is the curve obtained from E by hitting all defining equations by Frobe-
nious, that is, by pth powering the coefficients of the defining equations for E. We
introduce E(p) since if E is not defined over Fp, then Frobenious does not define
an endomorphism of E. Thus r is the map

r : E 7→ (E,E
Frobp−−−→ E(p)),

and similarly we define s to be the map

s : E 7→ (E(p), C,E
Verp←−−− E(p))

where Verp is the dual of Frobp (so Verp ◦Frobp = Frobp ◦Verp = [p]).
We view α as the map sending (E,E → E′) to E, and similarly we view β as

the map sending (E,E → E′) to the pair (E′, C ′), where C ′ is the image of C in
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E′ via E → E′. Thus

α : (E → E′) 7→ E

β : (E′ → E) 7→ E′

It now follows immediately that α ◦ r = id and β ◦ s = id. Note also that α ◦ s =
β ◦ r = F is the map E 7→ E(p).

Away from the finitely many supersingular points, we may view X0(pN)Fp as
the disjoint union of two copies of X0(N)Fp . Thus away from the supersingular
points, we have the following equality of correspondences:

X0(pN)Fp
α

����
��

� β

��?
??

??

X0(N)FpX0(N)Fp

=′
X0(N)Fp

id=α◦r
����

��
� F=β◦r

��?
??

??

X0(N)FpX0(N)Fp

+
X0(N)Fp

F=α◦s
����

��
� id=β◦s

��?
??

??

X0(N)Fp ,X0(N)Fp

where F = Frobp, and the =′ means equality away from the supersingular points.
Note that we are simply “pulling back” the correspondence; in the first summand
we use the inclusion r, and in the second we use the inclusion s.

This equality of correspondences implies that the equality

Tp = Frobp + Verp

of endomorphisms holds on a dense subset of J0(N)Fp , hence on all J0(N)Fp .

12.7 Applications of the Eichler-Shimura relation

12.7.1 The Characteristic polynomial of Frobenius

How can we apply the relation Tp = Frob + Ver in End(J0(N)Fp)? Let ` - pN be
a prime and consider the `-adic Tate module

Tate`(J0(N)) =
(

lim←− J0(N)[`ν ]
)
⊗Z` Q`

which is a vector space of dimension 2g over Q`, where g is the genus of X0(N) or
the dimension of J0(N). Reduction modulo p induces an isomorphism

Tate`(J0(N))→ Tate`(J0(N)Fp)

(see the proof of Lemma 12.6.2). On Tate`(J0(N)Fp) we have linear operators
Frobp, Verp and Tp which, as we saw in Section 12.6, satisfy

Frobp + Verp = Tp, and

Frobp ◦Verp = Verp ◦Frobp = [p].

The endomorphism [p] is invertible on Tate`(J0(N)Fp), since p is prime to `, so
Verp and Frobp are also invertible and

Tp = Frobp +[p] Frob−1
p .
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Multiplying both sides by Frobp and rearranging, we see that

Frob2
p−Tp Frobp +[p] = 0 ∈ End(Tate`(J0(N)Fp)).

This is a beautiful quadratic relation, so we should be able to get something out
of it. We will come back to this shortly, but first we consider the various objects
acting on the `-adic Tate module.

The module Tate`(J0(N)) is acted upon in a natural way by

1. The Galois group Gal(Q/Q) of Q, and

2. EndQ(J0(N))⊗Z` Q` (which acts by functoriality).

These actions commute with each other since endomorphisms defined over Q are
not affected by the action of Gal(Q/Q). Reducing modulo p, we also have the
following commuting actions:

3. The Galois group Gal(Fp/Fp) of Fp, and

4. EndFp(J0(N))⊗Z` Q`.

Note that a decomposition group group Dp ⊂ Gal(Q/Q) acts, after quotienting
out by the corresponding inertia group, in the same way as Gal(Fp/Fp) and the
action is unramified, so action 3 is a special case of action 1.

The Frobenius elements ϕp ∈ Gal(Fp/Fp) and Frob∈ EndFp(J0(N)) ⊗Z` Q`

induce the same operator on Tate`(J0(N)Fp). Note that while ϕp naturally lives
in a quotient of a decomposition group, one often takes a lift to get an element in
Gal(Q/Q).

On Tate`(J0(N)Fp) we have a quadratic relationship

ϕ2
p − Tpϕp + p = 0.

This relation plays a role when one separates out pieces of J0(N) in order to
construct Galois representations attached to newforms of weight 2. Let

R = Z[. . . , Tp, . . .] ⊂ End J0(N),

where we only adjoin those Tp with p - N . Think of R as a reduced Hecke algebra;
in particular, R is a subring of T. Then

R⊗Q =

r∏
i=1

Ei,

where the Ei are totally real number fields. The factors Ei are in bijection with
the Galois conjugacy classes of weight 2 newforms f on Γ0(M) (for some M |N).
The bijection is the map

f 7→ Q(coefficients of f) = Ei

Observe that the map is the same if we replace f by one of its conjugates. This
decomposition is a decomposition of a subring

R⊗Q ⊂ End(J0(N))⊗Q
def
= End(J0(N)⊗Q).
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Thus it induces a direct product decomposition of J0(N), so J0(N) gets divided
up into subvarieties which correspond to conjugacy classes of newforms.

The relationship
ϕ2
p − Tpϕp + p = 0 (12.7.1)

suggests that
tr(ϕp) = Tp and detϕp = p. (12.7.2)

This is true, but (12.7.2) does not follow formally just from the given quadratic
relation. It can be proved by combining (12.7.1) with the Weil pairing.

12.7.2 The Cardinality of J0(N)(Fp)

Proposition 12.7.1. Let p - N be a prime, and let f be the characteristic poly-
nomial of Tp acting on S2(Γ0(N)). Then

#J0(N)(Fp) = f(p+ 1).

6 6

6Add details later, along with various generalizations.
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13
Abelian Varieties

This chapter provides foundational background about abelian varieties and Ja-
cobians, with an aim toward what we will need later when we construct abelian
varieties attached to modular forms. We will not give complete proofs of very much,
but will try to give precise references whenever possible, and many examples.

We will follow the articles by Rosen [Ros86] and Milne [Mil86] on abelian va-
rieties. We will try primarily to explain the statements of the main results about
abelian varieties, and prove results when the proofs are not too technical and
enhance understanding of the statements.

13.1 Abelian varieties

Definition 13.1.1 (Variety). A variety X over a field k is a finite-type separated
scheme over k that is geometrically integral.

The condition that X be geometrically integral means that Xk is reduced (no
nilpotents in the structure sheaf) and irreducible.

Definition 13.1.2 (Group variety). A group variety is a group object in the
category of varieties. More precisely, a group variety X over a field k is a variety
equipped with morphisms

m : X ×X → X and i : X → X

and a point 1X ∈ A(k) such that m, i, and 1X satisfy the axioms of a group; in
particular, for every k-algebra R they give X(R) a group structure that depends
in a functorial way on R.

Definition 13.1.3 (Abelian Variety). An abelian variety A over a field k is a
complete group variety.

Theorem 13.1.4. Suppose A is an abelian variety. Then
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1. The group law on A is commutative.

2. A is projective, i.e., there is an embedding from A into Pn for some n.

3. If k = C, then A(k) is analytically isomorphic to V/L, where V is a finite-
dimensional complex vector space and L is a lattice in V . (A lattice is a free
Z-module of rank equal to 2 dimV such that RL = V .)

Proof. Part 1 is not too difficult, and can be proved by showing that every mor-
phism of abelian varieties is the composition of a homomorphism with a transla-
tion, then applying this result to the inversion map (see [Mil86, Cor. 2.4]). Part 2
is proved with some effort in [Mil86, §7]. Part 3 is proved in [Mum70, §I.1] using
the exponential map from Lie theory from the tangent space at 0 to A.

13.2 Complex tori

Let A be an abelian variety over C. By Theorem 13.1.4, there is a complex vector
space V and a lattice L in V such that A(C) = V/L, that is to say, A(C) is a
complex torus.

More generally, if V is any complex vector space and L is a lattice in V , we call
the quotient T = V/L a complex torus. In this section, we prove some results about
complex tori that will help us to understand the structure of abelian varieties, and
will also be useful in designing algorithms for computing with abelian varieties.

The differential 1-forms and first homology of a complex torus are easy to un-
derstand in terms of T . If T = V/L is a complex torus, the tangent space to
0 ∈ T is canonically isomorphic to V . The C-linear dual V ∗ = HomC(V,C) is
isomorphic to the C-vector space Ω(T ) of holomorphic differential 1-forms on T .
Since V → T is the universal covering of T , the first homology H1(T,Z) of T is
canonically isomorphic to L.

13.2.1 Homomorphisms

Suppose T1 = V1/L1 and T2 = V2/L2 are two complex tori. If ϕ : T1 → T2 is a
(holomorphic) homomorphism, then ϕ induces a C-linear map from the tangent
space of T1 at 0 to the tangent space of T2 at 0. The tangent space of Ti at 0 is
canonically isomorphic to Vi, so ϕ induces a C-linear map V1 → V2. This maps
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sends L1 into L2, since Li = H1(Ti,Z). We thus have the following diagram:

0

��

0

��
L1

ρZ(ϕ) //

��

L2

��
V1

ρC(ϕ) //

��

L2

��
T1

ϕ //

��

T2

��
0 0

(13.2.1)

We obtain two faithful representations of Hom(T1, T2),

ρC : Hom(T1, T2)→ HomC(V1, V2)

ρZ : Hom(T1, T2)→ HomZ(L1, L2).

Suppose ψ ∈ HomZ(L1, L2). Then ψ = ρZ(ϕ) for some ϕ ∈ Hom(T1, T2) if and
only if there is a complex linear homomorphism f : V1 → V2 whose restriction to
L1 is ψ. Note that f = ψ⊗R is uniquely determined by ψ, so ψ arises from some
ϕ precisely when f is C-linear. This is the case if and only if fJ1 = J2f , where
Jn : Vn → Vn is the R-linear map induced by multiplication by i =

√
−1 ∈ C.

Example 13.2.1.

1. Suppose L1 = Z + Zi ⊂ V1 = C. Then with respect to the basis 1, i, we
have J1 =

(
0 −1
1 0

)
. One finds that Hom(T1, T1) is the free Z-module of rank 2

whose image via ρZ is generated by J1 and ( 1 0
0 1 ). As a ring Hom(T1, T1) is

isomorphic to Z[i].

2. Suppose L1 = Z + Zαi ⊂ V1 = C, with α3 = 2. Then with respect to

the basis 1, αi, we have J1 =
(

0 −α
1/α 0

)
. Only the scalar integer matrices

commute with J1.

Proposition 13.2.2. Let T1 and T2 be complex tori. Then Hom(T1, T2) is a free
Z-module of rank at most 4 dimT1 · dimT2.

Proof. The representation ρZ is faithful (injective) because ϕ is determined by its
action on L1, since L1 spans V1. Thus Hom(T1, T2) is isomorphic to a subgroup of
HomZ(L1, L2) ∼= Zd, where d = 2 dimV1 · 2 dimV2.

Lemma 13.2.3. Suppose ϕ : T1 → T2 is a homomorphism of complex tori. Then
the image of ϕ is a subtorus of T2 and the connected component of ker(ϕ) is a
subtorus of T1 that has finite index in ker(ϕ).
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Proof. Let W = ker(ρC(ϕ)). Then the following diagram, which is induced by ϕ,
has exact rows and columns:

0

��

0

��

0

��
0 // L1 ∩W

��

// L1
//

��

L2
//

��

L2/ϕ(L1) //

��

0

0 // W

��

// V1
//

��

V2
//

��

V2/ϕ(V1) //

��

0

0 // ker(ϕ) // T1
//

��

T2
//

��

T2/ϕ(T1) //

��

0

0 0 0

Using the snake lemma, we obtain an exact sequence

0→ L1 ∩W →W → ker(ϕ)→ L2/ϕ(L1)→ V2/ϕ(V1)→ T2/ϕ(T1)→ 0.

Note that T2/ϕ(T1) is compact because it is the continuous image of a compact
set, so the cokernel of ϕ is a torus (it is given as a quotient of a complex vector
space by a lattice).

The kernel ker(ϕ) ⊂ T1 is a closed subset of the compact set T1, so is compact.
Thus L1∩W is a lattice in W . The map L2/ϕ(L1)→ V2/ϕ(V1) has kernel generated
by the saturation of ϕ(L1) in L2, so it is finite, so the torus W/(L1 ∩W ) has finite
index in ker(ϕ).

Remark 13.2.4. The category of complex tori is not an abelian category because
kernels need not be in the category.

13.2.2 Isogenies

Definition 13.2.5 (Isogeny). An isogeny ϕ : T1 → T2 of complex tori is a surjec-
tive morphism with finite kernel. The degree deg(ϕ) of ϕ is the order of the kernel
of ϕ.

Note that deg(ϕ ◦ ϕ′) = deg(ϕ) deg(ϕ′).

Lemma 13.2.6. Suppose that ϕ is an isogeny. Then the kernel of ϕ is isomorphic
to the cokernel of ρZ(ϕ).

Proof. (This is essentially a special case of Lemma 13.2.3.) Apply the snake lemma
to the morphism (13.2.1) of short exact sequences, to obtain a six-term exact
sequence

0→ KL → KV → KT → CL → CV → CT → 0,

where KX and CX are the kernel and cokernel of X1 → X2, for X = L, V, T ,
respectively. Since ϕ is an isogeny, the induced map V1 → V2 must be an isomor-
phism, since otherwise the kernel would contain a nonzero subspace (modulo a
lattice), which would be infinite. Thus KV = CV = 0. It follows that KT

∼= CL, as
claimed.
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One consequence of the lemma is that if ϕ is an isogeny, then

deg(ϕ) = [L1 : ρZ(ϕ)(L1)] = |det(ρZ(ϕ))|.

Proposition 13.2.7. Let T be a complex torus of dimension d, and let n be a
positive integer. Then multiplication by n, denoted [n], is an isogeny T → T with
kernel T [n] ∼= (Z/nZ)2d and degree n2d.

Proof. By Lemma 13.2.6, T [n] is isomorphic to L/nL, where T = V/L. Since
L ≈ Z2d, the proposition follows.

We can now prove that isogeny is an equivalence relation.

Proposition 13.2.8. Suppose ϕ : T1 → T2 is a degree m isogeny of complex tori
of dimension d. Then there is a unique isogeny ϕ̂ : T2 → T1 of degree m2d−1 such
that ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [m].

Proof. Since ker(ϕ) ⊂ ker([m]), the map [m] factors through ϕ, so there is a
morphism ϕ̂ such that ϕ̂ ◦ ϕ = [m]:

T1
ϕ //

[m]   A
AA

AA
AA

T2

ϕ̂

��
T1

We have

(ϕ ◦ ϕ̂− [m]) ◦ϕ = ϕ ◦ ϕ̂ ◦ φ− [m] ◦ϕ = ϕ ◦ ϕ̂ ◦ φ−ϕ ◦ [m] = ϕ ◦ (ϕ̂ ◦ φ− [m]) = 0.

This implies that ϕ ◦ ϕ̂ = [m], since ϕ is surjective. Uniqueness is clear since the
difference of two such morphisms would vanish on the image of ϕ. To see that ϕ̂
has degree m2d−1, we take degrees on both sides of the equation ϕ̂ ◦ ϕ = [m].

13.2.3 Endomorphisms

The ring End(T ) = Hom(T, T ) is called the endomorphism ring of the complex
torus T . The endomorphism algebra of T is End0(T ) = End(T )⊗Z Q.

Definition 13.2.9 (Characteristic polynomial). The characteristic polynomial of
ϕ ∈ End(T ) is the characteristic polynomial of the ρZ(ϕ). Thus the characteristic
polynomial is a monic polynomial of degree 2 dimT .

13.3 Abelian varieties as complex tori

In this section we introduce extra structure on a complex torus T = V/L that will
enable us to understand whether or not T is isomorphic to A(C), for some abelian
variety A over C. When dimT = 1, the theory of the Weierstrass ℘ function
implies that T is always E(C) for some elliptic curve. In contrast, the generic
torus of dimension > 1 does not arise from an abelian variety.

In this section we introduce the basic structures on complex tori that are needed
to understand which tori arise from abelian varieties, to construct the dual of an
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abelian variety, to see that End0(A) is a semisimple Q-algebra, and to understand
the polarizations on an abelian variety. For proofs, including extensive motiva-
tion from the one-dimensional case, read the beautifully written book [SD74] by
Swinnerton-Dyer, and for another survey that strongly influenced the discussion
below, see Rosen’s [Ros86].

13.3.1 Hermitian and Riemann forms

Let V be a finite-dimensional complex vector space.

Definition 13.3.1 (Hermitian form). A Hermitian form is a conjugate-symmetric
pairing

H : V × V → C

that is C-linear in the first variable and C-antilinear in the second. Thus H is
R-bilinear, H(iu, v) = iH(u, v) = H(u, iv), and H(u, v) = H(v, u).

Write H = S + iE, where S,E : V × V → R are real bilinear pairings.

Proposition 13.3.2. Let H, S, and E be as above.

1. We have that S is symmetric, E is antisymmetric, and

S(u, v) = E(iu, v), S(iu, iv) = S(u, v), E(iu, iv) = E(u, v).

2. Conversely, if E is a real-valued antisymmetric bilinear pairing on V such
that E(iu, iv) = E(u, v), then H(u, v) = E(iu, v) + iE(u, v) is a Hermitian
form on V . Thus there is a bijection between the Hermitian forms on V and
the real, antisymmetric bilinear forms E on V such that E(iu, iv) = E(u, v).

Proof. To see that S is symmetric, note that 2S = H+H and H+H is symmetric
because H is conjugate symmetric. Likewise, E = (H −H)/(2i), so

E(v, u) =
1

2i

(
H(v, u)−H(v, u)

)
=

1

2i

(
H(u, v)−H(u, v)

)
= −E(u, v),

which implies that E is antisymmetric. To see that S(u, v) = E(iu, v), rewrite both
S(u, v) and E(iu, v) in terms of H and simplify to get an identity. The other two
identities follow since

H(iu, iv) = iH(u, iv) = iiH(u, v) = H(u, v).

Suppose E : V × V → R is as in the second part of the proposition. Then

H(iu, v) = E(i2u, v) + iE(iu, v) = −E(u, v) + iE(iu, v) = iH(u, v),

and the other verifications of linearity and antilinearity are similar. For conjugate
symmetry, note that

H(v, u) = E(iv, u) + iE(v, u) = −E(u, iv)− iE(u, v)

= −E(iu,−v)− iE(u, v) = H(u, v).
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Note that the set of Hermitian forms is a group under addition.

Definition 13.3.3 (Riemann form). A Riemann form on a complex torus T =
V/L is a Hermitian form H on V such that the restriction of E = Im(H) to L is
integer valued. If H(u, u) ≥ 0 for all u ∈ V then H is positive semi-definite and if
H is positive and H(u, u) = 0 if and only if u = 0, then H is nondegenerate.

Theorem 13.3.4. Let T be a complex torus. Then T is isomorphic to A(C), for
some abelian variety A, if and only if there is a nondegenerate Riemann form on T .

This is a nontrivial theorem, which we will not prove here. It is proved in [SD74,
Ch.2] by defining an injective map from positive divisors on T = V/L to posi-
tive semi-definite Riemann forms, then constructing positive divisors associated to
theta functions on V . If H is a nondegenerate Riemann form on T , one computes
the dimension of a space of theta functions that corresponds to H in terms of the
determinant of E = Im(H). Since H is nondegenerate, this space of theta functions
is nonzero, so there is a corresponding nondegenerate positive divisor D. Then a
basis for

L(3D) = {f : (f) + 3D is positive } ∪ {0}

determines an embedding of T in a projective space.
Why the divisor 3D instead of D above? For an elliptic curve y2 = x3 + ax+ b,

we could take D to be the point at infinity. Then L(3D) consists of the functions
with a pole of order at most 3 at infinity, which contains 1, x, and y, which have
poles of order 0, 2, and 3, respectively.

Remark 13.3.5. (Copied from page 39 of [SD74].) When n = dimV > 1, however,
a general lattice L will admit no nonzero Riemann forms. For if λ1, . . . , λ2n is a
base for L then E as an R-bilinear alternating form is uniquely determined by
the E(λi, λj), which are integers; and the condition E(z, w) = E(iz, iw) induces
linear relations with real coefficients between E(λi, λj), which for general L have
no nontrivial integer solutions.

13.3.2 Complements, quotients, and semisimplicity of the
endomorphism algebra

Lemma 13.3.6. If T possesses a nondegenerate Riemann form and T ′ ⊂ T is a
subtorus, then T ′ also possesses a nondegenerate Riemann form.

Proof. If H is a nondegenerate Riemann form on a torus T and T ′ is a subtorus
of T , then the restriction of H to T ′ is a nondegenerate Riemann form on T ′ (the
restriction is still nondegenerate because H is positive definite).

Lemma 13.3.6 and Lemma 13.2.3 together imply that the kernel of a homomor-
phism of abelian varieties is an extension of an abelian variety by a finite group.

Lemma 13.3.7. If T possesses a nondegenerate Riemann form and T → T ′ is an
isogeny, then T ′ also possesses a nondegenerate Riemann form.

Proof. Suppose T = V/L and T ′ = V ′/L′. Since the isogeny is induced by an
isomorphism V → V ′ that sends L into L′, we may assume for simplicity that V =
V ′ and L ⊂ L′. If H is a nondegenerate Riemann form on V/L, then E = Re(H)
need not be integer valued on L′. However, since L has finite index in L′, there
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is some integer d so that dE is integer valued on L′. Then dH is a nondegenerate
Riemann form on V/L′.

Note that Lemma 13.3.7 implies that the quotient of an abelian variety by a
finite subgroup is again an abelian variety.

Theorem 13.3.8 (Poincare Reducibility). Let A be an abelian variety and suppose
A′ ⊂ A is an abelian subvariety. Then there is an abelian variety A′′ ⊂ A such
that A = A′ +A′′ and A′ ∩A′′ is finite. (Thus A is isogenous to A′ ×A′′.)

Proof. We have A(C) ≈ V/L and there is a nondegenerate Riemann form H
on V/L. The subvariety A′ is isomorphic to V ′/L′, where V ′ is a subspace of V
and L′ = V ′ ∩ L. Let V ′′ be the orthogonal complement of V ′ with respect to H,
and let L′′ = L∩V ′′. To see that L′′ is a lattice in V ′′, it suffices to show that L′′ is
the orthogonal complement of L′ in L with respect to E = Im(H), which, because
E is integer valued, will imply that L′′ has the correct rank. First, suppose that
v ∈ L′′; then, by definition, v is in the orthogonal complement of L′ with respect
to H, so for any u ∈ L′, we have 0 = H(u, v) = S(u, v) + iE(u, v), so E(u, v) = 0.
Next, suppose that v ∈ L satisfies E(u, v) = 0 for all u ∈ L′. Since V ′ = RL′ and E
is R-bilinear, this implies E(u, v) = 0 for any u ∈ V ′. In particular, since V ′ is a
complex vector space, if u ∈ L′, then S(u, v) = E(iu, v) = 0, so H(u, v) = 0.

We have shown that L′′ is a lattice in V ′′, so A′′ = V ′′/L′′ is an abelian subvariety
of A. Also L′+L′′ has finite index in L, so there is an isogeny V ′/L′⊕V ′′/L′′ → V/L
induced by the natural inclusions.

Proposition 13.3.9. Suppose A′ ⊂ A is an inclusion of abelian varieties. Then
the quotient A/A′ is an abelian variety.

Proof. Suppose A = V/L and A′ = V ′/L′, where V ′ is a subspace of V . Let
W = V/V ′ and M = L/(L ∩ V ′). Then, W/M is isogenous to the complex torus
V ′′/L′′ of Theorem 13.3.8 via the natural map V ′′ →W . Applying Lemma 13.3.7
completes the proof.

Definition 13.3.10. An abelian variety A is simple if it has no nonzero proper
abelian subvarieties.

Proposition 13.3.11. The algebra End0(A) is semisimple.

Proof. Using Theorem 13.3.8 and induction, we can find an isogeny

A ' An1
1 ×A

n2
2 × · · · ×Anrr

with each Ai simple. Since End0(A) = End(A)⊗Q is unchanged by isogeny, and
Hom(Ai, Aj) = 0 when i 6= j, we have

End0(A) = End0(An1
1 )× End0(An2

2 )× · · · × End0(Anrr )

Each of End0(Anii ) is isomorphic to Mni(Di), where Di = End0(Ai). By Schur’s
Lemma, Di = End0(Ai) is a division algebra over Q (proof: any nonzero endomor-
phism has trivial kernel, and any injective linear transformation of a Q-vector space
is invertible), so End0(A) is a product of matrix algebras over division algebras
over Q, which proves the proposition.
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13.3.3 Theta functions

Suppose T = V/L is a complex torus.

Definition 13.3.12 (Theta function). Let M : V × L → C and J : L → C be
set-theoretic maps such that for each λ ∈ L the map z 7→ M(z, λ) is C-linear. A
theta function of type (M,J) is a function θ : V → C such that for all z ∈ V and
λ ∈ L, we have

θ(z + λ) = θ(z) · exp(2πi(M(z, λ) + J(λ))).

Suppose that θ(z) is a nonzero holomorphic theta function of type (M,J). The
M(z, λ), for various λ, cannot be unconnected. Let F (z, λ) = 2πi(M(z, λ)+J(λ)).

Lemma 13.3.13. For any λ, λ′ ∈ L, we have

F (z, λ+ λ′) = F (z + λ, λ′) + F (z, λ) (mod 2πi).

Thus

M(z, λ+ λ′) = M(z, λ) +M(z, λ′), (13.3.1)

and

J(λ+ λ′)− J(λ)− J(λ′) ≡M(λ, λ′) (mod Z).

Proof. Page 37 of [SD74].

Using (13.3.1) we see that M extends uniquely to a function M̃ : V × V → C
which is C-linear in the first argument and R-linear in the second. Let

E(z, w) = M̃(z, w)−M(w, z),

H(z, w) = E(iz, w) + iE(z, w).

Proposition 13.3.14. The pairing H is Riemann form on T with real part E.

We call H the Riemann form associated to θ.

13.4 A Summary of duality and polarizations

Suppose A is an abelian variety over an arbitrary field k. In this section we sum-
marize the most important properties of the dual abelian variety A∨ of A. First we
review the language of sheaves on a scheme X, and define the Picard group of X as
the group of invertible sheaves on X. The dual of A is then a variety whose points
correspond to elements of the Picard group that are algebraically equivalent to 0.
Next, when the ground field is C, we describe how to view A∨ as a complex torus
in terms of a description of A as a complex torus. We then define the Néron-Severi
group of A and relate it to polarizations of A, which are certain homomorphisms
A→ A∨. Finally we observe that the dual is functorial.



116 13. Abelian Varieties

13.4.1 Sheaves

We will use the language of sheaves, as in [Har77], which we now quickly recall. A
pre-sheaf of abelian groups F on a scheme X is a contravariant functor from the
category of open sets on X (morphisms are inclusions) to the category of abelian
groups. Thus for every open set U ⊂ X there is an abelian group F(U), and if
U ⊂ V , then there is a restriction map F(V ) → F(U). (We also require that
F(∅) = 0, and the map F(U)→ F(U) is the identity map.) A sheaf is a pre-sheaf
whose sections are determined locally (for details, see [Har77, §II.1]).

Every scheme X is equipped with its structure sheaf OX , which has the property
that if U = Spec(R) is an affine open subset of X, then OX(U) = R. A sheaf of
OX-modules is a sheafM of abelian groups on X such that each abelian group has
the structure of OX -module, such that the restriction maps are module morphisms.
A locally-free sheaf of OX -modules is a sheaf M of OX -modules, such that X can
be covered by open sets U so that M|U is a free OX -module, for each U .

13.4.2 The Picard group

An invertible sheaf is a sheaf L of OX -modules that is locally free of rank 1. If L
is an invertible sheaf, then the sheaf-theoretic Hom, L∨ = Hom(L,OX) has the
property that L∨⊗L = OX . The group Pic(X) of invertible sheaves on a scheme X
is called the Picard group of X. See [Har77, §II.6] for more details.

Let A be an abelian variety over a field k. An invertible sheaf L on A is alge-
braically equivalent to 0 if there is a connected variety T over k, an invertible sheaf
M on A×k T , and t0, t1 ∈ T (k) such that Mt0

∼= L and Mt1
∼= OA. Let Pic0(A)

be the subgroup of elements of Pic(A) that are algebraically equivalent to 0.
The dual A∨ of A is a (unique up to isomorphism) abelian variety such that for

every field F that contains the base field k, we have A∨(F ) = Pic0(AF ). For the
precise definition of A∨ and a proof that A∨ exists, see [Mil86, §9–10].

13.4.3 The Dual as a complex torus

When A is defined over the complex numbers, so A(C) = V/L for some vector
space V and some lattice L, [Ros86, §4] describes a construction of A∨ as a complex
torus, which we now describe. Let

V ∗ = {f ∈ HomR(V,C) : f(αt) = αf(t), all α ∈ C, t ∈ V }.

Then V ∗ is a complex vector space of the same dimension as V and the map
〈f, v〉 = Im f(t) is an R-linear pairing V ∗ × V → R. Let

L∗ = {f ∈ V ∗ : 〈f, λ〉 ∈ Z, all λ ∈ L}.

Since A is an abelian variety, there is a nondegenerate Riemann form H on A.
The map λ : V → V ∗ defined by λ(v) = H(v, ·) is an isomorphism of complex
vector spaces. If v ∈ L, then λ(v) = H(v, ·) is integer valued on L, so λ(L) ⊂ L∗.
Thus λ induces an isogeny of complex tori V/L→ V ∗/L∗, so by Lemma 13.3.7 the
torus V ∗/L∗ possesses a nondegenerate Riemann form (it’s a multiple of H). In
[Ros86, §4], Rosen describes an explicit isomorphism between V ∗/L∗ and A∨(C).
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13.4.4 The Néron-Severi group and polarizations

Let A be an abelian variety over a field k. Recall that Pic(A) is the group of
invertible sheaves on A, and Pic0(A) is the subgroup of invertible sheaves that
are algebraically equivalent to 0. The Néron-Severi group of A is the quotient
Pic(A)/Pic0(A), so by definition we have an exact sequence

0→ Pic0(A)→ Pic(A)→ NS(A)→ 0.

Suppose L is an invertible sheaf on A. One can show that the map A(k) →
Pic0(A) defined by a 7→ t∗aL ⊗ L−1 is induced by homomorphism ϕL : A →
A∨. (Here t∗aL is the pullback of the sheaf L by translation by a.) Moreover, the
map L 7→ ϕL induces a homomorphism from Pic(A) → Hom(A,A∨) with kernel
Pic0(A). The group Hom(A,A∨) is free of finite rank, so NS(A) is a free abelian
group of finite rank. Thus Pic0(A) is saturated in Pic(A) (i.e., the cokernel of the
inclusion Pic0(A)→ Pic(A) is torsion free).

Definition 13.4.1 (Polarization). A polarization on A is a homomorphism λ :
A→ A∨ such that λk = ϕL for some L ∈ Pic(Ak). A polarization is principal if it
is an isomorphism.

When the base field k is algebraically closed, the polarizations are in bijection
with the elements of NS(A). For example, when dimA = 1, we have NS(A) = Z,
and the polarizations on A are multiplication by n, for each integer n.

13.4.5 The Dual is functorial

The association A 7→ A∨ extends to a contravariant functor on the category of
abelian varieties. Thus if ϕ : A→ B is a homomorphism, there is a natural choice
of homomorphism ϕ∨ : B∨ → A∨. Also, (A∨)∨ = A and (ϕ∨)∨ = ϕ.

Theorem 13.4.2 below describes the kernel of ϕ∨ in terms of the kernel of ϕ.
If G is a finite group scheme, the Cartier dual of G is Hom(G,Gm). For example,
the Cartier dual of Z/mZ is µm and the Cartier dual of µm is Z/mZ. (If k is
algebraically closed, then the Cartier dual of G is just G again.)

Theorem 13.4.2. If ϕ : A→ B is a surjective homomorphism of abelian varieties
with kernel G, so we have an exact sequence 0→ G→ A→ B → 0, then the kernel
of ϕ∨ is the Cartier dual of G, so we have an exact sequence 0 → G∨ → B∨ →
A∨ → 0.

13.5 Jacobians of curves

We begin this lecture about Jacobians with an inspiring quote of David Mumford:

“The Jacobian has always been a corner-stone in the analysis of alge-
braic curves and compact Riemann surfaces. [...] Weil’s construction [of
the Jacobian] was the basis of his epoch-making proof of the Riemann
Hypothesis for curves over finite fields, which really put characteris-
tic p algebraic geometry on its feet.” – Mumford, Curves and Their
Jacobians, page 49.
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13.5.1 Divisors on curves and linear equivalence

Let X be a projective nonsingular algebraic curve over an algebraically field k. A
divisor on X is a formal finite Z-linear combination

∑m
i=1 niPi of closed points in

X. Let Div(X) be the group of all divisors on X. The degree of a divisor
∑m
i=1 niPi

is the integer
∑m
i=1 ni. Let Div0(X) denote the subgroup of divisors of degree 0.

Suppose k is a perfect field (for example, k has characteristic 0 or k is finite),
but do not require that k be algebraically closed. Let the group of divisors on X
over k be the subgroup

Div(X) = Div(X/k) = H0(Gal(k/k),Div(X/k))

of elements of Div(X/k) that are fixed by every automorphism of k/k. Likewise,
let Div0(X/k) be the elements of Div(X/k) of degree 0.

A rational function on an algebraic curve X is a function X → P1, defined by
polynomials, which has only a finite number of poles. For example, if X is the
elliptic curve over k defined by y2 = x3 +ax+b, then the field of rational functions
on X is the fraction field of the integral domain k[x, y]/(y2 − (x3 + ax + b)). Let
K(X) denote the field of all rational functions on X defined over k.

There is a natural homomorphismK(X)∗ → Div(X) that associates to a rational
function f its divisor

(f) =
∑

ordP (f) · P

where ordP (f) is the order of vanishing of f at P . Since X is nonsingular, the local
ring of X at a point P is isomorphic to k[[t]]. Thus we can write f = trg(t) for
some unit g(t) ∈ k[[t]]. Then R = ordP (f).

Example 13.5.1. If X = P1, then the function f = x has divisor (0) − (∞). If X
is the elliptic curve defined by y2 = x3 + ax+ b, then

(x) = (0,
√
b) + (0,−

√
b)− 2∞,

and

(y) = (x1, 0) + (x2, 0) + (x3, 0)− 3∞,

where x1, x2, and x3 are the roots of x3 +ax+b = 0. A uniformizing parameter t at
the point ∞ is x/y. An equation for the elliptic curve in an affine neighborhood of
∞ is Z = X3 + aXZ2 + bZ3 (where ∞ = (0, 0) with respect to these coordinates)
and x/y = X in these new coordinates. By repeatedly substituting Z into this
equation we see that Z can be written in terms of X.

It is a standard fact in the theory of algebraic curves that if f is a nonzero rational
function, then (f) ∈ Div0(X), i.e., the number of poles of f equals the number of
zeros of f . For example, if X is the Riemann sphere and f is a polynomial, then
the number of zeros of f (counted with multiplicity) equals the degree of f , which
equals the order of the pole of f at infinity.

The Picard group Pic(X) of X is the group of divisors on X modulo linear
equivalence. Since divisors of functions have degree 0, the subgroup Pic0(X) of
divisors on X of degree 0, modulo linear equivalence, is well defined. Moreover, we
have an exact sequence of abelian groups

0→ K(X)∗ → Div0(X)→ Pic0(X)→ 0.
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Thus for any algebraic curve X we have associated to it an abelian group
Pic0(X). Suppose π : X → Y is a morphism of algebraic curves. If D is a di-
visor on Y , the pullback π∗(D) is a divisor on X, which is defined as follows.
If P ∈ Div(Y/k) is a point, let π∗(P ) be the sum

∑
eQ/PQ where π(Q) = P

and eQ/P is the ramification degree of Q/P . (Remark: If t is a uniformizer at P
then eQ/P = ordQ(π∗tP ).) One can show that π∗ : Div(Y ) → Div(X) induces

a homomorphism Pic0(Y ) → Pic0(X). Furthermore, we obtain the contravariant
Picard functor from the category of algebraic curves over a fixed base field to
the category of abelian groups, which sends X to Pic0(X) and π : X → Y to
π∗ : Pic0(Y )→ Pic0(X).

Alternatively, instead of defining morphisms by pullback of divisors, we could
consider the push forward. Suppose π : X → Y is a morphism of algebraic curves
and D is a divisor on X. If P ∈ Div(X/k) is a point, let π∗(P ) = π(P ). Then π∗
induces a morphism Pic0(X) → Pic0(Y ). We again obtain a functor, called the
covariant Albanese functor from the category of algebraic curves to the category
of abelian groups, which sends X to Pic0(X) and π : X → Y to π∗ : Pic0(X) →
Pic0(Y ).

13.5.2 Algebraic definition of the Jacobian

First we describe some universal properties of the Jacobian under the hypothesis
that X(k) 6= ∅. Thus suppose X is an algebraic curve over a field k and that
X(k) 6= ∅. The Jacobian variety of X is an abelian variety J such that for an
extension k′/k, there is a (functorial) isomorphism J(k′) → Pic0(X/k′). (I don’t
know whether this condition uniquely characterizes the Jacobian.)

Fix a point P ∈ X(k). Then we obtain a map f : X(k)→ Pic0(X/k) by sending
Q ∈ X(k) to the divisor class of Q−P . One can show that this map is induced by an
injective morphism of algebraic varieties X ↪→ J . This morphism has the following
universal property: if A is an abelian variety and g : X → A is a morphism that
sends P to 0 ∈ A, then there is a unique homomorphism ψ : J → A of abelian
varieties such that g = ψ ◦ f :

X
f //

g
  @

@@
@@

@@
J

ψ

��
A

This condition uniquely characterizes J , since if f ′ : X → J ′ and J ′ has the univer-
sal property, then there are unique maps J → J ′ and J ′ → J whose composition
in both directions must be the identity (use the universal property with A = J
and f = g).

If X is an arbitrary curve over an arbitrary field, the Jacobian is an abelian
variety that represents the “sheafification” of the “relative Picard functor”. Look
in Milne’s article or Bosch-Lüktebohmert-Raynaud Neron Models for more details.
Knowing this totally general definition won’t be important for this course, since
we will only consider Jacobians of modular curves, and these curves always have
a rational point, so the above properties will be sufficient.

A useful property of Jacobians is that they are canonically principally polarized,
by a polarization that arises from the “θ divisor” on J . In particular, there is always
an isomorphism J → J∨ = Pic0(J).
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13.5.3 The Abel-Jacobi theorem

Over the complex numbers, the construction of the Jacobian is classical. It was
first considered in the 19th century in order to obtain relations between integrals
of rational functions over algebraic curves (see Mumford’s book, Curves and Their
Jacobians, Ch. III, for a nice discussion).

Let X be a Riemann surface, so X is a one-dimensional complex manifold.
Thus there is a system of coordinate charts (Uα, tα), where tα : Uα → C is a
homeomorphism of Uα onto an open subset of C, such that the change of coordinate
maps are analytic isomorphisms. A differential 1-form on X is a choice of two
continuous functions f and g to each local coordinate z = x + iy on Uα ⊂ X
such that f dx+ g dy is invariant under change of coordinates (i.e., if another local
coordinate patch U ′α intersects Uα, then the differential is unchanged by the change
of coordinate map on the overlap). If γ : [0, 1]→ X is a path and ω = f dx+ g dy
is a 1-form, then∫

γ

ω :=

∫ 1

0

(
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

)
dt ∈ C.

From complex analysis one sees that if γ is homologous to γ′, then
∫
γ
ω =

∫
γ′
ω.

In fact, there is a nondegenerate pairing

H0(X,Ω1
X)×H1(X,Z)→ C

If X has genus g, then it is a standard fact that the complex vector space
H0(X,Ω1

X) of holomorphic differentials on X is of dimension g. The integration
pairing defined above induces a homomorphism from integral homology to the
dual V of the differentials:

Φ : H1(X,Z)→ V = Hom(H0(X,Ω1
X),C).

This homomorphism is called the period mapping.

Theorem 13.5.2 (Abel-Jacobi). The image of Φ is a lattice in V .

The proof involves repeated clever application of the residue theorem.
The intersection pairing

H1(X,Z)×H1(X,Z)→ Z

defines a nondegenerate alternating pairing on L = Φ(H1(X,Z)). This pairing
satisfies the conditions to induce a nondegenerate Riemann form on V , which gives
J = V/L to structure of abelian variety. The abelian variety J is the Jacobian of X,

and if P ∈ X, then the functional ω 7→
∫ Q
P
ω defines an embedding of X into J .

Also, since the intersection pairing is perfect, it induces an isomorphism from J to
J∨.

Example 13.5.3. For example, suppose X = X0(23) is the modular curve attached
to the subgroup Γ0(23) of matrices in SL2(Z) that are upper triangular modulo 24.
Then g = 2, and a basis for H1(X0(23),Z) in terms of modular symbols is

{−1/19, 0}, {−1/17, 0}, {−1/15, 0}, {−1/11, 0}.
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The matrix for the intersection pairing on this basis is
0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0


With respect to a reduced integral basis for

H0(X,Ω1
X) ∼= S2(Γ0(23)),

the lattice Φ(H1(X,Z)) of periods is (approximately) spanned by

[

(0.59153223605591049412844857432 - 1.68745927346801253993135357636*i

0.762806324458047168681080323846571478727 - 0.60368764497868211035115379488*i),

(-0.59153223605591049412844857432 - 1.68745927346801253993135357636*i

-0.762806324458047168681080323846571478727 - 0.60368764497868211035115379488*i),

(-1.354338560513957662809528899804 - 1.0837716284893304295801997808568748714097*i

-0.59153223605591049412844857401 + 0.480083983510648319229045987467*i),

(-1.52561264891609433736216065099 0.342548176804273349105263499648)

]

13.5.4 Every abelian variety is a quotient of a Jacobian

Over an infinite field, every abelin variety can be obtained as a quotient of a
Jacobian variety. The modular abelian varieties that we will encounter later are,
by definition, exactly the quotients of the Jacobian J1(N) of X1(N) for some N .
In this section we see that merely being a quotient of a Jacobian does not endow
an abelian variety with any special properties.

Theorem 13.5.4 (Matsusaka). Let A be an abelian variety over an algebraically
closed field. Then there is a Jacobian J and a surjective map J → A.

This was originally proved in On a generating curve of an abelian variety, Nat.
Sc. Rep. Ochanomizu Univ. 3 (1952), 1–4. Here is the Math Review by P. Samuel:

An abelian variety A is said to be generated by a variety V (and a
mapping f of V into A) if A is the group generated by f(V ). It is proved
that every abelian variety A may be generated by a curve defined over
the algebraic closure of def(A). A first lemma shows that, if a variety
V is the carrier of an algebraic system (X(M))M∈U of curves (X(M)
being defined, non-singular and disjoint from the singular bunch of V
for almost all M in the parametrizing variety U) if this system has a
simple base point on V , and if a mapping f of V into an abelian variety
is constant on some X(M0), then f is a constant; this is proved by
specializing on M0 a generic point M of U and by using specializations
of cycles [Matsusaka, Mem. Coll. Sci. Kyoto Univ. Ser. A. Math. 26,
167–173 (1951); these Rev. 13, 379]. Another lemma notices that, for a
normal projective variety V , a suitable linear family of plane sections
of V may be taken as a family (X(M)). Then the main result follows
from the complete reducibility theorem. This result is said to be the
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basic tool for generalizing Chow’s theorem (”the Jacobian variety of a
curve defined over k is an abelian projective variety defined over k”).

Milne [Mil86, §10] proves the theorem under the weaker hypothesis that the base
field is infinite. We briefly sketch his proof now. If dimA = 1, then A is the
Jacobian of itself, so we may assume dimA > 1. Embed A into Pn, then, using
the Bertini theorem, cut A ⊂ Pn by hyperplane sections dim(A) − 1 times to
obtain a nonsingular curve C on A of the form A∩V , where V is a linear subspace
of Pn. Using standard arguments from Hartshorne [Har77], Milne shows (Lemma
10.3) that if W is a nonsingular variety and π : W → A is a finite morphism, then
π−1(C) is geometrically connected (the main point is that the pullback of an ample
invertible sheaf by a finite morphism is ample). (A morphism f : X → Y is finite
if for every open affine subset U = Spec(R) ⊂ Y , the inverse image f−1(U) ⊂ X
is an affine open subset Spec(B) with B a finitely generated R-module. Finite
morphisms have finite fibers, but not conversely.) We assume this lemma and
deduce the theorem.

Let J be the Jacobian of C; by the universal property of Jacobians there is
a unique homomorphism f : J → A coming from the inclusion C ↪→ A. The
image A1 = f(J) is an abelian subvariety since images of homomorphisms of
abelian varieties are abelian varieties. By the Poincare reducibility theorem (we
only proved this over C, but it is true in general), there is an abelian subvariety
A2 ⊂ A such that A1 +A2 = A and A1∩A2 is finite. The isogeny g : A1×A2 → A
given by g(x, y) = x+ y ∈ A is a finite morphism (any isogeny of abelian varieties
is finite, flat, and surjective by Section 8 of [Mil86]). The inverse image g−1(A1)
is a union of #(A1 ∩A2) irreducible components; if this intersection is nontrivial,
then likewise g−1(C) is reducible, which is a contradiction. This does not complete
the proof, since it is possible that g is an isomorphism, so we use one additional
trick. Suppose n is a positive integer coprime to the residue characteristic, and let

h = 1× [n] : A1 ×A2 → A1 ×A2

be the identity map on the first factor and multiplication by n on the second.
Then h is finite and (h ◦ g)−1(A1) is a union of n2 dimA2 = deg(h) irreducible
components, hence (h ◦ g)−1(C) is reducible, a contradiction.

Question 13.5.5. Is Theorem 13.5.4 false for some abelian variety A over some
finite field k?

Question 13.5.6 (Milne). Using the theorem we can obtain a sequence of Jaco-
bian varieties J1, J2, . . . that form a complex

· · · → J2 → J1 → A→ 0.

(In each case the image of Ji+1 is the connected component of the kernel of Ji →
Ji−1.) Is it possible to make this construction in such a way that the sequence
terminates in 0?

Question 13.5.7 (Yau). Let A be an abelian variety. What can be said about
the minimum of the dimensions of all Jacobians J such that there is a surjective
morphism J → A?

Remark 13.5.8. Brian Conrad has explained to the author that if A is an abelian
variety over an infinite field, then A can be embedded in a Jacobian J . This does
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not follow directly from Theorem 13.5.4 above, since if J →→ A∨, then the dual
map A→ J need not be injective.

13.6 Néron models

The main references for Néron models are as follows:

1. [AEC2]: Silverman, Advanced Topics in the Arithmetic of Elliptic Curves.
Chapter IV of this book contains an extremely well written and motivated
discussion of Néron models of elliptic curves over Dedekind domains with
perfect residue field. In particular, Silverman gives an almost complete con-
struction of Néron models of elliptic curves. Silverman very clearly really
wants his reader to understand the construction. Highly recommended.

2. [BLR]: Bosch, Lütkebohmert, Raynaud, Néron Models. This is an excellent
and accessible book that contains a complete construction of Néron models
and some of their generalizations, a discussion of their functorial properties,
and a sketch of the construction of Jacobians of families of curves. The goal
of this book was to redo in scheme-theoretic language Néron original paper,
which is written in a language that was ill-adapted to the subtleties of Néron
models.

3. Artin, Néron Models, in Cornell-Silverman. This is the first-ever exposition
of Néron’s original paper in the language of schemes.

13.6.1 What are Néron models?

Suppose E is an elliptic curve over Q. If ∆ is the minimal discriminant of E,
then E has good reduction at p for all p - ∆, in the sense that E extends to an
abelian scheme E over Zp (i.e., a “smooth” and “proper” group scheme). One can
not ask for E to extend to an abelian scheme over Zp for all p | ∆. One can,
however, ask whether there is a notion of “good” model for E at these bad primes.
To quote [BLR, page 1], “It came as a surprise for arithmeticians and algebraic
geometers when A. Néron, relaxing the condition of properness and concentrating
on the group structure and the smoothness, discovered in the years 1961–1963 that
such models exist in a canonical way.”

Before formally defining Néron models, we describe what it means for a mor-
phism f : X → Y of schemes to be smooth. A morphism f : X → Y is finite type
if for every open affine U = Spec(R) ⊂ Y there is a finite covering of f−1(U) by
open affines Spec(S), such that each S is a finitely generated R-algebra.

Definition 13.6.1. A morphism f : X → Y is smooth at x ∈ X if it is of finite
type and there are open affine neighborhoods Spec(A) ⊂ X of x and Spec(R) ⊂ Y
of f(x) such that

A ∼= R[t1, . . . , tn+r]/(f1, . . . , fn)

for elements f1, . . . , fn ∈ R[t1, . . . , tn+r] and all n × n minors of the Jacobian
matrix (∂fi/∂tj) generate the unit ideal of A. The morphism f is étale at x if, in
addition, r = 0. A morphism is smooth of relative dimension d if it is smooth at x
for every x ∈ X and r = d in the isomorphism above.
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Smooth morphisms behave well. For example, if f and g are smooth and f ◦ g
is defined, then f ◦ g is automatically smooth. Also, smooth morphisms are closed
under base extension: if f : X → Y is a smooth morphism over S, and S′ is a
scheme over S, then the induced map X×SS′ → Y ×SS′ is smooth. (If you’ve never
seen products of schemes, it might be helpful to know that Spec(A)× Spec(B) =
Spec(A⊗B). Read [Har77, §II.3] for more information about fiber products, which
provide a geometric way to think about tensor products. Also, we often write XS′

as shorthand for X ×S S′.)
We are now ready for the definition. Suppose R is a Dedekind domain with field

of fractions K (e.g., R = Z and K = Q).

Definition 13.6.2 (Néron model). Let A be an abelian variety over K. The Néron
model A of A is a smooth commutative group scheme over R such that for any
smooth morphism S → R the natural map of abelian groups

HomR(S,A)→ HomK(S ×R K,A)

is a bijection. This is called the Néron mapping property: In more compact nota-
tion, it says that there is an isomorphism A(S) ∼= A(SK).

Taking S = A in the definition we see that A is unique, up to a unique isomor-
phism.

It is a deep theorem that Néron models exist. Fortunately, Bosch, Lütkebohmert,
and Raynaud devoted much time to create a carefully written book [BLR90] that
explains the construction in modern language. Also, in the case of elliptic curves,
Silverman’s second book [Sil94] is extremely helpful.

The basic idea of the construction is to first observe that if we can construct
a Néron model at each localization Rp at a nonzero prime ideal of R, then each
of these local models can be glued to obtain a global Néron model (this uses that
there are only finitely many primes of bad reduction). Thus we may assume that
R is a discrete valuation ring.

The next step is to pass to the “strict henselization” R′ of R. A local ring R with
maximal ideal ℘ is henselian if “every simple root lifts uniquely”; more precisely,
if whenever f(x) ∈ R[x] and α ∈ R is such that f(α) ≡ 0 (mod ℘) and f ′(α) 6≡ 0
(mod ℘), there is a unique element α̃ ∈ R such that α̃ ≡ α (mod ℘) and f(α̃) = 0.
The strict henselization of a discrete valuation ring R is an extension of R that
is henselian and for which the residue field of R′ is the separable closure of the
residue field of R (when the residue field is finite, the separable close is just the
algebraic closure). The strict henselization is not too much bigger than R, though
it is typically not finitely generated over R. It is, however, much smaller than
the completion of R (e.g., Zp is uncountable). The main geometric property of
a strictly henselian ring R with residue field k is that if X is a smooth scheme
over R, then the reduction map X(R)→ X(k) is surjective.

Working over the strict henselization, we first resolve singularities. Then we use
a generalization of the theorem that Weil used to construct Jacobians to pass from
a birational group law to an actual group law. We thus obtain the Néron model
over the strict henselization of R. Finally, we use Grothendieck’s faithfully flat
descent to obtain a Néron model over R.

When A is the Jacobian of a curve X, there is an alternative approach that
involves the “minimal proper regular model” of X. For example, when A is an
elliptic curve, it is the Jacobian of itself, and the Néron model can be constructed in
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terms of the minimal proper regular model X of A as follows. In general, the model
X → R is not also smooth. Let X ′ be the smooth locus of X → R, which is obtained
by removing from each closed fiber XFp =

∑
niCi all irreducible components with

multiplicity ni ≥ 2 and all singular points on each Ci, and all points where at least
two Ci intersect each other. Then the group structure on A extends to a group
structure on X ′, and X ′ equipped with this group structure is the Néron model
of A.

Explicit determination of the possibilities for the minimal proper regular model
of an elliptic curve was carried out by Kodaira, then Néron, and finally in a
very explicit form by Tate. Tate codified a way to find the model in what’s
called “Tate’s Algorithm” (see Antwerp IV, which is available on my web page:
http://modular.fas.harvard.edu/scans/antwerp/, and look at Silverman, chap-
ter IV, which also has important implementation advice).

13.6.2 The Birch and Swinnerton-Dyer conjecture and Néron
models

Throughout this section, let A be an abelian variety over Q and let A be the
corresponding Néron model over Z. We work over Q for simplicity, but could work
over any number field.

Let L(A, s) be the Hasse-Weil L-function of A (see Section [to be written]1 ). 1
Let r = ords=1 L(A, s) be the analytic rank of A. The Birch and Swinnerton-Dyer
Conjecture asserts that A(Q) ≈ Zr ⊕A(Q)tor and

L(r)(A, 1)

r!
=

(
∏
cp) · ΩA · RegA·#X(A)

#A(Q)tor ·#A∨(Q)tor
.

We have not defined most of the quantities appearing in this formula. In this
section, we will define the Tamagawa numbers cp, the real volume ΩA, and the
Shafarevich-Tate group X(A) in terms of the Néron model A of A.

We first define the Tamagawa numbers cp, which are the orders groups of con-
nected components. Let p be a prime and consider the closed fiber AFp , which
is a smooth commutative group scheme over Fp. Then AFp is a disjoint union of
one or more connected components. The connected component A0

Fp
that contains

the identity element is a subgroup of AFp (Intuition: the group law is continuous
and the continuous image of a connected set is connected, so the group structure
restricts to A0

Fp
).

Definition 13.6.3 (Component Group). The component group of A at p is

ΦA,p = AFp/A0
Fp .

Fact: The component group ΦA,p is a finite flat group scheme over Fp, and2 for 2
all but finitely many primes p, we have ΦA,p = 0.

Definition 13.6.4 (Tamagawa Numbers). The Tamagawa number of A at a prime
p is

cp = #ΦA,p(Fp).

1Add reference.
2Reference?
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Next we define the real volume ΩA. Choose a basis

ω1, . . . , ωd ∈ H0(A,Ω1
A/Z)

for the global differential 1-forms on A, where d = dimA. The wedge product
w = ω1∧ω2∧· · ·∧ωd is a global d-form on A. Then w induces a differential d-form
on the real Lie group A(R).

Definition 13.6.5 (Real Volume). The real volume of A is

ΩA =

∣∣∣∣∣
∫
A(R)

w

∣∣∣∣∣ ∈ R>0.

Finally, we give a definition of the Shafarevich-Tate group in terms of the Néron
model. Let A0 be the scheme obtained from the Néron model A over A by removing
from each closed fiber all nonidentity components. Then A0 is again a smooth
commutative group scheme, but it need not have the Néron mapping property.

Recall that an étale morphism is a morphism that is smooth of relative dimen-
sion 0. A sheaf of abelian groups on the étale site Zét is a functor (satisfying certain
axioms) from the category of étale morphism X → Z to the category of abelian
groups. There are enough sheaves on Zét so that there is a cohomology theory for
such sheaves, which is called étale cohomology. In particular if F is a sheaf on Zét,
then for every integer q there is an abelian group Hq(Zét,F) associated to F that
has the standard properties of a cohomology functor.

The group schemes A0 and A both determine sheaves on the étale site, which
we will also denote by A0 and A.

Definition 13.6.6 (Shafarevich-Tate Group). Suppose A(R) is connected that
that A0 = A. Then the Shafarevich-Tate group of A is H1(Zét,A). More generally,
suppose only that A(R) is connected. Then the Shafarevich-Tate group is the
image of the natural map

f : H1(Zét,A0)→ H1(Zét,A).

Even more generally, if A(R) is not connected, then there is a natural map r :
H1(Zét,A)→ H1(Gal(C/R), A(C)) and X(A) = im(f) ∩ ker(r).

Mazur proves in the appendix to [Maz72] that this definition is equivalent to the
usual Galois cohomology definition. To do this, he considers the exact sequence
0 → A0 → A → ΦA → 0, where ΦA is a sheaf version of ⊕pΦA,p. The main
input is Lang’s Theorem, which implies that over a local field, unramified Galois
cohomology is the same as the cohomology of the corresponding component group.3

3

Conjecture 13.6.7 (Shafarevich-Tate). The group H1(Zét,A) is finite.

When A has rank 0, all component groups ΦA,p are trivial, A(R) is connected,
and A(Q)tor and A∨(Q)tor are trivial, the Birch and Swinnerton-Dyer conjecture
takes the simple form

L(A, 1)

ΩA
= # H1(Zét,A).

Later4 , when A is modular, we will (almost) interpret L(A, 1)/ΩA as the order of 4

3Reference for Lang’s Lemma, etc.
4Where?
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a certain group that involves modular symbols. Thus the BSD conjecture asserts
that two groups have the same order; however, they are not isomorphic, since, e.g.,
when dimA = 1 the modular symbols group is always cyclic, but the Shafarevich-
Tate group is never cyclic (unless it is trivial).

13.6.3 Functorial properties of Neron models

The definition of Néron model is functorial, so one might expect the formation of
Néron models to have good functorial properties. Unfortunately, it doesn’t.

Proposition 13.6.8. Let A and B be abelian varieties. If A and B are the Néron
models of A and B, respectively, then the Néron model of A×B is A× B.

Suppose R ⊂ R′ is a finite extension of discrete valuation rings with fields of
fractions K ⊂ K ′. Sometimes, given an abelian variety A over a field K, it is
easier to understand properties of the abelian variety, such as reduction, over K ′.
For example, you might have extra information that implies that AK′ decomposes
as a product of well-understood abelian varieties. It would thus be useful if the
Néron model of AK′ were simply the base extension AR′ of the Néron model of A
over R. This is, however, frequently not the case.

Distinguishing various types of ramification will be useful in explaining how
Néron models behave with respect to base change, so we now recall the notions of
tame and wild ramification. If π generates the maximal ideal of R and v′ is the
valuation on R′, then the extension is unramified if v′(π) = 1. It is tamely ramified
if v′(π) is not divisible by the residue characteristic of R, and it is wildly ramified
if v′(π) is divisible by the residue characteristic of R. For example, the extension
Qp(p

1/p) of Qp is wildly ramified.

Example 13.6.9. If R is the ring of integers of a p-adic field, then for every integer n
there is a unique unramified extension of R of degree n. See [Cp86, §I.7], where
Fröhlich uses Hensel’s lemma to show that the unramified extensions of K =
Frac(R) are in bijection with the finite (separable) extensions of the residue class
field.

The Néron model does not behave well with respect to base change, except in
some special cases. For example, suppose A is an abelian variety over the field
of fractions K of a discrete valuation ring R. If K ′ is the field of fractions of a
finite unramified extension R′ of R, then the Néron model of AK′ is AR′ , where
A is the Néron model of A over R. Thus the Néron model over an unramified
extension is obtained by base extending the Néron model over the base. This is
not too surprising because in the construction of Néron model we first passed to
the strict henselization of R, which is a limit of unramified extensions.

Continuing with the above notation, if K ′ is tamely ramified over K, then in
general AR′ need not be the Néron model of AK′ . Assume that K ′ is Galois over K.
In [Edi92a], Bas Edixhoven describes the Néron model of AK in terms of AR′ . To
describe his main theorem, we introduce the restriction of scalars of a scheme.

Definition 13.6.10 (Restriction of Scalars). Let S′ → S be a morphism of
schemes and let X ′ be a scheme over S′. Consider the functor

R(T ) = HomS′(T ×S S′, X ′)
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on the category of all schemes T over S. If this functor is representable, the rep-
resenting object X = ResS′/S(X ′) is called the restriction of scalars of X ′ to S.

Edixhoven’s main theorem is that if G is the Galois group of K ′ over K and
X = ResR′/R(AR′) is the restriction of scalars of AR′ down to R, then there is a
natural map A → X whose image is the closed subscheme XG of fixed elements.

We finish this section with some cautious remarks about exactness properties of
Néron models. If 0 → A → B → C → 0 is an exact sequence of abelian varieties,
then the functorial definition of Néron models produces a complex of Néron models

0→ A→ B → C → 0,

where A, B, and C are the Néron models of A, B, and C, respectively. This complex
can fail to be exact at every point. For an in-depth discussion of conditions when
we have exactness, along with examples that violate exactness, see [BLR90, Ch. 7],
which says: “we will see that, except for quite special cases, there will be a defect
of exactness, the defect of right exactness being much more serious than the one
of left exactness.”

To give examples in which right exactness fails, it suffices to give an optimal
quotient B → C such that for some p the induced map ΦB,p → ΦC,p on component
groups is not surjective (recall that optimal means A = ker(B → C) is an abelian
variety). Such quotients, with B and C modular, arise naturally in the context of
Ribet’s level optimization. For example, the elliptic curve E given by y2 + xy =
x3 + x2 − 11x is the optimal new quotient of the Jacobian J0(33) of X0(33). The
component group of E at 3 has order 6, since E has semistable reduction at 3
(since 3 || 33) and ord3(j(E)) = −6. The image of the component group of J0(33)
in the component group of E has order 2:

> OrderOfImageOfComponentGroupOfJ0N(ModularSymbols("33A"),3);

2

Note that the modular form associated to E is congruent modulo 3 to the form
corresponding to J0(11), which illustrates the connection with level optimization.



14
Abelian Varieties Attached to Modular
Forms

In this chapter we describe how to decompose J1(N), up to isogeny, as a product of
abelian subvarieties Af corresponding to Galois conjugacy classes of cusp forms f
of weight 2. This was first accomplished by Shimura (see [Shi94, Theorem 7.14]).
We also discuss properties of the Galois representation attached to f . 1 1

In this chapter we will work almost exclusively with J1(N). However, everything
goes through exactly as below with J1(N) replaced by J0(N) and S2(Γ1(N)) re-
placed by S2(Γ0(N)). Since, J1(N) has dimension much larger than J0(N), so for
computational investigations it is frequently better to work with J0(N).

See Brian Conrad’s appendix to [ribet-stein: Lectures on Serre’s Conjectures]
for a much more extensive exposition of the construction discussed below, which is
geared toward preparing the reader for Deligne’s more general construction of Ga-
lois representations associated to newforms of weight k ≥ 2 (for that, see Conrad’s
book ...).

14.1 Decomposition of the Hecke algebra

Let N be a positive integer and let

T = Z[. . . , Tn, . . .] ⊂ End(J1(N))

be the algebra of all Hecke operators acting on J1(N). Recall from Section 9.4 that
the anemic Hecke algebra is the subalgebra

T0 = Z[. . . , Tn, . . . : (n,N) = 1] ⊂ T

of T obtained by adjoining to Z only those Hecke operators Tn with n relatively
prime to N .

1Rewrite intro after chapter is done, and point to where each thing is done.
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Remark 14.1.1. Viewed as Z-modules, T0 need not be saturated in T, i.e., T/T0

need not be torsion free. For example, if T is the Hecke algebra associated to
S2(Γ1(24)) then T/T0

∼= Z/2Z. Also, if T is the Hecke algebra associated to
S2(Γ0(54)), then T/T0

∼= Z/3Z× Z. 2 2

If f =
∑
anq

n is a newform, then the field Kf = Q(a1, a2, . . .) has finite degree
over Q, since the an are the eigenvalues of a family of commuting operators with
integral characteristic polynomials. The Galois conjugates of f are the newforms
σ(f) =

∑
σ(an)qn, for σ ∈ Gal(Q/Q). There are [Kf : Q] Galois conjugates of f .

As in Section 9.4, we have a canonical decomposition

T0 ⊗Q ∼=
∏
f

Kf , (14.1.1)

where f varies over a set of representatives for the Galois conjugacy classes of
newforms in S2(Γ1(N)) of level dividing N . For each f , let

πf = (0, . . . , 0, 1, 0, . . . , 0) ∈
∏

Kf

be projection onto the factor Kf of the product (14.1.1). Since T0 ⊂ T, and T
has no additive torsion, we have T0 ⊗ Q ⊂ T ⊗ Q, so these projectors πf lie
in TQ = T ⊗ Q. Since TQ is commutative and the πf are mutually orthogonal
idempotents whose sum is (1, 1, . . . , 1), we see that TQ breaks up as a product of
algebras

TQ
∼=
∏
f

Lf , t 7→
∑
f

tπf .

14.1.1 The Dimension of the algebras Lf

Proposition 14.1.2. If f , Lf and Kf are as above, then dimKf Lf is the number
of divisors of N/Nf where Nf is the level of the newform f .

Proof. Let Vf be the complex vector space spanned by all images of Galois con-
jugates of f via all maps αd with d | N/Nf . It follows from [Atkin-Lehner-
Li theory – multiplicity one]3 that the images via αd of the Galois conjugates 3
of f are linearly independent. (Details: More generally, if f and g are newforms
of level M , then by Proposition 9.2.1, B(f) = {αd(f) : d | N/Nf} is a lin-
early independent set and likewise for B(g). Suppose some nonzero element f ′

of the span of B(f) equals some element g′ of the span of B(g). Since Tp, for
p - N , commutes with αd, we have Tp(f

′) = ap(f)f ′ and Tp(g
′) = ap(g)g′, so

0 = Tp(0) = Tp(f
′ − g′) = ap(f)f ′ − ap(g)g′. Since f ′ = g′, this implies that

ap(f) = ap(g). Because a newform is determined by the eigenvalues of Tp for
p - N , it follows that f = g.) Thus the C-dimension of Vf is the number of divisors
of N/Nf times dimQKf .

The factor Lf is isomorphic to the image of TQ ⊂ End(Sk(Γ1(N))) in End(Vf ).
As in Section ??, there is a single element v ∈ Vf so that Vf = TC · v. Thus the
image of TQ in End(Vf ) has dimension dimC Vf , and the result follows.

2I’m including the MAGMA scripts I used to check this as comments in the latex source, until
I find the right way to justify these computational remarks. Maybe the remarks should point to

an appendix where they are all justified?
3fill in
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Let’s examine a particular case of this proposition. Suppose p is a prime and f =∑
anq

n is a newform of level Nf coprime to p, and let N = p ·Nf . We will show
that

Lf = Kf [U ]/(U2 − apU + p), (14.1.2)

hence dimKf Lf = 2 which, as expected, is the number of divisors of N/Nf = p.
The first step is to view Lf as the space of operators generated by the Hecke
operators Tn acting on the span V of the images f(dz) = f(qd) for d | (N/Nf ) = p.
If n 6= p, then Tn acts on V as the scalar an, and when n = p, the Hecke operator Tp
acts on Sk(Γ1(p ·Nf )) as the operator also denoted Up. By Section 9.2, we know

that Up corresponds to the matrix
(
ap 1
−p 0

)
with respect to the basis f(q), f(qp)

of V . Thus Up satisfies the relation U2
p − apU + p. Since Up is not a scalar matrix,

this minimal polynomial of Up is quadratic, which proves (14.1.2).
More generally, see [DDT94, Lem. 4.4] (Diamond-Darmon-Taylor)4 for an ex- 4

plicit presentation of Lf as a quotient

Lf ∼= Kf [. . . , Up, . . .]/I

where I is an ideal and the Up correspond to the prime divisors of N/Nf .

14.2 Decomposition of J1(N)

Let f be a newform in S2(Γ1(N)) of level a divisor M of N , so f ∈ S2(Γ1(M))new

is a normalized eigenform for all the Hecke operators of level M . We associate
to f an abelian subvariety Af of J1(N), of dimension [Lf : Q], as follows. Recall
that πf is the fth projector in T0 ⊗Q =

∏
gKg. We can not define Af to be the

image of J1(N) under πf , since πf is only, a priori, an element of End(J1(N))⊗Q.
Fortunately, there exists a positive integer n such that nπf ∈ End(J1(N)), and we
let

Af = nπf (J1(N)).

This is independent of the choice of n, since the choices for n are all multiples of
the “denominator” n0 of πf , and if A is any abelian variety and n is a positive
integer, then nA = A.

The natural map
∏
f Af → J1(N), which is induced by summing the inclusion

maps, is an isogeny. Also Af is simple if f is of level N , and otherwise Af is
isogenous to a power of A′f ⊂ J1(Nf ). Thus we obtain an isogeny decomposition
of J1(N) as a product of Q-simple abelian varieties.

Remark 14.2.1. The abelian varieties Af frequently decompose further over Q,
i.e., they are not absolutely simple, and it is an interesting problem to determine
an isogeny decomposition of J1(N)Q as a product of simple abelian varieties. It is

still not known precisely how to do this computationally for any particular N . 5 5

This decomposition can be viewed in another way over the complex numbers.
As a complex torus, J1(N)(C) has the following model:

J1(N)(C) = Hom(S2(Γ1(N)),C)/H1(X1(N),Z).

4Remove parens.
5Add more/pointers/etc.
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The action of the Hecke algebra T on J1(N)(C) is compatible with its action on
the cotangent space S2(Γ1(N)). This construction presents J1(N)(C) naturally
as V/L with V a complex vector space and L a lattice in V . The anemic Hecke
algebra T0 then decomposes V as a direct sum V =

⊕
f Vf . The Hecke operators

act on Vf and L in a compatible way, so T0 decomposes L ⊗Q in a compatible
way. Thus Lf = Vf ∩ L is a lattice in Vf , so we may Af (C) view as the complex
torus Vf/Lf .

Lemma 14.2.2. Let f ∈ S2(Γ1(N)) be a newform of level dividing N and Af =
nπf (J1(N)) be the corresponding abelian subvariety of J1(N). Then the Hecke
algebra T ⊂ End(J1(N)) leaves Af invariant.

Proof. The Hecke algebra T is commutative, so if t ∈ T, then

tAf = tnπf (J1(N)) = nπf (tJ1(N)) ⊂ nπf (J1(N)) = Af .

Remark 14.2.3. Viewing Af (C) as Vf/Lf is extremely useful computationally,
since L can be computed using modular symbols, and Lf can be cut out using
the Hecke operators. For example, if f and g are nonconjugate newforms of level
dividing N , we can explicitly compute the group structure of Af ∩Ag ⊂ J1(N) by
doing a computation with modular symbols in L. More precisely, we have

Af ∩Ag ∼= (L/(Lf + Lg))tor.

Note that Af depends on viewing f as an element of S2(Γ1(N)) for some N .
Thus it would be more accurate to denote Af by Af,N , where N is any multiple of
the level of f , and to reserve the notation Af for the case N = 1. Then dimAf,N
is dimAf times the number of divisors of N/Nf .

14.2.1 Aside: intersections and congruences

Suppose f and g are not Galois conjugate. Then the intersection Ψ = Af ∩ Ag
is finite, since Vf ∩ Vg = 0, and the integer #Ψ is of interest. This cardinality
is related to congruence between f and g, but the exact relation is unclear. For
example, one might expect that p | #Ψ if and only if there is a prime ℘ of the
compositum Kf .Kg of residue characteristic p such that aq(f) ≡ aq(g) (mod ℘)
for all q - N . If p | #Ψ, then such a prime ℘ exists (take ℘ to be induced by
a maximal ideal in the support of the nonzero T-module Ψ[p]). The converse is
frequently true, but is sometimes false. For example, if N is the prime 431 and

f = q − q2 + q3 − q4 + q5 − q6 − 2q7 + · · ·
g = q − q2 + 3q3 − q4 − 3q5 − 3q6 + 2q7 + · · · ,

then f ≡ g (mod 2), but Af ∩ Ag = 0. This example implies that “multiplicity
one fails” for level 431 and p = 2, so the Hecke algebra associated to J0(431) is
not Gorenstein (see [Lloyd Kilford paper]6 for more details). 6

6fix reference
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14.3 Galois representations attached to Af

It is important to emphasize the case when f is a newform of level N , since
then Af is Q-simple7 and there is a compatible family of 2-dimensional `-adic 7
representations attached to f , which arise from torsion points on Af .

Proposition 14.1.2 implies that Lf = Kf . Fix such an f , let A = Af , let K = Kf ,
and let

d = dimA = dimQK = [K : Q].

Let ` be a prime and consider the Q`-adic Tate module Tate`(A) of A:

Tate`(A) = Q` ⊗ lim←−
ν>0

A[`ν ].

Note that as a Q`-vector space Tate`(A) ∼= Q2d
` , since A[n] ∼= (Z/nZ)2d, as groups.

There is a natural action of the ring K⊗QQ` on Tate`(A). By algebraic number
theory

K ⊗Q Q` =
∏
λ|`

Kλ,

where λ runs through the primes of the ring OK of integers of K lying over ` and
Kλ denotes the completion of K with respect to the absolute value induced by λ.
Thus Tate`(A) decomposes as a product

Tate`(A) =
∏
λ|`

Tateλ(A)

where Tateλ(A) is a Kλ vector space.

Lemma 14.3.1. Let the notation be as above. Then for all λ lying over `,

dimKλ Tateλ(A) = 2.

Proof. Write A = V/L, with V = Vf a complex vector space and L a lattice. Then
Tateλ(A) ∼= L ⊗ Q` as Kλ-modules (not as Gal(Q/Q)-modules!), since A[`n] ∼=
L/`nL, and lim←−n L/`

nL ∼= Z`⊗L. Also, L⊗Q is a vector space over K, which must
have dimension 2, since L ⊗Q has dimension 2d = 2 dimA and K has degree d.
Thus

Tateλ(A) ∼= L ⊗Kλ ≈ (K ⊕K)⊗K Kλ
∼= Kλ ⊕Kλ

has dimension 2 over Kλ.

Now consider Tateλ(A), which is a Kλ-vector space of dimension 2. The Hecke
operators are defined over Q, so Gal(Q/Q) acts on Tate`(A) in a way compatible
with the action of K ⊗Q Q`. We thus obtain a homomorphism

ρ` = ρf,` : Gal(Q/Q)→ AutK⊗Q`
Tate`(A) ≈ GL2(K ⊗Q`) ∼=

∏
λ

GL2(Kλ).

Thus ρ` is the direct sum of `-adic Galois representations ρλ where

ρλ : Gal(Q/Q)→ EndKλ(Tateλ(A))

7add pointer to where this is proved.
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gives the action of Gal(Q/Q) on Tateλ(A).
If p - `N , then ρλ is unramified at p (see [ST68, Thm. 1]). In this case it makes

sense to consider ρλ(ϕp), where ϕp ∈ Gal(Q/Q) is a Frobenius element at p. Then
ρλ(ϕp) has a well-defined trace and determinant, or equivalently, a well-defined
characteristic polynomial Φ(X) ∈ Kλ[X].

Theorem 14.3.2. Let f ∈ S2(Γ1(N), ε) be a newform of level N with Dirichlet
character ε. Suppose p - `N , and let ϕp ∈ Gal(Q/Q) be a Frobenius element at p.
Let Φ(X) be the characteristic polynomial of ρλ(ϕp). Then

Φ(X) = X2 − apX + p · ε(p),

where ap is the pth coefficient of the modular form f (thus ap is the image of Tp
in Ef and ε(p) is the image of 〈p〉).

Let ϕ = ϕp. By the Cayley-Hamilton theorem

ρλ(ϕ)2 − tr(ρλ(ϕ))ρλ(ϕ) + det(ρλ(ϕ)) = 0.

Using the Eichler-Shimura congruence relation (see 8 ) we will show that tr(ρλ(ϕ)) = 8
ap, but we defer the proof of this until ...9 . 9

We will prove that det(ρλ(ϕ)) = p in the special case when ε = 1. This will
follow from the equality

det(ρλ) = χ`, (14.3.1)

where χ` is the `th cyclotomic character

χ` : Gal(Q/Q)→ Z∗` ⊂ K∗λ,

which gives the action of Gal(Q/Q) on µ`∞ . We have χ`(ϕ) = p because ϕ induces
induces pth powering map on µ`∞ .

It remains to establish (14.3.1). The simplest case is when A is an elliptic curve.
In [Sil92, ]10 , Silverman shows that det(ρ`) = χ` using the Weil pairing. We will 10
consider the Weil pairing in more generality in the next section, and use it to
establish (14.3.1).

14.3.1 The Weil pairing

Let T`(A) = lim←−n≥1
A[`n], so Tate`(A) = Q` ⊗ T`(A). The Weil pairing is a non-

degenerate perfect pairing

e` : T`(A)× T`(A∨)→ Z`(1).

(See e.g., [Mil86, §16] for a summary of some of its main properties.)

Remark 14.3.3. Identify Z/`nZ with µ`n by 1 7→ e−2πi/`n , and extend to a map
Z` → Z`(1). If J = Jac(X) is a Jacobian, then the Weil pairing on J is induced
by the canonical isomorphism

T`(J) ∼= H1(X,Z`) = H1(X,Z)⊗ Z`,

8Next week!
9when?

10get ref



14.3 Galois representations attached to Af 135

and the cup product pairing

H1(X,Z`)⊗Z` H1(X,Z`)
∪−−→ Z`.

For more details see the discussion on pages 210–211 of Conrad’s appendix to
[RS01], and the references therein. In particular, note that H1(X,Z`) is isomorphic
to H1(X,Z`), because H1(X,Z`) is self-dual because of the intersection pairing. It
is easy to see that H1(X,Z`) ∼= T`(J) since by Abel-Jacobi J ∼= T0(J)/H1(X,Z),
where T0(J) is the tangent space at J at 0 (see Lemma 14.3.1). 11 11

Here Z`(1) ∼= lim←−µ`n is isomorphic to Z` as a ring, but has the action of

Gal(Q/Q) induced by the action of Gal(Q/Q) on lim←−µ`n . Given σ ∈ Gal(Q/Q),

there is an element χ`(σ) ∈ Z∗` such that σ(ζ) = ζχ`(σ), for every `nth root of
unity ζ. If we view Z`(1) as just Z` with an action of Gal(Q/Q), then the action
of σ ∈ Gal(Q/Q) on Z`(1) is left multiplication by χ`(σ) ∈ Z∗` .

Definition 14.3.4 (Cyclotomic Character). The homomorphism

χ` : Gal(Q/Q)→ Z∗`

is called the `-adic cyclotomic character.

If ϕ : A→ A∨ is a polarization (so it is an isogeny defined by translation of an
ample invertible sheaf), we define a pairing

eϕ` : T`(A)× T`(A)→ Z`(1) (14.3.2)

by eϕ` (a, b) = e`(a, ϕ(b)). The pairing (14.3.2) is a skew-symmetric, nondegenerate,
bilinear pairing that is Gal(Q/Q)-equivariant, in the sense that if σ ∈ Gal(Q/Q),
then

eϕ` (σ(a), σ(b)) = σ · eϕ` (a, b) = χ`(σ)eϕ` (a, b).

We now apply the Weil pairing in the special case A = Af ⊂ J1(N). Abelian
varieties attached to modular forms are equipped with a canonical polarization
called the modular polarization. The canonical principal polarization of J1(N) is
an isomorphism J1(N)

∼−→ J1(N)∨, so we obtain the modular polarization ϕ =
ϕA : A→ A∨ of A, as illustrated in the following diagram:

J1(N)
autoduality∼= // J1(N)∨

��
A

OO

polarizationϕA // A∨

Consider (14.3.2) with ϕ = ϕA the modular polarization. Tensoring over Q
and restricting to Tateλ(A), we obtain a nondegenerate skew-symmetric bilinear
pairing

e : Tateλ(A)× Tateλ(A)→ Q`(1). (14.3.3)

The nondegeneracy follows from the nondegeneracy of eϕ` and the observation that

eϕ` (Tateλ(A),Tateλ′(A)) = 0

11Remove or expand?
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when λ 6= λ′. This uses the Galois equivariance of eφ` carries over to Galois equiv-
ariance of e, in the following sense. If σ ∈ Gal(Q/Q) and x, y ∈ Tateλ(A), then

e(σx, σy) = σe(x, y) = χ`(σ)e(x, y).

Note that σ acts on Q`(1) as multiplication by χ`(σ).

14.3.2 The Determinant

There are two proofs of the theorem, a fancy proof and a concrete proof. We first
present the fancy proof. The pairing e of (14.3.3) is a skew-symmetric and bilinear
form so it determines a Gal(Q/Q)-equivarient homomorphism

2∧
Kλ

Tateλ(A)→ Q`(1). (14.3.4)

It is not a priori true that we can take the wedge product over Kλ instead of
Q`, but we can because e(tx, y) = e(x, ty) for any t ∈ Kλ. This is where we use
that A is attached to a newform with trivial character, since when the character
is nontrivial, the relation between e(Tpx, y) and e(x, Tpy) will involve 〈p〉. Let

D =
∧2

Tateλ(A) and note that dimKλ D = 1, since Tateλ(A) has dimension 2
over Kλ.

There is a canonical isomorphism

HomQ`
(D,Q`(1)) ∼= HomKλ(D,Kλ(1)),

and the map of (14.3.4) maps to an isomorphismD ∼= Kλ(1) of Gal(Q/Q)-modules.
Since the representation of Gal(Q/Q) on D is the determinant, and the represen-
tation on Kλ(1) is the cyclotomic character χ`, it follows that det ρλ = χ`.

Next we consider a concrete proof. If σ ∈ Gal(Q/Q), then we must show that
det(σ) = χ`(σ). Choose a basis x, y ∈ Tateλ(A) of Tateλ(A) as a 2 dimensional
Kλ vector space. We have σ(x) = ax + cy and σ(y) = bx + dy, for a, b, c, d ∈ Kλ.
Then

χ`(σ)e(x, y) = 〈σx, σy)

= e(ax+ cy, bx+ dy)

= e(ax, bx) + e(ax, dy) + e(cy, bx) + e(cy, dy)

= e(ax, dy) + e(cy, bx)

= e(adx, y)− e(bcx, y)

= e((ad− bc)x, y)

= (ad− bc)e(x, y)

To see that e(ax, bx) = 0, note that

e(ax, bx) = e(abx, x) = −e(x, abx) = −e(ax, bx).

Finally, since e is nondegenerate, there exists x, y such that e(x, y) 6= 0, so χ`(σ) =
ad− bc = det(σ).
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14.4 Remarks about the modular polarization

Let A and ϕ be as in Section 14.3.1. The degree deg(ϕ) of the modular polarization
of A is an interesting arithmetic invariant of A. If B ⊂ J1(N) is the sum of all
modular abelian varieties Ag attached to newforms g ∈ S2(Γ1(N)), with g not a
Galois conjugate of f and of level dividing N , then ker(ϕ) ∼= A ∩B, as illustrated
in the following diagram:

ker(ϕB)

$$J
JJJJJJJJJ

∼=
��

ker(ϕAi)
∼= //

%%LLLLLLLLLLL A ∩B //

��

B

�� ""F
FFFFFFFF

A //

ϕ

%%KKKKKKKKKKK J1(N)

��

// B∨

A∨

Note that ker(ϕB) is also isomorphic to A ∩B, as indicated in the diagram.
In connection with Section ??, the quantity ker(ϕA) = A∩B is closely related to

congruences between f and eigenforms orthogonal to the Galois conjugates of f .
When A has dimension 1, we may alternatively view A as a quotient of X1(N)

via the map

X1(N)→ J1(N)→ A∨ ∼= A.

Then ϕA : A → A is pullback of divisors to X1(N) followed by push forward,
which is multiplication by the degree. Thus ϕA = [n], where n is the degree of the
morphism X1(N)→ A of algebraic curves. The modular degree is

deg(X1(N)→ A) =
√

deg(ϕA).

More generally, if A has dimension greater than 1, then deg(ϕA) has order a perfect
square (for references, see [Mil86, Thm. 13.3]), and we define the modular degree
to be

√
deg(ϕA).

Let f be a newform of level N . In the spirit of Section 14.2.1 we use congruences
to define a number related to the modular degree, called the congruence number.
For a subspace V ⊂ S2(Γ1(N)), let V (Z) = V ∩Z[[q]] be the elements with integral
q-expansion at ∞ and V ⊥ denotes the orthogonal complement of V with respect
to the Petersson inner product. The congruence number of f is

rf = #
S2(Γ1(N))(Z)

Vf (Z) + V ⊥f (Z)
,

where Vf is the complex vector space spanned by the Galois conjugates of f . We
thus have two positive associated to f , the congruence number rf and the modular
degree mf of of Af .

Theorem 14.4.1. mf | rf
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Ribet mentions this in the case of elliptic curves in [ZAGIER, 1985] [Zag85a],
but the statement is given incorrectly in that paper (the paper says that rf | mf ,
which is wrong). The proof for dimension greater than one is in [AGASHE-STEIN,
Manin constant...]. Ribet also subsequently proved that if p2 - N , then ordp(mf ) =
ordp(rf ).

We can make the same definitions with J1(N) replaced by J0(N), so if f ∈
S2(Γ0(N)) is a newform, Af ⊂ J0(N), and the congruence number measures con-
gruences between f and other forms in S2(Γ0(N)). In [FM99, Ques. 4.4], they ask
whether it is always the case that mf = rf when Af is an elliptic curve, and mf

and rf are defined relative to Γ0(N). I12 implemented an algorithm in MAGMA 12
to compute rf , and found the first few counterexamples, which occur when

N = 54, 64, 72, 80, 88, 92, 96, 99, 108, 120, 124, 126, 128, 135, 144.

For example, the elliptic curve A labeled 54B1 in [Cre97] has rA = 6 and mA = 2.
To see directly that 3 | rA, observe that if f is the newform corresponding to E
and g is the newform corresponding to X0(27), then g(q) + g(q2) is congruent to f
modulo 3. This is consistent with Ribet’s theorem that if p | rA/mA then p2 | N .
There seems to be no absolute bound on the p that occur.

It would be interesting to determine the answer to the analogue of the question
of Frey-Mueller for Γ1(N). For example, if A ⊂ J1(54) is the curve isogeneous to
54B1, then mA = 18 is divisible by 3. However, I do not know13 rA in this case, 13
because I haven’t written a program to compute it for Γ1(N).

12change...
13fix
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Modularity of Abelian Varieties

15.1 Modularity over Q

Definition 15.1.1 (Modular Abelian Variety). Let A be an abelian variety over Q.
Then A is modular if there exists a positive integer N and a surjective map
J1(N)→ A defined over Q.

The following theorem is the culmination of a huge amount of work, which
started with Wiles’s successful attack [Wil95] on Fermat’s Last Theorem, and
finished with [BCDT01].

Theorem 15.1.2 (Breuil, Conrad, Diamond, Taylor, Wiles). Let E be an elliptic
curve over Q. Then E is modular.

We will say nothing about the proof here.1 1
If A is an abelian variety over Q, let EndQ(A) denote the ring of endomorphisms

of A that are defined over Q.

Definition 15.1.3 (GL2-type). An abelian variety A over Q is of GL2-type if the
endomorphism algebra Q ⊗ EndQ(A) contains a number field of degree equal to
the dimension of A.

For example, every elliptic curve E over Q is trivially of GL2-type, since Q ⊂
Q⊗ EndQ(E).

Proposition 15.1.4. If A is an abelian variety over Q, and K ⊂ Q⊗ EndQ(A)
is a field, then [K : Q] divides dimA.

Proof. As discussed in [Rib92, §2],K acts faithfully on the tangent space Tan0(A/Q)
over Q to A at 0, which is a Q vector space of dimension dim(A). Thus Tan0(A/Q)
is a vector space over K, hence has Q-dimension a multiple of [K : Q].

1Also pointer to later in book.
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Proposition 15.1.4 implies, in particular, that if E is an elliptic curve over Q,
then EndQ(E) = Q. Recall2 that E has CM or is a complex multiplication elliptic 2
curve if EndQ(E) 6= Z). Proposition 15.1.4 implies that if E is a CM elliptic curve,
the extra endomorphisms are never defined over Q.

Proposition 15.1.5. Suppose A = Af ⊂ J1(N) is an abelian variety attached to
a newform of level N . Then A is of GL2-type.

Proof. The endomorphism ring of Af contains Of = Z[. . . , an(f), . . .], hence the
field Kf = Q(. . . , an(f), . . .) is contained in Q⊗ EndQ(A). Since Af = nπJ1(N),
where π is a projector onto the factor Kf of the anemic Hecke algebra T0 ⊗Z Q,
we have dimAf = [Kf : Q]. (One way to see this is to recall that the tangent
space T = Hom(S2(Γ1(N)),C) to J1(N) at 0 is free of rank 1 over T0 ⊗Z C.)

Conjecture 15.1.6 (Ribet). Every abelian variety over Q of GL2-type is modular.

Suppose
ρ : Gal(Q/Q)→ GL2(Fp)

is an odd irreducible continuous Galois representation, where odd means that

det(ρ(c)) = −1,

where c is complex conjugation. We say that ρ is modular if there is a newform
f ∈ Sk(Γ1(N)), and a prime ideal ℘ ⊂ Of such that for all ` - Np, we have

Tr(ρ(Frob`)) ≡ a` (mod ℘),

Det(ρ(Frob`)) ≡ `k−1 · ε(`) (mod ℘).

Here χp is the p-adic cyclotomic character, and ε is the (Nebentypus) character of
the newform f .

Conjecture 15.1.7 (Serre). Every odd irreducible continuous representation

ρ : Gal(Q/Q)→ GL2(Fp)

is modular. Moreover, there is a formula for the “optimal” weight k(ρ) and level
N(ρ) of a newform that gives rise to ρ.

In [Ser87], Serre describes the formula for the weight and level. Also, it is now
known due to work of Ribet, Edixhoven, Coleman, Voloch, Gross, and others that
if ρ is modular, then ρ arises from a form of the conjectured weight and level,
except in some cases when p = 2. (For more details see the survey paper [RS01].)
However, the full Conjecture 15.1.7 is known in very few cases.

Remark 15.1.8. There is interesting recent work of Richard Taylor which connects
Conjecture 15.1.7 with the open question of whether every variety of a certain type
has a point over a solvable extension of Q. The question of the existence of solvable
points (“solvability of varieties in radicals”) seems very difficult. For example, we
don’t even know the answer for genus one curves, or have a good reason to make
a conjecture either way (as far as I know3 ). There’s a book of Mike Fried that 3
discusses this solvability question.4 4

2from where
3fix
4Find the exact reference in that book and the exact book.
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Serre’s conjecture is very strong. For example, it would imply modularity of all
abelian varieties over Q that could possibly be modular, and the proof of this
implication does not rely on Theorem 15.1.2.

Theorem 15.1.9 (Ribet). Serre’s conjectures on modularity of all odd irreducible
mod p Galois representations implies Conjecture 15.1.6.

To give the reader a sense of the connection between Serre’s conjecture and
modularity, we sketch some of the key ideas of the proof of Theorem 15.1.9; for
more details the reader may consult Sections 1–4 of [Rib92].

Without loss, we may assume that A is Q-simple. As explained in the not trivial
[Rib92, Thm. 2.1], this hypothesis implies that

K = Q⊗Z EndQ(A)

is a number field of degree dim(A). The Tate modules

Tate`(A) = Q` ⊗ lim←−
n≥1

A[`n]

are free of rank two over K ⊗Q`, so the action of Gal(Q/Q) on Tate`(A) defines
a representation

ρA,` : Gal(Q/Q)→ GL2(K ⊗Q`).

Remarks 15.1.10. That these representations take values in GL2 is why such A are
said to be “of GL2-type”. Also, note that the above applies to A = Af ⊂ J1(N),
and the `-adic representations attached to f are just the factors of ρA,` coming
from the fact that K ⊗Q`

∼=
∏
λ|`Kλ.

The deepest input to Ribet’s proof is Faltings’s isogeny theorem, which Faltings
proved in order to prove Mordell’s conjecture (there are only a finite number of
L-rational points on any curve over L of genus at least 2).

If B is an abelian variety over Q, let

L(B, s) =
∏

all primes p

1

det (1− p−s · Frobp |Tate`(A))
=
∏
p

Lp(B, s),

where ` is a prime of good reduction (it makes no difference which one).

Theorem 15.1.11 (Faltings). Let A and B be abelian varieties. Then A is isoge-
nous to B if and only if Lp(A, s) = Lp(B, s) for almost all p.

Using an analysis of Galois representations and properties of conductors and
applying results of Faltings, Ribet finds an infinite set Λ of primes of K such that
all ρA,λ are irredudible and there only finitely many Serre invariants N(ρA,λ) and
k(ρA,λ). For each of these λ, by Conjecture 15.1.7 there is a newform fλ of level
N(ρA,λ)) and weight k(ρA,λ) that gives rise to the mod ` representation ρA,λ.
Since Λ is infinite, but there are only finitely many Serre invariants N(ρA,λ)),
k(ρA,λ), there must be a single newform f and an infinite subset Λ′ of Λ so that
for every λ ∈ Λ′ the newform f gives rise to ρA,λ.

Let B = Af ⊂ J1(N) be the abelian variety attached to f . Fix any prime p of
good reduction. There are infinitely many primes λ ∈ Λ′ such that ρA,λ ∼= ρB,λ̃ for

some λ̃, and for these λ,

det
(
1− p−s · Frobp |A[λ]

)
= det

(
1− p−s · Frobp |B[λ̃]

)
.
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This means that the degree two polynomials in p−s (over the appropriate fields,
e.g., K ⊗Q` for A)

det
(
1− p−s · Frobp |Tate`(A)

)
and

det
(
1− p−s · Frobp |Tate`(B)

)
are congruent modulo infinitely many primes. Therefore they are equal. By Theo-
rem 15.1.11, it follows that A is isogenous to B = Af , so A is modular.

15.2 Modularity of elliptic curves over Q

Definition 15.2.1 (Modular Elliptic Curve). An elliptic curve E over Q is mod-
ular if there is a surjective morphism X1(N)→ E for some N .

Definition 15.2.2 (Q-curve). An elliptic curve E over Q-bar is a Q-curve if for
every σ ∈ Gal(Q/Q) there is an isogeny Eσ → E (over Q).

Theorem 15.2.3 (Ribet). Let E be an elliptic curve over Q. If E is modular,
then E is a Q-curve, or E has CM.

This theorem is proved in [Rib92, §5].

Conjecture 15.2.4 (Ribet). Let E be an elliptic curve over Q. If E is a Q-curve,
then E is modular.

In [Rib92, §6], Ribet proves that Conjecture 15.1.7 implies Conjecture 15.2.4. He
does this by showing that if a Q-curve E does not have CM then there is a Q-simple
abelian variety A over Q of GL2-type such that E is a simple factor of A over Q.
This is accomplished finding a model for E over a Galois extension K of Q, re-
stricting scalars down to Q to obtain an abelian variety B = ResK/Q(E), and using

Galois cohomology computations (mainly in H2’s) to find the required A of GL2-
type inside B. Then Theorem 15.1.9 and our assumption that Conjecture 15.1.7 is
true together immediately imply that A is modular.

Ellenberg and Skinner [ES00] have recently used methods similar to those used
by Wiles to prove strong theorems toward Conjecture 15.2.4. See also Ellenberg’s
survey [Ell02], which discusses earlier modularity results of Hasegawa, Hashimoto,
Hida, Momose, and Shimura, and gives an example to show that there are infinitely
many Q-curves whose modularity is not known.

Theorem 15.2.5 (Ellenberg, Skinner). Let E be a Q-curve over a number field K
with semistable reduction at all primes of K lying over 3, and suppose that K is
unramified at 3. Then E is modular.

15.3 Modularity of abelian varieties over Q

Hida discusses modularity of abelian varieties over Q in [Hid00]. Let A be an
abelian variety over Q. For any subalgebra E ⊂ Q⊗End(A/Q), let Q⊗EndE(A/Q)
be the subalgebra of endomorphism that commute with E.



15.3 Modularity of abelian varieties over Q 143

Definition 15.3.1 (Real Multiplication Abelian Variety). An abelian variety A
over Q is a real multiplication abelian variety if there is a totally real field K with
[K : Q] = dim(A) such that

K ⊂ Q⊗ End(A/Q) and K = Q⊗ EndK(A/Q).

If E is a CM elliptic curve, then E is not a real multiplication abelian variety,
because the extra CM endomorphisms in End(E/Q) commute with K = Q, so
K 6= Q⊗ EndK(A/Q).

In analogy with Q-curves, Hida makes the following definition.

Definition 15.3.2 (Q-RMAV). Let A be an abelian variety over Q with real
multiplication by a field K. Then A is a Q-real multiplication abelian variety
(abbreviated Q-RMAV) if for every σ ∈ Gal(Q/Q) there is a K-linear isogeny
Aσ → A. Here K acts on Aσ via the canonical isomorphism End(A)→ End(Aσ),
which exists since applying σ is nothing but relabeling everything.

I haven’t had sufficient time to absorb Hida’s paper to see just what he proves
about such abelian varieties, so I’m not quite sure how to formulate the correct
modularity conjectures and theorems in this generality.

Elizabeth Pyle’s Ph.D. thesis [Pyl] under Ribet about “building blocks” is also
very relevant to this section.
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16
L-functions

16.1 L-functions attached to modular forms

Let f =
∑
n≥1 anq

n ∈ Sk(Γ1(N)) be a cusp form.

Definition 16.1.1 (L-series). The L-series of f is

L(f, s) =
∑
n≥1

an
ns
.

Definition 16.1.2 (Λ-function). The completed Λ function of f is

Λ(f, s) = Ns/2(2π)−sΓ(s)L(f, s),

where

Γ(s) =

∫ ∞
0

e−tts
dt

t

is the Γ function (so Γ(n) = (n− 1)! for positive integers n).

We can view Λ(f, s) as a (Mellin) transform of f , in the following sense:

Proposition 16.1.3. We have

Λ(f, s) = Ns/2

∫ ∞
0

f(iy)ys
dy

y
,

and this integral converges for Re(s) > k
2 + 1.
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Proof. We have∫ ∞
0

f(iy)ys
dy

y
=

∫ ∞
0

∞∑
n=1

ane
−2πnyys

dy

y

=

∞∑
n=1

an

∫ ∞
0

e−t(2πn)−sts
dt

t
(t = 2πny)

= (2π)−sΓ(s)

∞∑
n=1

an
ns
.

To go from the first line to the second line, we reverse the summation and in-
tegration and perform the change of variables t = 2πny. (We omit discussion of
convergence.1 ) 1

16.1.1 Analytic continuation and functional equations

We define the Atkin-Lehner operator WN on Sk(Γ1(N)) as follows. If wN =(
0 −1
N 0

)
, then [w2

N ]k acts as (−N)k−2, so if

WN (f) = N1− k2 · f |[wN ]k,

then W 2
N = (−1)k. (Note that WN is an involution when k is even.) It is easy

to check directly that if γ ∈ Γ1(N), then wNγw
−1
N ∈ Γ1(N), so WN preserves

Sk(Γ1(N)). Note that in general WN does not commute with the Hecke operators
Tp, for p | N .

The following theorem is mainly due to Hecke (and maybe other people, at least
in this generality). For a very general version of this theorem, see [Li75].2 2

Theorem 16.1.4. Suppose f ∈ Sk(Γ1(N), χ) is a cusp form with character χ.
Then Λ(f, s) extends to an entire (holomorphic on all of C) function which satisfies
the functional equation

Λ(f, s) = ikΛ(WN (f), k − s).

SinceNs/2(2π)−sΓ(s) is everywhere nonzero, Theorem 16.1.4 implies that L(f, s)
also extends to an entire function.

It follows from Definition 16.1.2 that Λ(cf, s) = cΛ(f, s) for any c ∈ C. Thus
if f is a WN -eigenform, so that WN (f) = wf for some w ∈ C, then the functional
equation becomes

Λ(f, s) = ikwΛ(f, k − s).

If k = 2, then WN is an involution, so w = ±1, and the sign in the functional
equation is ε(f) = ikw = −w, which is the negative of the sign of the Atkin-
Lehner involution WN on f . It is straightforward to show that ε(f) = 1 if and
only if ords=1 L(f, s) is even. Parity observations such as this are extremely useful
when trying to understand the Birch and Swinnerton-Dyer conjecture.

1change for book
2Add refs. – see page 58 of Diamond-Im.
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Sketch of proof of Theorem 16.1.4 when N = 1. We follow [Kna92, §VIII.5] closely.
Note that since w1 =

(
0 1
−1 0

)
∈ SL2(Z), the condition W1(f) = f is satisfied for

any f ∈ Sk(1). This translates into the equality

f

(
−1

z

)
= zkf(z). (16.1.1)

Write z = x + iy with x and y real. Then (16.1.1) along the positive imaginary
axis (so z = iy with y positive real) is

f

(
i

y

)
= ikykf(iy). (16.1.2)

From Proposition 16.1.3 we have

Λ(f, s) =

∫ ∞
0

f(iy)ys−1dy, (16.1.3)

and this integral converges for Re(s) > k
2 + 1.

Again using growth estimates, one shows that∫ ∞
1

f(iy)ys−1dy

converges for all s ∈ C, and defines an entire function. Breaking the path in (16.1.3)
at 1, we have for Re(s) > k

2 + 1 that

Λ(f, s) =

∫ 1

0

f(iy)ys−1dy +

∫ ∞
1

f(iy)ys−1dy.

Apply the change of variables t = 1/y to the first term and use (16.1.2) to get∫ 1

0

f(iy)ys−1dy =

∫ 1

∞
−f(i/t)t1−s

1

t2
dt

=

∫ ∞
1

f(i/t)t−1−sdt

=

∫ ∞
1

iktkf(it)t−1−sdt

= ik
∫ ∞

1

f(it)tk−1−sdt.

Thus

Λ(f, s) = ik
∫ ∞

1

f(it)tk−s−1dt+

∫ ∞
1

f(iy)ys−1dy.

The first term is just a translation of the second, so the first term extends to an
entire function as well. Thus Λ(f, s) extends to an entire function.

The proof of the general case for Γ0(N) is almost the same, except the path is
broken at 1/

√
N , since i/

√
N is a fixed point for wN .
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16.1.2 A Conjecture about nonvanishing of L(f, k/2)

Suppose f ∈ Sk(1) is an eigenform. If k ≡ 2 (mod 4), then L(f, k/2) = 0 for
reasons related to the discussion after the statement of Theorem 16.1.4. On the
other hand, if k ≡ 0 (mod 4), then ords=k/2 L(f, k/2) is even, so L(f, k/2) may or
may not vanish.

Conjecture 16.1.5. Suppose k ≡ 0 (mod 4). Then L(f, k/2) 6= 0.

According to [CF99], Conjecture 16.1.5 is true for weight k if there is some n
such that the characteristic polynomial of Tn on Sk(1) is irreducible. Thus Maeda’s
conjecture implies Conjecture 16.1.5. Put another way, if you find an f of level 1
and weight k ≡ 0 (mod 4) such that L(f, k/2) = 0, then Maeda’s conjecture is
false for weight k.

Oddly enough,3 I personally find Conjecture 16.1.5 less convincing that Maeda’s 3
conjecture, despite it being a weaker conjecture.

16.1.3 Euler products

Euler products make very clear how L-functions of eigenforms encode deep arith-
metic information about representations of Gal(Q/Q). Given a “compatible fam-
ily” of `-adic representations ρ of Gal(Q/Q), one can define an Euler product
L(ρ, s), but in general it is very hard to say anything about the analytic properties
of L(ρ, s). However, as we saw above, when ρ is attached to a modular form, we
know that L(ρ, s) is entire.

Theorem 16.1.6. Let f =
∑
anq

n be a newform in Sk(Γ1(N), ε), and let L(f, s) =∑
n≥1 ann

−s be the associated Dirichlet series. Then L(f, s) has an Euler product

L(f, s) =
∏
p|N

1

1− app−s
·
∏
p-N

1

1− app−s + ε(p)pk−1p−2s
.

Note that it is not really necessary to separate out the factors with p | N as we
have done, since ε(p) = 0 whenever p | N . Also, note that the denominators are of
the form F (p−s), where

F (X) = 1− apX + ε(p)pk−1X2

is the reverse of the characteristic polynomial of Frobp acting on any of the `-adic
representations attached to f , with p 6= `.

Recall that if p is a prime, then for every r ≥ 2 the Hecke operators satisfy the
relationship

Tpr = Tpr−1Tp − pk−1ε(p)Tpr−2 . (16.1.4)

Lemma 16.1.7. For every prime p we have the formal equality∑
r≥0

TprX
r =

1

1− TpX + ε(p)pk−1X2
. (16.1.5)

3remove from book
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[[THERE IS A COMMENTED OUT POSTSCRIPT PICTURE – look at source
and redo it in Sage]]

FIGURE 16.1.1. Graph of L(E, s) for s real, for curves of ranks 0 to 3.

Proof. Multiply both sides of (16.1.5) by 1 − TpX + ε(p)pk−1X2 to obtain the
equation ∑

r≥0

TprX
r −

∑
r≥0

(TprTp)X
r+1 +

∑
r≥0

(ε(p)pk−1Tpr )X
r+2 = 1.

This equation is true if and only if the lemma is true. Equality follows by checking
the first few terms and shifting the index down by 1 for the second sum and down
by 2 for the third sum, then using (16.1.4).

Note that ε(p) = 0 when p | N , so when p | N∑
r≥0

TprX
r =

1

1− TpX
.

Since the eigenvalues an of f also satisfy (16.1.4), we obtain each factor of the
Euler product of Theorem 16.1.6 by substituting the an for the Tn and p−s for X
into (16.1.4). For (n,m) = 1, we have anm = anam, so

∑
n≥1

an
ns

=
∏
p

∑
r≥0

apr

prs

 ,

which gives the full Euler product for L(f, s) =
∑
ann

−s.

16.1.4 Visualizing L-function

A. Shwayder did his Harvard junior project with me4 on visualizing L-functions of 4
elliptic curves (or equivalently, of newforms f =

∑
anq

n ∈ S2(Γ0(N)) with an ∈ Z
for all n. The graphs in Figures 16.1.1–?? of L(E, s), for s real, and |L(E, s)|, for s
complex, are from his paper.

4refine
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17
The Birch and Swinnerton-Dyer
Conjecture

This chapter is about the conjecture of Birch and Swinnerton-Dyer on the arith-
metic of abelian varieties. We focus primarily on abelian varieties attached to
modular forms.

In the 1960s, Sir Peter Swinnerton-Dyer worked with the EDSAC computer lab
at Cambridge University, and developed an operating system that ran on that
computer (so he told me once). He and Bryan Birch programmed EDSAC to
compute various quantities associated to elliptic curves. They then formulated the
conjectures in this chapter in the case of dimension 1 (see [Bir65, Bir71, SD67]).
Tate formulated the conjectures in a functorial way for abelian varieties of arbitrary
dimension over global fields in [Tat66], and proved that if the conjecture is true for
an abelian variety A, then it is also true for each abelian variety isogenous to A.

Suitably interpreted, the conjectures may by viewed as generalizing the ana-
lytic class number formula, and Bloch and Kato generalized the conjectures to
Grothendieck motives in [BK90].

17.1 The Rank conjecture

Let A be an abelian variety over a number field K.

Definition 17.1.1 (Mordell-Weil Group). The Mordell-Weil group of A is the
abelian group AK) of all K-rational points on A.

Theorem 17.1.2 (Mordell-Weil). The Mordell-Weil group A(K) of A is finitely
generated.

The proof is nontrivial and combines two ideas. First, one proves the “weak
Mordell-Weil theorem”: for any integer m the quotient A(K)/mA(K) is finite.
This is proved by combining Galois cohomology techniques with standard finiteness
theorems from algebraic number theory. The second idea is to introduce the Néron-
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Tate canonical height h : A(K) → R≥0 and use properties of h to deduce, from
finiteness of A(K)/mA(K), that A(K) itself is finitely generated.

Definition 17.1.3 (Rank). By the structure theorem A(K) ∼= Zr⊕Gtor, where r
is a nonnegative integer and Gtor is the torsion subgroup of G. The rank of A is r.

Let f ∈ S2(Γ1(N)) be a newform of level N , and let A = Af ⊂ J1(N) be
the corresponding abelian variety. Let f1, . . . , fd denote the Gal(Q/Q)-conjugates
of f , so if f =

∑
anq

n, then fi =
∑
σ(an)qn, for some σ ∈ Gal(Q/Q).

Definition 17.1.4 (L-function of A). We define the L-function of A = Af (or
any abelian variety isogenous to A) to be

L(A, s) =

d∏
i=1

L(fi, s).

By Theorem 16.1.4, each L(fi, s) is an entire function on C, so L(A, s) is entire.
In Section 17.4 we will discuss an intrinsic way to define L(A, s) that does not
require that A be attached to a modular form. However, in general we do not
know that L(A, s) is entire.

Conjecture 17.1.5 (Birch and Swinnerton-Dyer). The rank of A(Q) is equal to
ords=1 L(A, s).

One motivation for Conjecture 17.1.5 is the following formal observation. Assume
for simplicity of notation that dimA = 1. By Theorem 16.1.6, the L-function
L(A, s) = L(f, s) has an Euler product representation

L(A, s) =
∏
p|N

1

1− app−s
·
∏
p-N

1

1− app−s + p · p−2s
,

which is valid for Re(s) sufficiently large. (Note that ε = 1, since A is a modular el-
liptic curve, hence a quotient of X0(N).) There is no loss in considering the product
L∗(A, s) over only the good primes p - N , since ords=1 L(A, s) = ords=1 L

∗(A, s)
(because

∏
p|N

1
1−app−s is nonzero at s = 1). We then have formally that

L∗(A, 1) =
∏
p-N

1

1− app−1 + p−1

=
∏
p-N

p

p− ap + 1

=
∏
p-N

p

#A(Fp)

The intuition is that if the rank of A is large, i.e., A(Q) is large, then each group
A(Fp) will also be large since it has many points coming from reducing the ele-
ments of A(Q) modulo p. It seems likely that if the groups #A(Fp) are unusually
large, then L∗(A, 1) = 0, and computational evidence suggests the more precise
Conjecture 17.1.5.

Example 17.1.6. Let A0 be the elliptic curve y2 + y = x3 − x2, which has rank 0
and conductor 11, let A1 be the elliptic curve y2 +y = x3−x, which has rank 1 and
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conductor 37, let A2 be the elliptic curve y2 + y = x3 + x2 − 2x, which has rank 2
and conductor 389, and finally let A3 be the elliptic curve y2 + y = x3 − 7x + 6,
which has rank 3 and conductor 5077. By an exhaustive search, these are known to
be the smallest-conductor elliptic curves of each rank. Conjecture 17.1.5 is known
to be true for them, the most difficult being A3, which relies on the results of
[GZ86].

The following diagram illustrates |#Ai(Fp)| for p < 100, for each of these curves.
The height of the red line (first) above the prime p is |#A0(Fp)|, the green line
(second) gives the value for A1, the blue line (third) for A2, and the black line
(fourth) for A3. The intuition described above suggests that the clumps should
look like triangles, with the first line shorter than the second, the second shorter
than the third, and the third shorter than the fourth—however, this is visibly not
the case. The large Mordell-Weil group over Q does not increase the size of every
E(Fp) as much as we might at first suspect. Nonetheless, the first line is no longer
than the last line for every p except p = 41, 79, 83, 97.

[[THERE IS A COMMENTED OUT POSTSCRIPT PICTURE – look at source
and redo it in Sage]]

Remark 17.1.7. Suppose that L(A, 1) 6= 0. Then assuming the Riemann hypothesis
for L(A, s) (i.e., that L(A, s) 6= 0 for Re(s) > 1), Goldfeld [Gol82] proved that the
Euler product for L(A, s), formally evaluated at 1, converges but does not converge
to L(A, 1). Instead, it converges (very slowly) to L(A, 1)/

√
2. For further details

and insight into this strange behavior, see [Con03].

Remark 17.1.8. The Clay Math Institute has offered a one million dollar prize for
a proof of Conjecture 17.1.5 for elliptic curves over Q. See [Wil00].

Theorem 17.1.9 (Kolyvagin-Logachev). Suppose f ∈ S2(Γ0(N)) is a newform
such that ords=1 L(f, s) ≤ 1. Then Conjecture 17.1.5 is true for Af .

Theorem 17.1.10 (Kato). Suppose f ∈ S2(Γ1(N)) and L(f, 1) 6= 0. Then Con-
jecture 17.1.5 is true for Af .

17.2 Refined rank zero conjecture

Let f ∈ S2(Γ1(N)) be a newform of level N , and let Af ⊂ J1(N) be the corre-
sponding abelian variety.

The following conjecture refines Conjecture 17.1.5 in the case L(A, 1) 6= 0. We
recall some of the notation below, where we give a formula for L(A, 1)/ΩA, which
can be computed up to an vinteger, which we call the Manin index. Note that the
definitions, results, and proofs in this section are all true exactly as stated with
X1(N) replaced by X0(N), which is relevant if one wants to do computations.

Conjecture 17.2.1 (Birch and Swinnerton-Dyer). Suppose L(A, 1) 6= 0. Then

L(A, 1)

ΩA
=

#X(A) ·
∏
p|N cp

#A(Q)tor ·#A∨(Q)tor
.

By Theorem 17.1.10, the group X(A) is finite, so the right hand side makes
sense. The right hand side is a rational number, so if Conjecture 17.2.1 is true,
then the quotient L(A, 1)/ΩA should also be a rational number. In fact, this is
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[[THERE IS A COMMENTED OUT POSTSCRIPT PICTURE – look at source
and redo it in Sage]]

FIGURE 17.2.1. Graphs of real solutions to y2z = x3 − xz2 on three affine patches

true, as we will prove below (see Theorem 17.2.11). Below we will discuss aspects
of the proof of rationality in the case that A is an elliptic curve, and at the end of
this section we give a proof of the general case.

In to more easily understanding L(A, 1)/ΩA, it will be easiest to work with
A = A∨f , where A∨f is the dual of Af . We view A naturally as a quotient of
J1(N) as follows. Dualizing the map Af ↪→ J1(N) we obtain a surjective map
J1(N) → A∨f . Passing to the dual doesn’t affect whether or not L(A, 1)/ΩA is
rational, since changing A by an isogeny does not change L(A, 1), and only changes
ΩA by multiplication by a nonzero rational number.

17.2.1 The Number of real components

Definition 17.2.2 (Real Components). Let c∞ be the number of connected com-
ponents of A(R).

If A is an elliptic curve, then c∞ = 1 or 2, depending on whether the graph of
the affine part of A(R) in the plane R2 is connected. For example, Figure 17.2.1
shows the real points of the elliptic curve defined by y2 = x3−x in the three affine
patches that cover P2. The completed curve has two real components.

In general, there is a simple formula for c∞ in terms of the action of complex
conjugation on H1(A(R),Z), which can be computed using modular symbols. The
formula is

log2(c∞) = dimF2
A(R)[2]− dim(A).

17.2.2 The Manin index

The map J1(N) → A induces a map J → A on Néron models. Pullback of
differentials defines a map

H0(A,Ω1
A/Z)→ H0(J ,Ω1

J /Z). (17.2.1)

One can show1 that there is a q-expansion map 1

H0(J ,Ω1
J /Z)→ Z[[q]] (17.2.2)

which agrees with the usual q-expansion map after tensoring with C. (For usX1(N)
is the curve that parameterizes pairs (E,µN ↪→ E), so that there is a q-expansion
map with values in Z[[q]].)

Let ϕA be the composition of (17.2.1) with (17.2.2).

Definition 17.2.3 (Manin Index). The Manin index cA of A is the index of
ϕA(H0(A,Ω1

A/Z)) in its saturation. I.e., it is the order of the quotient group(
Z[[q]]

ϕA(H0(A,Ω1
A/Z))

)
tor

.

1reference or further discussion
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Open Problem 17.2.4. Find an algorithm to compute cA.

Manin conjectured that cA = 1 when dimA = 1, and I think cA = 1 in general.

Conjecture 17.2.5 (Agashe, Stein). cA = 1.

This conjecture is false if A is not required to be attached to a newform, even
if Af ⊂ J1(N)new. For example, Adam Joyce, a student of Kevin Buzzard, found
an A ⊂ J1(431) (and also A′ ⊂ J0(431)) whose Manin constant is 2. Here A is
isogenous over Q to a product of two elliptic curves. 2 Also, the Manin index for 2
J0(33) (viewed as a quotient of J0(33)) is divisible by 3, because there is a cusp
form in S2(Γ0(33)) that has integer Fourier expansion at ∞, but not at one of the
other cusps.

Theorem 17.2.6. If f ∈ S2(Γ0(N)) then the Manin index c of A∨f can only
divisible by 2 or primes whose square divides N . Moreover, if 4 - N , then ord2(c) ≤
dim(Af ).

The proof involves applying nontrivial theorems of Raynaud about exactness
of sequences of differentials, then using a trick with the Atkin-Lehner involu-
tion, which was introduced by Mazur in [Maz78], and finally one applies the
“q-expansion principle” in characteristic p to deduce the result (see [?]). Also,
Edixhoven claims he can prove that if Af is an elliptic curve then cA is only divis-
ible by 2, 3, 5, or 7. His argument use his semistable models for X0(p2), but my
understanding is that the details are not all written up.3 3

17.2.3 The Real volume ΩA

Definition 17.2.7 (Real Volume). The real volume ΩA of A(R) is the volume
of A(R) with respect to a measure obtained by wedging together a basis for
H0(A,Ω1).

If A is an elliptic curve with minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

then one can show that

ω =
dx

2y + a1x+ a3
(17.2.3)

is a basis for H0(A,Ω1). Thus

ΩA =

∫
A(R)

dx

2y + a1x+ a3
.

There is a fast algorithm for computing ΩA, for A an elliptic curve, which relies on
the quickly-convergent Gauss arithmetic-geometric mean (see [Cre97, §3.7]). For
example, if A is the curve defined by y2 = x3 − x (this is a minimal model), then

ΩA ∼ 2× 2.622057554292119810464839589.

For a general abelian variety A, it is an open problem to compute ΩA. However, we
can compute ΩA/cA, where cA is the Manin index of A, by explicitly computing A
as a complex torus using the period mapping Φ, which we define in the next section.

2Add better reference.
3Refine.
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17.2.4 The Period mapping

Let
Φ : H1(X1(N),Z)→ HomC(Cf1 + · · ·+ Cfd,C)

be the period mapping on integral homology induced by integrating homology
classes on X0(N) against the C-vector space spanned by the Gal(Q/Q)-conjugates
fi of f . Extend Φ to H1(X1(N),Q) by Q-linearity. We normalize Φ so that
Φ({0,∞})(f) = L(f, 1). More explicitly, for α, β ∈ P1(Q), we have

Φ({α, β})(f) = −2πi

∫ β

α

f(z)dz.

The motivation for this normalization is that

L(f, 1) = −2πi

∫ i∞

0

f(z)dz, (17.2.4)

which we see immediately from the Mellin transform definition of L(f, s):

L(f, s) = (2π)sΓ(s)−1

∫ i∞

0

(−iz)sf(z)
dz

z
.

17.2.5 The Manin-Drinfeld theorem

Recall the Manin-Drinfeld theorem, which we proved long ago, asserts that {0,∞} ∈
H1(X0(N),Q). We proved this by explicitly computing (p + 1 − Tp)({0,∞}), for
p - N , noting that the result is in H1(X0(N),Z), and inverting p + 1 − Tp. Thus
there is an integer n such that n{0,∞} ∈ H1(X0(N),Z).

Suppose that A = A∨f is an elliptic curve quotient of J0(N). Rewriting (17.2.4)
in terms of Φ, we have Φ({0,∞}) = L(f, 1). Let ω be a minimal differential on A,
as in (17.2.3), so ω = −cA · 2πif(z)dz, where cA is the Manin index of A, and the
equality is after pulling ω back to H0(X0(N),Ω) ∼= S2(Γ0(N)). Note that when
we defined cA, there was no factor of 2πi, since we compared ω with f(q)dqq , and

q = e2πiz, so dq/q = 2πidz.

17.2.6 The Period lattice

The period lattice of A with respect to a nonzero differential g on A is

Lg =

{∫
γ

g : γ ∈ H1(A,Z)

}
,

and we have A(C) ∼= C/Lg. This is the Abel-Jacobi theorem, and the signifi-
cance of g is that we are choosing a basis for the one-dimensional C-vector space
Hom(H0(A,Ω),C), in order to embed the image of H1(A,Z) in C.

The integral
∫
A(R)

g is “visible” in terms of the complex torus representation

of A(C) = C/Lg. More precisely, if Lg is not rectangular, then A(R) may be
identified with the part of the real line in a fundamental domain for Lg, and∫
A(R)

g is the length of this segment of the real line. If Lg is rectangular, then

it is that line along with another line above it that is midway to the top of the
fundamental domain.
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The real volume, which appears in Conjecture 17.2.1, is

ΩA =

∫
A(R)

ω = −cA · 2πi
∫
A(R)

f.

Thus ΩA is the least positive real number in Lω = −cA · 2πiLf , when the period
lattice is not rectangular, and twice the least positive real number when it is.

17.2.7 The Special value L(A, 1)

Proposition 17.2.8. We have L(f, 1) ∈ R.

Proof. With the right setup, this would follow immediately from the fact that
z 7→ −z fixes the homology class {0,∞}. However, we don’t have such a setup, so
we give a direct proof.

Just as in the proof of the functional equation for Λ(f, s), use that f is an
eigenvector for the Atkin-Lehner operator WN and (17.2.4) to write L(f, 1) as the
sum of two integrals from i/

√
N to i∞. Then use the calculation

2πi

∫ i∞

i/
√
N

∞∑
n=1

ane2πinzdz = −2πi

∞∑
n=1

an

∫ i∞

i/
√
N

e2πinzdz

= −2πi

∞∑
n=1

an
1

2πin
e−2πn/

√
N

= 2πi

∞∑
n=1

an
1

2πin
e2πn/

√
N

to see that L(f, 1) = L(f, 1).

Remark 17.2.9. The BSD conjecture implies that L(f, 1) ≥ 0, but this is unknown
(it follows from GRH for L(f, s)).

17.2.8 Rationality of L(A, 1)/ΩA

Proposition 17.2.10. Suppose A = Af is an elliptic curve. Then L(A, 1)/ΩA ∈
Q. More precisely, if n is the smallest multiple of {0,∞} that lies in H1(X0(N),Z)
and cA is the Manin constant of A, then 2n · cA · L(A, 1)/ΩA ∈ Z.

Proof. By the Manin-Drinfeld theorem n{0,∞} ∈ H1(X0(N),Z), so

n · L(f, 1) = −n · 2πi ·
∫ i∞

0

f(z)dz ∈ −2πi · Lf =
1

cA
Lω.

Combining this with Proposition 17.2.8, we see that

n · cA · L(f, 1) ∈ L+
ω ,

where L+
ω is the submodule fixed by complex conjugation (i.e., L+

ω = L∩R). When
the period lattice is not rectangular, ΩA generates L+

ω , and when it is rectangular,
1
2ΩA generates. Thus n · cA · L(f, 1) is an integer multiple of 1

2ΩA, which proves
the proposition.
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Proposition 17.2.10 can be more precise and generalized to abelian varieties
A = A∨f attached to newforms. One can also replace n by the order of the image
of (0)− (∞) in A(Q).

Theorem 17.2.11 (Agashe, Stein). Suppose f ∈ S2(Γ1(N)) is a newform and let
A = A∨f be the abelian variety attached to f . Then we have the following equality
of rational numbers:

|L(A, 1)|
ΩA

=
1

c∞ · cA
· [Φ(H1(X1(N),Z))+ : Φ(T{0,∞})].

Note that L(A, 1) ∈ R, so |L(A, 1)| = ±L(A, 1), and one expects, of course, that
L(A, 1) ≥ 0.

For V and W lattices in an R-vector space M , the lattice index [V : W ] is by
definition the absolute value of the determinant of a change of basis taking a basis
for V to a basis for W , or 0 if W has rank smaller than the dimension of M .

Proof. Let Ω̃A be the measure of A(R) with respect to a basis for S2(Γ1(N),Z)[If ],

where If is the annihilator in T of f . Note that Ω̃A · cA = ΩA, where cA is the
Manin index. Unwinding the definitions, we find that

Ω̃A = c∞ · [Hom(S2(Γ1(N),Z)[If ],Z) : Φ(H1(X0(N),Z))+].

For any ring R the pairing4 4

TR × S2(Γ1(N), R)→ R

given by 〈Tn, f〉 = a1(Tnf) is perfect, so (T/If )⊗R ∼= Hom(S2(Γ1(N), R)[If ], R).
Using this pairing, we may view Φ as a map

Φ : H1(X1(N),Q)→ (T/If )⊗C,

so that
Ω̃A = c∞ · [T/If : Φ(H1(X0(N),Z))+].

Note that (T/If )⊗C is isomorphic as a ring to a product of copies of C, with
one copy corresponding to each Galois conjugate fi of f . Let πi ∈ (T/If )⊗C be
the projector onto the subspace of (T/If )⊗C corresponding to fi. Then

Φ({0,∞}) · πi = L(fi, 1) · πi.

Since the πi form a basis for the complex vector space (T/If ) ⊗ C, if we view
Φ({0,∞}) as the operator “left-multiplication by Φ({0,∞})”, then

det(Φ({0,∞})) =
∏
i

L(fi, 1) = L(A, 1),

Letting H = H1(X0(N),Z), we have

[Φ(H)+ : Φ(T{0,∞})] = [Φ(H)+ : (T/If ) · Φ({0,∞})]
= [Φ(H)+ : T/If ] · [T/If : T/If · Φ({0,∞})]

=
c∞

Ω̃A
· | det(Φ({0,∞}))|

=
c∞cA
ΩA

· |L(A, 1)|,

4reference!
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which proves the theorem.

Remark 17.2.12. Theorem 17.2.11 is false, in general, when A is a quotient of
J1(N) not attached to a single Gal(Q/Q)-orbit of newforms. It could be modified
to handle this more general case, but the generalization seems not to has been
written down.

17.3 General refined conjecture

Conjecture 17.3.1 (Birch and Swinnerton-Dyer). Let r = ords=1 L(A, s). Then
r is the rank of A(Q), the group X(A) is finite, and

L(r)(A, 1)

r!
=

#X(A) · ΩA · RegA ·
∏
p|N cp

#A(Q)tor ·#A∨(Q)tor
.

17.4 The Conjecture for non-modular abelian varieties

Conjecture 17.3.1 can be extended to general abelian varieties over global fields.
Here we discuss only the case of a general abelian variety A over Q. We follow the
discussion in [Lan91, 95-94] (Lang, Number Theory III)5 , which describes Gross’s 5
formulation of the conjecture for abelian varieties over number fields, and to which
we refer the reader for more details.

For each prime number `, the `-adic Tate module associated to A is

Ta`(A) = lim←−
n

A(Q)[`n].

Since A(Q)[`n] ∼= (Z/`nZ)2 dim(A), we see that Ta`(A) is free of rank 2 dim(A) as a
Z`-module. Also, since the group structure on A is defined over Q, Ta`(A) comes
equipped with an action of Gal(Q/Q):

ρA,` : Gal(Q/Q)→ Aut(Ta`(A)) ≈ GL2d(Z`).

Suppose p is a prime and let ` 6= p be another prime. Fix any embedding
Q ↪→ Qp, and notice that restriction defines a homorphism r : Gal(Qp/Qp) →
Gal(Q/Q). Let Gp ⊂ Gal(Q/Q) be the image of r. The inertia group Ip ⊂ Gp is
the kernel of the natural surjective reduction map, and we have an exact sequence

0→ Ip → Gal(Qp/Qp)→ Gal(Fp/Fp)→ 0.

The Galois group Gal(Fp/Fp) is isomorphic to Ẑ with canonical generator x 7→ xp.
Lifting this generator, we obtain an element Frobp ∈ Gal(Qp/Qp), which is well-

defined up to an element of Ip. Viewed as an element of Gp ⊂ Gal(Q/Q), the
element Frobp is well-defined up Ip and our choice of embedding Q ↪→ Qp. One

5Remove paren.
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can show that this implies that Frobp ∈ Gal(Q/Q) is well-defined up to Ip and
conjugation by an element of Gal(Q/Q).

For a Gp-module M , let

M Ip = {x ∈M : σ(x) = x all σ ∈ Ip}.

Because Ip acts trivially on M Ip , the action of the element Frobp ∈ Gal(Q/Q)
on M Ip is well-defined up to conjugation (Ip acts trivially, so the “up to Ip”
obstruction vanishes). Thus the characteristic polynomial of Frobp on M Ip is well-
defined, which is why Lp(A, s) is well-defined. The local L-factor of L(A, s) at p
is

Lp(A, s) =
1

det
(
I − p−s Frob−1

p |HomZ`(Ta`(A),Z`)Ip
) .

Definition 17.4.1. L(A, s) =
∏
all p

Lp(A, s)

For all but finitely many primes Ta`(A)Ip = Ta`(A). For example, if A = Af is
attached to a newform f =

∑
anq

n of levelN and p - `·N , then Ta`(A)Ip = Ta`(A).
In this case, the Eichler-Shimura relation implies that Lp(A, s) equals

∏
Lp(fi, s),

where the fi =
∑
an,iq

n are the Galois conjugates of f and Lp(fi, s) = (1− ap,i ·
p−s + p1−2s)−1. The point is that Eichler-Shimura can be used to show that the

characteristic polynomial of Frobp is
∏dim(A)
i=1 (X2 − ap,iX + p1−2s).

Theorem 17.4.2. L(Af , s) =
∏d
i=1 L(fi, s).

17.5 Visibility of Shafarevich-Tate groups

Let K be a number field. Suppose

0→ A→ B → C → 0

is an exact sequence of abelian varieties over K. (Thus each of A, B, and C is a
complete group variety over K, whose group is automatically abelian.) Then there
is a corresponding long exact sequence of cohomology for the group Gal(Q/K):

0→ A(K)→ B(K)→ C(K)
δ−→ H1(K,A)→ H1(K,B)→ H1(K,C)→ · · ·

The study of the Mordell-Weil group C(K) = H0(K,C) is popular in arithmetic
geometry. For example, the Birch and Swinnerton-Dyer conjecture (BSD conjec-
ture), which is one of the million dollar Clay Math Problems, asserts that the
dimension of C(K)⊗Q equals the ordering vanishing of L(C, s) at s = 1.

The group H1(K,A) is also of interest in connection with the BSD conjecture,
because it contains the Shafarevich-Tate group

X(A) = X(A/K) = Ker

(
H1(K,A)→

⊕
v

H1(Kv, A)

)
⊂ H1(K,A),

where the sum is over all places v of K (e.g., when K = Q, the fields Kv are Qp

for all prime numbers p and Q∞ = R).
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The group A(K) is fundamentally different than H1(K,C). The Mordell-Weil
group A(K) is finitely generated, whereas the first Galois cohomology H1(K,C) is
far from being finitely generated—in fact, every element has finite order and there
are infinitely many elements of any given order.

This talk is about “dimension shifting”, i.e., relating information about H0(K,C)
to information about H1(K,A).

17.5.1 Definitions

Elements of H0(K,C) are simply points, i.e., elements of C(K), so they are rela-
tively easy to “visualize”. In contrast, elements of H1(K,A) are Galois cohomology
classes, i.e., equivalence classes of set-theoretic (continuous) maps f : Gal(Q/K)→
A(Q) such that f(στ) = f(σ) +σf(τ). Two maps are equivalent if their difference
is a map of the form σ 7→ σ(P )− P for some fixed P ∈ A(Q). From this point of
view H1 is more mysterious than H0.

There is an alternative way to view elements of H1(K,A). The WC group of A
is the group of isomorphism classes of principal homogeneous spaces for A, where
a principal homogeneous space is a variety X and a map A×X → X that satisfies
the same axioms as those for a simply transitive group action. Thus X is a twist as
variety of A, but X(K) = ∅, unless X ≈ A. Also, the nontrivial elements of X(A)
correspond to the classes in WC that have a Kv-rational point for all places v, but
no K-rational point.

Mazur introduced the following definition in order to help unify diverse con-
structions of principal homogeneous spaces:

Definition 17.5.1 (Visible). The visible subgroup of H1(K,A) in B is

VisB H1(K,A) = Ker(H1(K,A)→ H1(K,B))

= Coker(B(K)→ C(K)).

Remark 17.5.2. Note that VisB H1(K,A) does depend on the embedding of A
into B. For example, suppose B = B1 × A. Then there could be nonzero visible
elements if A is embedding into the first factor, but there will be no nonzero
visible elements if A is embedded into the second factor. Here we are using that
H1(K,B1 ×A) = H1(K,B1)⊕H1(K,A).

The connection with the WC group of A is as follows. Suppose

0→ A
f−→ B

g−→ C → 0

is an exact sequence of abelian varieties and that c ∈ H1(K,A) is visible in B.
Thus there exists x ∈ C(K) such that δ(x) = c, where δ : C(K) → H1(K,A) is
the connecting homomorphism. Then X = π−1(x) ⊂ B is a translate of A in B, so
the group law on B gives X the structure of principal homogeneous space for A,
and one can show that the class of X in the WC group of A corresponds to c.

Lemma 17.5.3. The group VisB H1(K,A) is finite.

Proof. Since VisB H1(K,A) is a homomorphic image of the finitely generated group
C(K), it is also finitely generated. On the other hand, it is a subgroup of H1(K,A),
so it is a torsion group. The lemma follows since a finitely generated torsion abelian
group is finite.
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17.5.2 Every element of H1(K,A) is visible somewhere

Proposition 17.5.4. Let c ∈ H1(K,A). Then there exists an abelian variety B =
Bc and an embedding A ↪→ B such that c is visible in B.

Proof. By definition of Galois cohomology, there is a finite extension L of K such
that resL(c) = 0. Thus c maps to 0 in H1(L,AL). By a slight generalization of the
Shapiro Lemma from group cohomology (which can be proved by dimension shift-
ing; see, e.g.,6 Atiyah-Wall in Cassels-Frohlich), there is a canonical isomorphism 6

H1(L,AL) ∼= H1(K,ResL/K(AL)) = H1(K,B),

where B = ResL/K(AL) is the Weil restriction of scalars of AL back down to K.
The restriction of scalars B is an abelian variety of dimension [L : K] · dimA that
is characterized by the existence of functorial isomorphisms

MorK(S,B) ∼= MorL(SL, AL),

for any K-scheme S, i.e., B(S) = AL(SL). In particular, setting S = A we find
that the identity map AL → AL corresponds to an injection A ↪→ B. Moreover,
c 7→ resL(c) = 0 ∈ H1(K,B).

Remark 17.5.5. The abelian variety B in Proposition 17.5.4 is a twist of a power
of A.

17.5.3 Visibility in the context of modularity

Usually we focus on visibility of elements in X(A). There are a number of other
results about visibility in various special cases, and large tables of examples in the
context of elliptic curves and modular abelian varieties. There are also interesting
modularity questions and conjectures in this context.

Motivated by the desire to understand the Birch and Swinnerton-Dyer conjecture
more explicitly, I developed7 (with significant input from Agashe, Cremona, Mazur, 7
and Merel) computational techniques for unconditionally constructing Shafarevich-
Tate groups of modular abelian varieties A ⊂ J0(N) (or J1(N)). For example, if
A ⊂ J0(389) is the 20-dimensional simple factor, then

Z/5Z× Z/5Z ⊂X(A),

as predicted by the Birch and Swinnerton-Dyer conjecture. See [CM00] for exam-
ples when dimA = 1. We will spend the rest of this section discussing the examples
of [AS05, AS02] in more detail.

Tables 17.5.1–17.5.4 illustrate the main computational results of [AS05]. These
tables were made by gathering data about certain arithmetic invariants of the
19608 abelian varieties Af of level ≤ 2333. Of these, exactly 10360 have satisfy
L(Af , 1) 6= 0, and for these with L(Af , 1) 6= 0, we compute a divisor and multiple
of the conjectural order of X(Af ). We find that there are at least 168 such that
the Birch and Swinnerton-Dyer Conjecture implies that X(Af ) is divisible by an

6Fix
7change.



17.5 Visibility of Shafarevich-Tate groups 163

odd prime, and we prove for 37 of these that the odd part of the conjectural order
of X(Af ) really divides #X(Af ) by constructing nontrivial elements of X(Af )
using visibility.

The meaning of the tables is as follows. The first column lists a level N and an
isogeny class, which uniquely specifies an abelian variety A = Af ⊂ J0(N). The
nth isogeny class is given by the nth letter of the alphabet. We will not discuss the
ordering further, except to note that usually, the dimension of A, which is given in
the second column, is enough to determine A. When L(A, 1) 6= 0, Conjecture 17.2.1
predicts that

#X(A)
?
=
L(A, 1)

ΩA
· #A(Q)tor ·#A∨(Q)tor∏

p|N cp
.

We view the quotient L(A, 1)/ΩA, which is a rational number, as a single quan-
tity. We can compute multiples and divisors of every quantity appearing in the
right hand side of this equation, and this yields columns three and four, which are
a divisor S` and a multiple Su of the conjectural order of X(A) (when Su = S`, we
put an equals sign in the Su column). Column five, which is labeled odd deg(ϕA),
contains the odd part of the degree of the polarization

ϕA : (A ↪→ J0(N) ∼= J0(N)∨ → A∨). (17.5.1)

The second set of columns, columns six and seven, contain an abelian variety
B = Bg ⊂ J0(N) such that #(A ∩ B) is divisible by an odd prime divisor of S`
and L(B, 1) = 0. When dim(B) = 1, we have verified that B is an elliptic curve
of rank 2. The eighth column A∩B contains the group structure of A∩B, where
e.g., [223022] is shorthand notation for (Z/2Z)2 ⊕ (Z/302Z)2. The final column,
labeled Vis, contains a divisor of the order of VisA+B(X(A)).

The following proposition explains the significance of the odd deg(ϕA) column.

Proposition 17.5.6. If p - deg(ϕA), then p - VisJ0(N)(H
1(Q, A)).

Proof. There exists a complementary morphism ϕ̂A, such that ϕA◦ϕ̂A = ϕ̂A◦ϕA =
[n], where n is the degree of ϕA. If c ∈ H1(Q, A) maps to 0 in H1(Q, J0(N)), then
it also maps to 0 under the following composition

H1(Q, A)→ H1(Q, J0(N))→ H1(Q, A∨)
ϕ̂A−−→ H1(Q, A).

Since this composition is [n], it follows that c ∈ H1(Q, A)[n], which proves the
proposition.

Remark 17.5.7. Since the degree of ϕA does not change if we extend scalars to
a number field K, the subgroup of H1(K,A) visible in J0(N)K , still has order
divisible only by primes that divide deg(ϕA).

The following theorem explains the significance of the B column, and how it was
used to deduce the Vis column.

Theorem 17.5.8. Suppose A and B are abelian subvarieties of an abelian vari-
ety C over Q and that A(Q) ∩ B(Q) is finite. Assume also that A(Q) is finite.
Let N be an integer divisible by the residue characteristics of primes of bad re-
duction for C (e.g., N could be the conductor of C). Suppose p is a prime such
that

p - 2 ·N ·#((A+B)/B)(Q)tor ·#B(Q)tor ·
∏
`

cA,` · cB,`,
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where cA,` = #ΦA,`(F`) is the Tamagawa number of A at ` (and similarly for B).
Suppose furthermore that B(Q)[p] ⊂ A(Q) as subgroups of C(Q). Then there is a
natural injection

B(Q)/pB(Q) ↪→ VisC(X(A)).

A complete proof of a generalization of this theorem can be found in [AS02].

Sketch of Proof. Without loss of generality, we may assume C = A + B. Our
hypotheses yield a diagram

0 // B[p] //

��

B
p //

��

B //

��

0

0 // A // C // B′ // 0,

where B′ = C/A. Taking Gal(Q/Q)-cohomology, we obtain the following diagram:

0 // B(Q)
p //

��

B(Q) //

��

B(Q)/pB(Q) //

��

0

0 // C(Q)/A(Q) // B′(Q) // VisC(H1(Q, A)) // 0.

The snake lemma and our hypothesis that p - #(C/B)(Q)tor imply that the right-
most vertical map is an injection

i : B(Q)/pB(Q) ↪→ VisC(H1(Q, A)), (17.5.2)

since C(A)/(A(Q) +B(Q)) is a sub-quotient of (C ′/B)(Q).
We show that the image of (17.5.2) lies in X(A) using a local analysis at each

prime, which we now sketch. At the archimedian prime, no work is needed since
p 6= 2. At non-archimedian primes `, one uses facts about Néron models (when ` =
p) and our hypothesis that p does not divide the Tamagawa numbers of B (when
` 6= p) to show that if x ∈ B(Q)/pB(Q), then the corresponding cohomology class
res`(i(x)) ∈ H1(Q`, A) splits over the maximal unramified extension. However,

H1(Qur
` /Q`, A) ∼= H1(F`/F`,ΦA,`(F`)),

and the right hand cohomology group has order cA,`, which is coprime to p.
Thus res`(i(x)) = 0, which completes the sketch of the proof.

17.5.4 Future directions

The data in Tables 17.5.1-17.5.4 could be investigated further.
It should be possible to replace the hypothesis that B[p] ⊂ A, with the weaker

hypothesis that B[m] ⊂ A, where m is a maximal ideal of the Hecke algebra T. For
example, this improvement would help one to show that 52 divides the order of the
Shafarevich-Tate group of 1041E. Note that for this example, we only know that
L(B, 1) = 0, not that B(Q) has positive rank (as predicted by Conjecture 17.1.5),
which is another obstruction.
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One can consider visibility at a higher level. For example, there are elements
of order 3 in the Shafarevich-Tate group of 551H that are not visible in J0(551),
but these elements are visible in J0(2 · 551), according to the computations in
[Ste04] (Studying the Birch and Swinnerton-Dyer Conjecture for Modular Abelian
Varieties Using MAGMA).8 8

Conjecture 17.5.9 (Stein). Suppose c ∈X(Af ), where Af ⊂ J0(N). Then there
exists M such that c is visible in J0(NM). In other words, every element of X(Af )
is “modular”.

17.6 Kolyvagin’s Euler system of Heegner points

In this section we will briefly sketch some of the key ideas behind Kolyvagin’s
proof of Theorem 17.1.9. We will follow [Rub89] very closely. Two other excellent
references are [Gro91] and [McC91]. Kolyvagin’s original papers9 on this theorem 9
are not so easy to read because they are all translations from Russian, but none
of the three papers cited above give a complete proof of his theorem.

We only sketch a proof of the following special case of Kolyvagin’s theorem.

Theorem 17.6.1. Suppose E is an elliptic curve over Q such that L(E, 1) 6= 0.
Then E(Q) is finite and X(E)[p] = 0 for almost all primes p.

The strategy of the proof is as follows. Applying Galois cohomology to the
multiplication by p sequence

0→ E[p]→ E
p−→ E → 0,

we obtain a short exact sequence

0→ E(Q)/pE(Q)→ H1(Q, E[p])→ H1(Q, E)[p]→ 0.

The inverse image of X(E)[p] in H1(Q, E[p]) is called the Selmer group of E at p,

and we will denote it by Sel(p)(E). We have an exact sequence

0→ E(Q)/pE(Q)→ Sel(p)(E)→X(E)[p]→ 0.

Because E(Q) is finitely generated, to prove Theorem 17.6.1 it suffices to prove

that Sel(p)(E) = 0 for all but finitely many primes p. We do this by using complex
multiplication elliptic curves to construct Galois cohomology classes with precise
local behavior.

It is usually easier to say something about the Galois cohomology of a module
over a local field than over Q, so we introduce some more notation to help formalize
this. For any prime p and place v we have a commutative diagram

0 // E(Q)/pE(Q) //

��

H1(Q, E[p]) //

resv

��

H1(Q, E)[p] //

resv

��

0

0 // E(Qv)/pE(Qv) // H1(Qv, E[p]) // H1(Qv, E)[p] // 0

8remove
9Add references.
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TABLE 17.5.1. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis

389E∗ 20 52 = 5 389A 1 [202] 52

433D∗ 16 72 = 7·111 433A 1 [142] 72

446F∗ 8 112 = 11·359353 446B 1 [112] 112

551H 18 32 = 169 NONE

563E∗ 31 132 = 13 563A 1 [262] 132

571D∗ 2 32 = 32 ·127 571B 1 [32] 32

655D∗ 13 34 = 32 ·9799079 655A 1 [362] 34

681B 1 32 = 3·125 681C 1 [32] −
707G∗ 15 132 = 13·800077 707A 1 [132] 132

709C∗ 30 112 = 11 709A 1 [222] 112

718F∗ 7 72 = 7·5371523 718B 1 [72] 72

767F 23 32 = 1 NONE

794G 12 112 = 11·34986189 794A 1 [112] −
817E 15 72 = 7·79 817A 1 [72] −
959D 24 32 = 583673 NONE
997H∗ 42 34 = 32 997B 1 [122] 32

997C 1 [242] 32

1001F 3 32 = 32 ·1269 1001C 1 [32] −
91A 1 [32] −

1001L 7 72 = 7·2029789 1001C 1 [72] −
1041E 4 52 = 52 ·13589 1041B 2 [52] −
1041J 13 54 = 53 ·21120929983 1041B 2 [54] −
1058D 1 52 = 5·483 1058C 1 [52] −
1061D 46 1512 = 151·10919 1061B 2 [223022] −
1070M 7 3·52 32 ·52 3·5·1720261 1070A 1 [152] −
1077J 15 34 = 32 ·1227767047943 1077A 1 [92] −
1091C 62 72 = 1 NONE
1094F∗ 13 112 = 112 ·172446773 1094A 1 [112] 112

1102K 4 32 = 32 ·31009 1102A 1 [32] −
1126F∗ 11 112 = 11·13990352759 1126A 1 [112] 112

1137C 14 34 = 32 ·64082807 1137A 1 [92] −
1141I 22 72 = 7·528921 1141A 1 [142] −
1147H 23 52 = 5·729 1147A 1 [102] −
1171D∗ 53 112 = 11·81 1171A 1 [442] 112

1246B 1 52 = 5·81 1246C 1 [52] −
1247D 32 32 = 32 ·2399 43A 1 [362] −
1283C 62 52 = 5·2419 NONE
1337E 33 32 = 71 NONE
1339G 30 32 = 5776049 NONE
1355E 28 3 32 32 ·2224523985405 NONE
1363F 25 312 = 31·34889 1363B 2 [22622] −
1429B 64 52 = 1 NONE
1443G 5 72 = 72 ·18525 1443C 1 [71141] −
1446N 7 32 = 3·17459029 1446A 1 [122] −
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TABLE 17.5.2. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis

1466H∗ 23 132 = 13·25631993723 1466B 1 [262] 132

1477C∗ 24 132 = 13·57037637 1477A 1 [132] 132

1481C 71 132 = 70825 NONE
1483D∗ 67 32 ·52 = 3·5 1483A 1 [602] 32 ·52

1513F 31 3 34 3·759709 NONE
1529D 36 52 = 535641763 NONE
1531D 73 3 32 3 1531A 1 [482] −
1534J 6 3 32 32 ·635931 1534B 1 [62] −
1551G 13 32 = 3·110659885 141A 1 [152] −
1559B 90 112 = 1 NONE
1567D 69 72 ·412 = 7·41 1567B 3 [4411482] −
1570J∗ 6 112 = 11·228651397 1570B 1 [112] 112

1577E 36 3 32 32 ·15 83A 1 [62] −
1589D 35 32 = 6005292627343 NONE
1591F∗ 35 312 = 31·2401 1591A 1 [312] 312

1594J 17 32 = 3·259338050025131 1594A 1 [122] −
1613D∗ 75 52 = 5·19 1613A 1 [202] 52

1615J 13 34 = 32 ·13317421 1615A 1 [91181] −
1621C∗ 70 172 = 17 1621A 1 [342] 172

1627C∗ 73 34 = 32 1627A 1 [362] 34

1631C 37 52 = 6354841131 NONE
1633D 27 36 ·72 = 35 ·7·31375 1633A 3 [64422] −
1634K 12 32 = 3·3311565989 817A 1 [32] −
1639G∗ 34 172 = 17·82355 1639B 1 [342] 172

1641J∗ 24 232 = 23·1491344147471 1641B 1 [232] 232

1642D∗ 14 72 = 7·123398360851 1642A 1 [72] 72

1662K 7 112 = 11·16610917393 1662A 1 [112] −
1664K 1 52 = 5·7 1664N 1 [52] −
1679C 45 112 = 6489 NONE
1689E 28 32 = 3·172707180029157365 563A 1 [32] −
1693C 72 13012 = 1301 1693A 3 [2426022] −
1717H∗ 34 132 = 13·345 1717B 1 [262] 132

1727E 39 32 = 118242943 NONE
1739F 43 6592 = 659·151291281 1739C 2 [2213182] −
1745K 33 52 = 5·1971380677489 1745D 1 [202] −
1751C 45 52 = 5·707 103A 2 [5052] −
1781D 44 32 = 61541 NONE
1793G∗ 36 232 = 23·8846589 1793B 1 [232] 232

1799D 44 52 = 201449 NONE
1811D 98 312 = 1 NONE
1829E 44 132 = 3595 NONE
1843F 40 32 = 8389 NONE
1847B 98 36 = 1 NONE
1871C 98 192 = 14699 NONE
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TABLE 17.5.3. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis

1877B 86 72 = 1 NONE
1887J 12 52 = 5·10825598693 1887A 1 [202] −
1891H 40 74 = 72 ·44082137 1891C 2 [421962] −
1907D∗ 90 72 = 7·165 1907A 1 [562] 72

1909D∗ 38 34 = 32 ·9317 1909A 1 [182] 34

1913B∗ 1 32 = 3·103 1913A 1 [32] 32

1913E 84 54 ·612 = 52 ·61·103 1913A 1 [102] −
1913C 2 [226102] −

1919D 52 232 = 675 NONE
1927E 45 32 34

52667 NONE
1933C 83 32 ·7 32 ·72 3·7 1933A 1 [422] 32

1943E 46 132 = 62931125 NONE

1945E∗ 34 32 = 3·571255479184807 389A 1 [32] 32

1957E∗ 37 72 ·112 = 7·11·3481 1957A 1 [222] 112

1957B 1 [142] 72

1979C 104 192 = 55 NONE
1991C 49 72 = 1634403663 NONE
1994D 26 3 32 32 ·46197281414642501 997B 1 [32] −
1997C 93 172 = 1 NONE
2001L 11 32 = 32 ·44513447 NONE
2006E 1 32 = 3·805 2006D 1 [32] −
2014L 12 32 = 32 ·126381129003 106A 1 [92] −
2021E 50 56 = 52 ·729 2021A 1 [1002] 54

2027C∗ 94 292 = 29 2027A 1 [582] 292

2029C 90 52 ·2692 = 5·269 2029A 2 [2226902] −
2031H∗ 36 112 = 11·1014875952355 2031C 1 [442] 112

2035K 16 112 = 11·218702421 2035C 1 [111221] −
2038F 25 5 52 52 ·92198576587 2038A 1 [202] −

1019B 1 [52] −
2039F 99 34 ·52 = 13741381043009 NONE
2041C 43 34 = 61889617 NONE
2045I 39 34 = 33 ·3123399893 2045C 1 [182] −

409A 13 [93701996792] −
2049D 31 32 = 29174705448000469937 NONE
2051D 45 72 = 7·674652424406369 2051A 1 [562] −
2059E 45 5·72 52 ·72 52 ·7·167359757 2059A 1 [702] −
2063C 106 132 = 8479 NONE
2071F 48 132 = 36348745 NONE
2099B 106 32 = 1 NONE
2101F 46 52 = 5·11521429 191A 2 [1552] −
2103E 37 32 ·112 = 32 ·11·874412923071571792611 2103B 1 [332] 112

2111B 112 2112 = 1 NONE
2113B 91 72 = 1 NONE
2117E∗ 45 192 = 19·1078389 2117A 1 [382] 192
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TABLE 17.5.4. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis

2119C 48 72 = 89746579 NONE
2127D 34 32 = 3·18740561792121901 709A 1 [32] −
2129B 102 32 = 1 NONE
2130Y 4 72 = 7·83927 2130B 1 [142] −
2131B 101 172 = 1 NONE
2134J 11 32 = 1710248025389 NONE
2146J 10 72 = 7·1672443 2146A 1 [72] −
2159E 57 132 = 31154538351 NONE

2159D 56 34 = 233801 NONE
2161C 98 232 = 1 NONE
2162H 14 3 32 3·6578391763 NONE
2171E 54 132 = 271 NONE

2173H 44 1992 = 199·3581 2173D 2 [3982] −
2173F 43 192 32 ·192 32 ·19·229341 2173A 1 [382] 192

2174F 31 52 = 5·21555702093188316107 NONE
2181E 27 72 = 7·7217996450474835 2181A 1 [282] −
2193K 17 32 = 3·15096035814223 129A 1 [212] −
2199C 36 72 = 72 ·13033437060276603 NONE
2213C 101 34 = 19 NONE
2215F 46 132 = 13·1182141633 2215A 1 [522] −
2224R 11 792 = 79 2224G 2 [792] −
2227E 51 112 = 259 NONE
2231D 60 472 = 91109 NONE
2239B 110 114 = 1 NONE

2251E∗ 99 372 = 37 2251A 1 [742] 372

2253C∗ 27 132 = 13·14987929400988647 2253A 1 [262] 132

2255J 23 72 = 15666366543129 NONE
2257H 46 36 ·292 = 33 ·29·175 2257A 1 [92] −

2257D 2 [221742] −
2264J 22 732 = 73 2264B 2 [1462] −
2265U 14 72 = 72 ·73023816368925 2265B 1 [72] −
2271I∗ 43 232 = 23·392918345997771783 2271C 1 [462] 232

2273C 105 72 = 72 NONE
2279D 61 132 = 96991 NONE
2279C 58 52 = 1777847 NONE
2285E 45 1512 = 151·138908751161 2285A 2 [223022] −
2287B 109 712 = 1 NONE
2291C 52 32 = 427943 NONE
2293C 96 4792 = 479 2293A 2 [229582] −
2294F 15 32 = 3·6289390462793 1147A 1 [32] −
2311B 110 52 = 1 NONE
2315I 51 32 = 3·4475437589723 463A 16 [134263127691692] −
2333C 101 833412 = 83341 2333A 4 [261666822] −
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Observe that

Sel(p)(E) =
⋂
v

res−1
v ( image E(Qv)).

For s ∈ Sel(p)(E), let sv denote the inverse image of resv(s) in E(Qv)/pE(Qv).
Our first proposition asserts that if we can construct a cohomology class with

certain properties, then that cohomology class forces Sel(p)(E) to be locally trivial.

Proposition 17.6.2. Suppose ` is a prime such that E(Q`)[p] ∼= Z/pZ and sup-
pose there is a cohomology class c` ∈ H1(Q, E)[p] such that resv(c`) 6= 0 if and

only if v = `. Then res`(Sel(p)(E)) = 0 ⊂ H1(Q`, E[p]).

Sketch of proof. Suppose s ∈ Sel(p)(E). Using the local Tate pairing we obtain, for
each v, a nondegenerate pairing

〈 , 〉v : E(Qv)/pE(Qv)×H1(Qv, E)[p]→ Z/pZ.

Unwinding the definitions, and using the fact that the sum of the local invariants
of an element of Br(Q) is trivial, we see that our hypothesis that all but one
restriction of c` is trivial implies that 〈s`, res`(c`)〉 = 0. Since res`(c`) 6= 0, this
implies that s` = 0.

Let τ ∈ Gal(Q/Q) denote a fixed choice of complex conjugation, which is defined
by fixing an embedding of Q into C. For any module M on which τ acts, let

M+ = {x ∈M : τ(x) = x} and M− = {x ∈M : τ(x) = −x}.

If E is defined by y2 = x3 + ax+ b and K = Q(
√
d), then the twist of E by K is

the elliptic curve dy2 = x3 + ax+ b.

Theorem 17.6.3. There exists infinitely many quadratic imaginary fields K in
which all primes dividing the conductor N of E split, and such that L′(EK , 1) 6= 0,
where EK is the twist of E over K.

Fix a K as in the theorem such that O∗K = {±1}, i.e., so that the discriminant D
of K is not −3 or −4.

Lemma 17.6.4. Suppose ` - pDN and Frob`(K(E[p])/Q) = [τ ]. Then ` is inert
in K, we have a` ≡ ` + 1 ≡ 0 (mod p), and the four groups E(Q`)[p], E(F`)[p],
E(K`)[p]

−, and E(F`2)[p]− are all cyclic of order p.

Proof. The first assertion is true because τ |K has order 2. The characteristic poly-
nomial of Frob`(K(E[p])/Q) on E[p] is x2 − a`x + `, and the characteristic poly-
nomial of τ on E[p] is x2− 1, which proves the second assertion. For the third, we
have

(Z/pZ)2 ∼= E(Q)[p] ∼= E(K`)[p] ∼= E(Q`)[p]⊕ E(K`)[p]
−,

and each summand on the right must be nonzero since τ 6= 1 on E[p].

For the rest of the argument, we assume that p is odd and does not divide the
order of the class group of K. We will now use the theory of complex multiplication
elliptic curves and class field theory to construct cohomology classes c` which we
will use in Proposition 17.6.2.
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Since every prime dividing the conductor N of E splits in K, there is an ideal
N of K such that OK/N ∼= Z/NZ. Fix such an ideal for the rest of the argument.
Let

N−1 = {x ∈ K : xN ⊂ OK}
be the inverse of N in the group of fractional ideals of OK . The pair

(C/OK , N−1/OK)

then defines a point on x ∈ X0(N). By complex multiplication theory, the point
x is defined over the Hilbert Class Field H of K, which is the maximal unram-
ified abelian extension of K. Also, class field theory implies that Gal(H/K) is
isomorphic to the ideal class group of K.

Let π : X0(N) → E be a (minimal) modular parametrization. Then yK =
TrH/K π(xH) ∈ E(K), and we call

y = yK − τ(yK) ∈ E(K)−

the Heegner point associated to K. Our hypotheses on K imply, by the theorem
of Gross and Zagier, that y has infinite order, a fact which will be crucial in our
construction of cohomology classes c`. If we were to choose a K such that y were
torsion (of order coprime to p), then our classes c` would be locally trivial, hence
give candidate elements of X(E) (see [Gro91, §11, pg. 254] and [McC91] for more
on this connection).

Suppose ` - N is inert in K (i.e., does not split). Let

O` = Z + `OK ,

which is the order of conductor ` in OK . Notice that OK/O` ∼= Z/`Z as groups.
Since K ⊂ C, it make sense to view O` as a lattice in C. The pair

(C/O`, (N ∩O`)−1/O`)

then defines a CM point x` ∈ X0(N). This point won’t be defined over the Hilbert
class field H, though, but instead over an abelian extension K[`] of K that is a
cyclic extension of H of degree ` + 1 totally ramified over H at ` and unramified
everywhere else. Let

y` = π(x`) ∈ E(K[`]).

Proposition 17.6.5. We have TrK[`]/H(y`) = a`yH , where yH = π(xH). Also,
for any prime λ of K[`] lying above `, we have

ỹ` = Frob`(ỹH),

as elements of E(F`2).

We will not prove this proposition, except to note that it follows from the explicit
descriptions of the action of Gal(Q/Q) on CM points on X0(N) and of the Hecke
correspondences.

We are almost ready to construct the cohomology classes c`. Suppose ` - pDN is
any prime such that Frob`(K(E[p])/Q) = [τ ]. By Lemma 17.6.4, [K[`] : H] = `+1
is divisible by p, so there is a unique extension H ′ of H of degree p contained in
K[`]. Let ϕ be a lift of Frob`(H/Q) to Gal(H ′/Q), and let

z′ = TrK[`]/H′(y` − ϕ(y`))−
a`
p

(yH − ϕ(yH)) ∈ E(H ′).
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Lemma 17.6.6. TrH′/H(z′) = 0.

Proof. Using properties of the trace and Proposition 17.6.5, we have

TrH′/H(z′) = TrK[`]/H(y`)− TrK[`]/H(ϕ(y`))− a`(yH)− a`ϕ(yH)

= a`yH − a`ϕ(yH)− a`(yH)− a`ϕ(yH)

= 0.

For the rest of the proof we only consider primes p such that

H1(Qunr
v /Qv, E(Qunr

v ))[p] = 0

for all v, where Qunr
v is the maximal unramified extension of Qv. (This only ex-

cludes finitely many primes, by [Milne, Arithmetic Duality Theorems, Prop. I.3.8].)

Proposition 17.6.7. There is an element c` ∈ H1(Q, E)[p] such that resv(c`) = 0
for all v 6= `, and res`(c`) 6= 0 if and only if y 6∈ pE(K`).

Proof. Recall that we assumed that p - [H : K]. Thus there is a unique extensionK ′

of K of degree p in K[`], which is totally ramified at ` and unramified everywhere
else, such that H ′ = HK ′. Let

z = TrH′/K′(z
′) ∈ E(K ′).

By Lemma 17.6.6, TrK′/K(z) = 0.
The extension Gal(K ′/K) is cyclic (since it has degree p), so it is generated by

a single element, say σ. The cohomology of a cyclic group is easy to understand
(see Atiyah-Wall10 ). In particular, we have a canonical isomorphism 10

H1(K ′/K,E(K ′)) ∼=
ker(TrK′/K : E(K ′)→ E(K))

(σ − 1)E(K ′)
.

Define c′` to be the element of H1(K ′/K,E(K ′)) that corresponds to z under this
isomorphism. A more careful analysis shows that c′` is the restriction of an element
c` in H1(Q, E)[p].

If v 6= ` then

resv(c`) ∈ H1(Qunr
v /Qv, E(Qunr

v ))[p] = 0,

as asserted. The assertion about res`(c`) is obtained with some work by reducing
modulo ` and applying Lemma 17.6.4 and Proposition 17.6.5.

Remark 17.6.8. McCallum has observed that c` is represented by the 1-cocycle

σ 7→ − (σ − 1)y`
`

,

where ((σ−1)y`)/` is the unique point P ∈ E(K[`]) such that `P = (σ−1)y`. (The
point P is unique because no nontrivial p-torsion on E is defined over E(K[`]).)

10expand
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Corollary 17.6.9. If y 6∈ pE(K`), then res`(Sel(p)(E)) = 0.

Proof. Combine Propositions 17.6.2 and 17.6.7.

If t ∈ H1(K,E[p]), denote by t̂ the image of t under restriction:

H1(K,E[p])→ Hom(Gal(Q/K(E[p])), E[p]). (17.6.1)

It is useful to consider t̂, since homomorphisms satisfy a local-to-global principle.
A homomorphism ϕ : Gal(Q/F )→M is 0 if and only if it is 0 when restricted to
Gal(Fλ/Fλ) for all primes λ of F (this fact follows from the Chebotarev density
theorem).

For the rest of the proof we now assume that p is large enough that there are no
Q-rational cyclic subgrups of E of order p, and H1(K(E[p])/K,E[p]) = 0. (That
we can do this follows from a theorem of Serre when E does not have CM, or CM
theory when E does have CM.)

Lemma 17.6.10. Suppose t ∈ H1(K,E[p])± and the image of t̂ is cyclic. Then
t = 0.

Proof. Since τ acts on t̂ by ±, the image of t̂ is rational over Q. Thus the image of
τ is trivial. The kernel of the restriction map (17.6.1) is also trivial by assumption,
so t = 0.

We are now ready to prove Theorem 17.6.1. Choose p large enough so that
y 6∈ pE(K), in addition to all other “sufficiently large” constraints that we put
on p above.

Fix s ∈ Sel(p)(E) and write ŝ for the restriction of s to a homomorphism
Gal(Q/K(E[p])) → E[p]. Our goal is to prove that s = 0. Write ŷ for the re-
striction to Gal(Q/K(E[p])) of the image of y under the injection

E(K)−/pE(K)− → H1(K,E[p])−. (17.6.2)

Fix a finite extension F of K(E[p]) that is Galois over Q, so that both homomor-
phism ŝ and ŷ factor through G = Gal(F/K(E[p])).

Suppose γ ∈ G, and use the Chebotarev Density Theorem to find a prime
` - pDN such that Frob`(F/Q) = [γτ ]. Then

Frob`(K(E[p])/Q) = [τ ],

and
Frob`(F/K(E[p])) = [γτ ]order(τ) = [(γτ)2].

By Lemma 17.6.10, s` = 0 implies that ŝ((γτ)2) = 0 for all γ ∈ G. Likewise,
y ∈ pE(K`) implies that ŷ((γτ)2) = 0 for all γ ∈ G. Since s ∈ H1(Q, E) we have
τ(ŝ) = ŝ and by (17.6.2) we have τ(ŷ) = −ŷ, so

ŝ((γτ)2) = ŝ(γ) + ŝ(τγτ) = (1 + τ)ŝ(γ) (17.6.3)

ŷ((γτ)2) = ŷ(γ) + ŷ(τγτ) = (1− τ)ŷ(γ). (17.6.4)

By Corollary 17.6.9, for every γ ∈ G, one of ŝ((γτ)2) or ŷ((γτ)2) is 0, so by (17.6.3)
and (17.6.4) at least one of the following holds:

ŝ(γ) ∈ E[p]−
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or

ŷ(γ) ∈ E[p]+.

Thus

G = ŝ−1(E[p]−)
⋃
ŷ−1(E[p]+).

Since a group cannot be the union of two proper subgroups, either ŝ(G) ⊂ E[p]−

or ŷ(G) ⊂ E[p]+. By Lemma 17.6.10, either s = 0 or y ∈ pE(K). But we assumed
that y 6∈ pE(K), so s = 0, as claimed.

17.6.1 A Heegner point when N = 11

Let E be the elliptic curve X0(11), which has conductor 11 and Weierstrass equa-
tion y2 + y = x3 − x2 − 10x − 20. The following uses a nonstandard MAGMA
package...

> E := EllipticCurve(CremonaDatabase(),"11A");

> E;

Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field

>

[]

> A := [-D : D in [1..20] | HeegnerHypothesis(E,-D)]; A;

[ -7, -8, -19 ]

> P := [* *]; for D in A do time p,q := HeegnerPoint(E,D); Append(~P,<p,q>); end for;

> P; // pairs the (heegner point, its trace to Q)

[* <(0.500000000000000000023668707008012648357 + 1.322875655532295292727422603610*i :

-2.0000000000000000043473199962953622702 + 5.291502622129181186268103643387*i : 1),

(11 : -61 : 1)>,

<(-2.99999999999999999717372417577 + 1.414213562373095051128215430668*i :

2.99999999999999999372415320819 + 4.242640687119285158529184817212*i : 1),

(-3/4 : 121/8 : 1)>,

<(-6.99999999999999999753082167926 + 8.71779788708134709829181547345*i :

37.000000000000000044867139452136100922 + 8.71779788708134710182445372185*i : 1),

(1161/16 : -33549/64 : 1)> *]

> P[1];

<(0.500000000000000000023668707008012648357 + 1.322875655532295292727422603610*i :

-2.0000000000000000043473199962953622702 + 5.291502622129181186268103643387*i : 1),

(11 : -61 : 1)>

> Sqrt(-7)/2;

2.64575131106459059050161575359*i

> Sqrt(-7)/2;

1.322875655532295295250807876795*i

> 2*Sqrt(-7);

5.291502622129181181003231507183*i

> // Thus ((1+sqrt(-7))/2 , -2+2*sqrt(-7)) is the Heegner point

> // corresponding to Q(sqrt(-7)).
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17.6.2 Kolyvagin’s Euler system for curves of rank at least 2
11 11

11Summary of my work to show nontriviality in some cases. Make sure to also mention work

of Rubin, Mazur, Howard, Weinstein, etc., in this section. One interesting idea might be to add
my whole book on BSD into this book...
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18
The Gorenstein Property for Hecke
Algebras

18.1 Mod ` representations associated to modular forms

Suppose f =
∑
anq

n is a newform of exact level N and weight 2 for the congruence
subgroup Γ0(N). Let E = Q(. . . , an, . . .) and let λ be a place of E lying over the
prime ` of Q. The action of Gal(Q/Q) on the `-adic Tate module of the associated
abelian variety Af gives rise to a representation

ρλ : Gal(Q/Q)→ GL2(Eλ)

that satisfies det(ρλ) = χ` and tr(ρλ(Frobp)) = ap for p - `N . Using the following
lemma, it is possible to reduce ρλ module λ.

Lemma 18.1.1. Let O be the ring of integers of Eλ. Then ρλ is equivalent to a
representation that takes values in GL2(O).

Proof. View GL2(Eλ) as the group of automorphisms of a 2-dimensional Eλ-vector
space V . A lattice L ⊂ V is a free O-module of rank 2 such that L ⊗ Eλ ∼= V .
It suffices to find an O-lattice L in V that is invariant under the action via ρλ
of Gal(Q/Q). For then the matrices of Gal(Q/Q) with respect to a basis of V
consisting of vectors from L will have coefficients in O. Choose any lattice L0 ⊂ V .
Since L0 is discrete and Gal(Q/Q) is compact, the set of lattices ρλ(g)L0 with
g ∈ Gal(Q/Q) is finite. Let L =

∑
ρλ(g)L0 be the sum of the finitely many

conjugates of L0; then L is Galois invariant. The sum is a lattice because it is
finitely generated and torsion free, and O is a principal ideal domain.

Choose an O as in the lemma, and tentatively write ρλ = ρλ mod λ:

Gal(Q/Q)

false ρλ &&NNNNNNNNNNN

ρλ // GL2(O)

��
GL2(O/λ)
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The drawback to this definition is that ρλ is not intrinsic; the definition depends
on making a choice of O. Instead we define ρλ to be the semisimplification of the
reduction of ρλ modulo λ. The semisimplification of a representation is the direct
sum of the Jordan-Hölder factors in a filtration of a vector space affording the
representation. We have det(ρλ) ≡ χ` (mod `), where χ` is the mod ` cyclotomic
character, and tr(ρλ(Frobp)) = ap mod λ. Thus the characteristic polynomials in
the semisimplification ρλ are independent of our choice of reduction of ρλ. The
following theorem implies that ρλ depends only on f and λ, and not on the choice
of the reduction.

Theorem 18.1.2 (Brauer-Nesbitt). Suppose ρ1, ρ2 : G → GL(V ) are two finite
dimensional semisimple representations of a group G over a finite field k. Assume
furthermore that for every g ∈ G the characteristic polynomial of ρ1(g) is the same
as the characteristic polynomial of ρ2(g). Then ρ1 and ρ2 are equivalent.

Proof. For a proof, see [CR62, §30, p. 215].

The Hecke operators Tn act as endomorphisms of S2(Γ0(N)). Let

T := Z[. . . , Tn, . . .] ⊂ End(S2(Γ0(N))),

and recall that T is a commutative ring; as a Z-module T has rank equal to
dimC S2(Γ0(N)). Let m be a maximal ideal of T and set k := T/m ≈ F`ν .

Proposition 18.1.3. There is a unique semisimple representation

ρm : Gal(Q/Q)→ GL2(k)

such that ρm is unramified outside `N and

tr(ρm(Frobp)) = Tp mod m

det(ρm(Frobp)) = p mod m.

Proof. It is enough to prove the assertion with T replaced by the subalgebra

T0 = Z[{. . . , Tn, . . . : (n,N) = 1}].

Indeed, the maximal ideal m of T pulls back to a maximal ideal m0 of T0, and
k0 = T0/m0 ⊂ k. Now

T0 ⊂ T0 ⊗Q =

t∏
i=1

Ei

with the Ei number fields. Let OEi be the ring of integers of Ei and let O =
∏
OEi .

By the going up theorem there is a maximal ideal λ ⊂
∏
OEi lying over m0:

λ
� � // ∏OEi // O/λ

m0
� � // T0

// k0

Using the above construction, we make a representation

ρλ : Gal(Q/Q)→ GL2(O/λ)
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that satisfies det(ρλ) ≡ χ` (mod λ) and tr(ρλ) = Tp (mod λ). Because of how
we have set things up, Tp plays the role of ap. Thus this representation has the
required properties, but it takes values in GL2(O/λ) instead of k0.

Since the characteristic polynomial of every ρλ(g) for g ∈ Gal(Q/Q) has coeffi-
cients in the subfield k0 ⊂ O/λ there is a model for ρλ over k0. This is a classical
result of I. Schur. Brauer groups of finite fields are trivial (see e.g., [Ser79, X.7,
Ex. a]), so the argument of [Ser77, §12.2] completes the proof of the proposition.

Alternatively, when the residue characteristic ` of k0 is odd, the following more
direct proof can be used. Complex conjugation acts through ρλ as a matrix with
distinct F`-rational eigenvalues; another well known theorem of Schur [Sch06, IX a]
(cf. [Wal85, Lemme I.1]) then implies that ρλ can be conjugated into a represen-
tation with values in GL(2, k0).

Let us look at this construction in another way. Write

T0 ⊗Q = E1 × · · · × Et

and recall that each number field Ei corresponds to a newform of level M | N ; one
can obtain Ei by adjoining the coefficients of some newform of level M | N to Q.
Likewise, the Jacobian J0(N) is isogenous to a product A1×· · ·×At. Consider one
of the factors, say E1, and to fix ideas suppose that it corresponds to a newform
of exact level N . Since Tate`A1 is free of rank 2 over E1 ⊗Q Q`, we obtain a
2-dimensional representation ρλ. Reducing mod λ and semisimplifying gives the
representation constructed in the above proposition. But it is also possible that
one of the fields Ei corresponds to a newform f of level M properly dividing N .
In this case, we repeat the whole construction with J0(M) to get a 2-dimensional
representation.

Consider one of the abelian varieties A1 as above, which we view as an abelian
subvariety of J0(N). Then T acts on A1; let T denote the image of T in EndA1.
Although T sits naturally in O1, which is the ring of integers of a field, T might not
be integrally closed. Consider the usual Z`-adic Tate module Tate`(A1) ≈ Z2 dimA1

` ,
where dimA1 = [E1 : Q]. In the 1940s Weil proved that T⊗ Z` acts faithfully on
the Tate module. By the theory of semilocal rings (see, e.g., [Eis95, Cor. 7.6]), we
have

T⊗ Z` =
∏
m|`

Tm,

where the product is over all maximal ideals of T of residue characteristic `. The
idempotents em, in this decomposition, decompose Tate` as a product

∏
m Tatem(A1).

It would be nice if Tate` were free of rank 2 over T⊗ Z` but this is not known to
be true in general, although it has been verified in many special cases. For this to
be true we must have that, for all m | `, that Tatem(A1) is free of rank 2 over Tm.

Next we put things in a finite context instead of a projective limit context. Let
J = J0(N), then by Albanese or Picard functoriality T ⊂ End J . Let m ⊂ T be a
maximal ideal. Let

J [m] = {t ∈ J(Q) : xt = 0 for all x ∈ m}.

Note that J [m] ⊂ J [`] where ` is the rational prime lying in m. Now J [`] is an F`
vector space of rank 2g where g is the genus of X0(N). Although it is true that
J [`] is a T/`-module, it is not convenient to work with T/` since it might not
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be a product of fields because of unpleasant ramification. It is more convenient to
work with J [m] since T/m is a field. Thus, via this optic, J [m] is a k[G]-module
where k = T/m and G = Gal(Q/Q). The naive hope is that J [m] is a model for
ρm, at least when ρm is irreducible. This does not quite work, but we do have the
following theorem.

Theorem 18.1.4. If ` - 2N then J [m] is a model for ρm.

18.2 The Gorenstein property

Consider the Hecke algebra

T := Z[. . . , Tn, . . .] ⊂ End J0(N),

and let m ⊂ T be a maximal ideal of residue characteristic `. We have constructed
a semisimple representation

ρm : Gal(Q/Q)→ GL2(T/m).

It is unramified outside `N , and for any prime p - `N we have

tr(ρm(Frobp)) = Tp mod m

det(ρm(Frobp)) = p mod m.

We will usually be interested in the case when ρm is irreducible. Let Tm =
lim←−T/miT denote the completion of T at m. Note that T ⊗Z Z` =

∏
m|` Tm.

Our goal is to prove that if m - 2N and ρm is irreducible, then Tm is Gorenstein.
Let O be a complete discrete valuation ring. Let T be a local O-algebra which as
a module is finite and free over O. Then T is a Gorenstein O-algebra if there is
an isomorphism of T -modules T

∼−→ HomO(T,O). Thus Tm is Gorenstein if there
is an isomorphism HomZ`(Tm,Z`) ≈ Tm of Tm-modules. Intuitively, this means
that Tm is “autodual”.

Theorem 18.2.1. Let J = J0(N) and let m be a maximal ideal of the Hecke
algebra. Assume that ρm is irreducible and that m - 2N . Then dimT/m J [m] = 2
and J [m], as a Galois module, is a 2-dimensional representation giving rise to ρm.

An easy argument shows that the theorem implies Tm is Gorenstein.
We first consider the structure of W = J [m]. Suppose the two dimensional

representation
ρm : Gal(Q/Q)→ AutT/m V

constructed before is irreducible. Consider the semisimplification W ß of W , thus
W ß is the direct sum of its Jordan-Hölder factors as a Gal(Q/Q)-module. Mazur
proved the following theorem.

Theorem 18.2.2. There is some integer t ≥ 0 so that

W ß ∼= V × · · · × V = V t.

If ρm is in fact absolutely irreducible then it is a result of Boston, Lenstra, and
Ribet [BpR91] that W ∼= V × · · · × V . A representation is absolutely irreducible if
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it is irreducible over the algebraic closure. It can be shown that if ` 6= 2 and ρm is
irreducible then ρm must be absolutely irreducible.

The construction of W is nice and gentle whereas the construction of V is ac-
complished via brute force.

Proof. (Mazur) We want to compare V with W . Let d = dimW . Let

W ∗ = HomT/m(W,T/m(1))

where T/m(1) = T/m⊗Z µ`. We need to show that

W ß ⊕W ∗ß ∼= V × · · · × V = V d

as representations of Gal(Q/Q). Note that each side is a semisimple module of
dimension 2d. To obtain the isomorphism we show that the two representations
have the same characteristic polynomials so they are isomorphic.

We want to show that the characteristic polynomial of Frobp is the same for
both W ß ⊕W ß and V × · · · × V . The characteristic polynomial of Frobp on V is
X2 − TpX + p = (X − r)(X − pr−1) where r lies in a suitable algebraic closure. It
follows that the characteristic polynomial of Frobp on V d is (x − r)d(x − pr−1)d.
On W the characteristic polynomial of Frobp is (X − α1) · · · (X − αd) where αi
is either r or pr−1. This is because Eichler-Shimura implies Frobp must satisfy
Frob2

p−Tp Frobp +p = 0. [[I don’t see this implication.]] On W ∗ the characteristic

polynomial of Frobp is (X − pα−1
1 ) · · · (X − pα−1

d ). [[This is somehow tied up with
the definition of W ∗ and I can’t quite understand it.]] Thus on W ⊕ W ∗, the
characteristic polynomial of Frobp is

d∏
i=1

(X − αi)(X − pα−1
i ) =

d∏
i=1

(X − r)(X − pr−1) = (X − r)d(X − pr−1)d.

Therefore the characteristic polynomial of Frobp on W ⊕W ∗ is the same as the
characteristic polynomial of Frobp on V × · · · × V . The point is that although the
αi could all a priori be r or pr−1, by adding in W ∗ everything pairs off correctly.
[[I don’t understand why we only have to check that the two representations agree
on Frobp. There are lots of other elements in Gal(Q/Q), right?]]

We next show that J [m] 6= 0. This does not follow from the theorem proved
above because it does not rule out the possibility that t = 0 and hence W ß ∼= 0.
Suppose J [m] = 0, then we will show that J [mi] = 0 for all i ≥ 1. We consider
the `-divisible group Jm = ∪iJ [mi]. To get a better feel for what is going on,
temporarily forget about m and just consider the Tate module corresponding to `.

It is standard to consider the Tate module

Tate` J = lim←− J [`i] ∼= Z2 dim J
` .

It is completely equivalent to consider

J` := ∪∞i=1J [`i]
∼−→ (Q`/Z`)

2 dim J .

Note that since Q`/Z` is not a ring the last isomorphism must be viewed as an iso-
morphism of abelian groups. In [Maz77] Mazur called Tate` J ∼= Hom(Q`/Z`, J`)
the covariant Tate module. Call

Tate∗` J := Hom(J`,Q`/Z`) ∼= HomZ`(Tate` J,Z`)
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the contravariant Tate module. [[Why are the last two isomorphic?]] The covariant
and contravariant Tate modules are related by a Weil pairing J [`i]× J [`i]→ µ`i .
Taking projective limits we obtain a pairing

〈·, ·〉 : Tate` J × Tate` J → Z`(1) = lim←−µ`i .

This gives a map

Tate` J → Hom(Tate` J,Z`(1)) = (Tate∗` J)(1)

where (Tate∗` J)(1) = (Tate∗` J)⊗ Z`(1). Z`(1) is a Z`-module where∑
ai`

i · ζ = ζ
∑
ai`

i

[[This should probably be said long ago.]] This pairing is not a pairing of T-
modules, since if t ∈ T then 〈tx, y〉 = 〈x, t∨y〉. It is more convenient to use an
adapted pairing defined as follows. Let w = wV ∈ End J0(N) be the Atkin-Lehner
involution so that t∨ = wtw. Define a new T-compatible pairing by [x, y] :=
〈x,wy〉. Then

[tx, y] = 〈tx, wy〉 = 〈x, t∨wy〉 = 〈x,wty〉 = [x, ty].

The pairing [·, ·] defines an isomorphism of T⊗ Z`-modules

Tate` J
∼−→ HomZ`(Tate` J,Z`(1)).

Since Z`(1) is a free module of rank 1 over Z` a suitable choice of basis gives an
isomorphism of T⊗ Z`-modules

(Tate∗` J)(1) ∼= HomZ`(Tate` J,Z`(1)) ∼= HomZ`(Tate` J,Z`) = Tate∗` J.

Thus Tate` J
∼−→ Tate∗` J .

Proof. (That J [m] 6= 0.) The point is that the contravariant Tate module Hom(J`,Q`/Z`)
is the Pontrjagin dual of T`. How does this relate to Tatem J? Since T ⊗ Z` ∼=∏

m|` Tm, Tate` J ∼=
∏

m|` Tatem J so we can define Tate∗m J := HomZ`(Tatem J,Z`).

Weil proved that Tatem J ∼= Tate∗mJ is nonzero. View Tate∗m J as being dual to
Jm in the sense of Pontrjagin duality and so (Tate∗m J)/(mTate∗m J) is dual to
J [m]. If J [m] = 0 then this quotient is 0, so Nakayama’s lemma would imply that
Tate∗m J = 0. This would contradicts Weil’s assertion. Therefore J [m] 6= 0.

18.3 Proof of the Gorenstein property

We are considering the situation with respect to J0(N) although we could consider
J1(N). Let T ⊂ End J0(N) be the Hecke algebra and let m ⊂ T be a maximal ideal.
Let ` be the characteristic of the residue class field T/m. Let Tm = lim←−T/miT.
Then T ⊗Z Z` =

∏
m|` Tm. [[I want to put a good reference for this Atiyah-

Macdonald like fact here.]] Each Tm acts on Tate` J0(N) so we obtain a product
decomposition

Tate` J0(N) =
∏
m|`

Tatem J0(N).

We have the following two facts:
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1. Tatem J0(N) 6= 0

2. Tate` J0(N) is T⊗ Z`-autodual and each Tatem J0(N) is Z`-autodual.

[[autoduality for which dual? I think it is the linear dual since this is used.]]
Let W = J [m], then the action of Gal(Q/Q) on W gives a representation of

Gal(Q/Q) over the field T/m. We compared W with a certain two dimensional
representation ρm : Gal(Q/Q) → V over T/m. Assume unless otherwise stated
that V is irreducible as a Gal(Q/Q)-module. Let Tate` = Tate` J0(N) and Tatem =
Tatem J0(N). A formal argument due to Mazur showed that

W ß ∼= V × · · · × V = V ⊕t.

We have not yet determined t but we would like to show that t = 1. The Pontrja-
gin dual of a module M is the module M∧ := Hom(M,Q/Z) where M is viewed
as an abelian group (if M is topological, only take those homomorphisms whose
kernel is compact). The linear dual of a module M over a ring R is the module
M∗ = HomR(M,R).

Exercise 18.3.1. Note that (Q`/Z`)
∧ = Z` and Z∧` = Q`/Z`.

Solution.. We can think of Q`/Z` as

{
−1∑

n=−k

an`
n : k > 0 and 0 ≤ ai < `}.

Let (bi) ∈ Z` so bi ∈ Z/`iZ and bi+1 ≡ bi (mod `i). Define a map Q`/Z` → Q/Z
by 1/`i 7→ bi/`

i. To check that this is well-defined it suffices to check that 1/`i

maps to the same place as ` · 1/`i+1. Now 1/`i 7→ bi/`
i and

` · 1/`i+1 7→ ` · bi+1/`
i+1 = bi+1/`

i.

So we just need to check that

bi+1/`
i ≡ bi/`i (mod Z).

This is just the assertion that (bi+1 − bi)/`
i ∈ Z which is true since bi+1 ≡ bi

(mod `i).

Proposition 18.3.2. Let the notation be as above, then t > 0.

Proof. The idea is to use Nakayama’s lemma to show that if t = 0 and hence
W = 0 then Tatem = 0 which is clearly false. But the relation between W and
Tatem is rather convoluted. In fact J [`∞] is the Pontrjagin dual of Tate∗` , that is,

J [`∞]∧ = Tate∗` = HomZ`(Tate`,Z`)

and
(Tate∗` )

∧ = Hom(Tate∗` ,Q`/Z`) = J [`∞].

[[First: Why are they dual? Second: Why are we homing into Q`/Z` instead of
Q/Z?]] Looking at the m-adic part shows that

J [m∞] = Hom(Tate∗m,Q`/Z`)
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and hence
J [m] = Hom(Tate∗m /mTate∗m,Z/`Z).

Thus if J [m] = 0 then Nakayama’s lemma implies Tate∗m = 0. By autoduality this
implies Tatem = 0.

We have two goals. The first is to show that t = 1, i.e., that J [m] is 2-dimensional
over T/m. The second is to prove that Tm is Gorenstein, i.e., that Tm

∼= HomZ`(Tm,Z`).
This is one of the main theorems in the subject. We are assuming throughout that
ρm is irreducible and ` - 2N . Loosely speaking the condition that ` 6 |2N means that
J [m] has good reduction at ` and that J [m] can be understood just by understand-
ing J [m] in characteristic `. We want to prove that Tm is Gorenstein because this
property plays an essential role in proving that Tm is a local complete intersection.

Example 18.3.3. Let

T = {(a, b, c, d) ∈ Z4
p : a ≡ b ≡ c ≡ d (mod p)}.

Then T is a local ring that is not Gorenstein.

For now we temporarily postpone the proof of the first goal and instead show
that the first goal implies the second.

Theorem 18.3.4. Suppose J [m] is two dimensional over T/m (thus t = 1). Then
Tm is Gorenstein.

Proof. We have seen before that

J [m] = HomZ/`Z(Tate∗m /mTate∗m,Z/`Z)

= HomT/m(Tate∗m /mTate∗m,T/m).

Thus the dual of Tate∗m /mTate∗m is two dimensional over T/m and hence Tate∗m /mTate∗m
itself is two dimensional over T/m. By Nakayama’s lemma and autoduality of
Tatem this implies Tatem is generated by 2 elements over Tm. There is a surjection

Tm ×Tm →→ Tatem .

In fact it is true that rankZ` Tatem = 2 rankZ` Tm. We temporarily postpone the
proof of this claim. Assuming this claim and using that a surjection between Z`-
modules of the same rank is an isomorphism implies that Tatem ∼= Tm × Tm.
Now Tm is a direct summand of the free Z` module Tatem so Tm is projective. A
projective module over a local ring is free. Thus Tm is free of rank 1 and hence
autodual (Gorenstein). [[This argument is an alternative to Mazur’s – it seems too
easy... maybe I am missing something.]]

We return to the claim that

rankZ` Tatem = 2 rankZ` Tm.

This is equivalent to the assertion that

dimQ`
Tatem⊗Z`Q` = 2 dimQ`

Tm ⊗Z` Q`.

The module Tate` J0(N) is the projective limit of the `-power torsion on the Ja-
cobian

J(C) =
HomC(S2(Γ0(N),C),C)

H1(X0(N),Z)
.
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Let L = H1(X0(N),Z) be the lattice. Then L is a T-module and Tate` = L⊗Z Z`
(since L/`iL ∼= ( 1

`iL)/L). Tensoring with R gives

L⊗Z R = HomC(S2(Γ0(N),C),C)

= HomR(S2(Γ0(N),R),C)

= HomR(S2(Γ0(N),R),R)⊗R C = (T⊗Z R)⊗R C

Thus L⊗ZR is free of rank 2 over T⊗ZR and L⊗ZC is free of rank 2 over T⊗ZC.
Next choose an embedding Q` ↪→ C. Now Tate` is a module over T⊗Z` =

∏
m|` Tm

so we have a decomposition Tate` =
∏

m|` Tatem. Since

Tate`⊗Z`Q` =
∏
m

Tatem⊗Z`Q`

we can tensor with C to see that

Tate`⊗Z`C =
∏
m

Tatem⊗Z`C.

But Tate`⊗Z`C = L ⊗Z C is free of rank 2 over T ⊗ C. Therefore the product∏
m Tatem⊗Z`C is free of rank 2 over T⊗C. Since

T⊗C = (T⊗Z Z`)⊗Z` C =
∏
m

(Tm ⊗Z` C)

we conclude that for each m, Tatem⊗Z`C is free of rank 2 over Tm ⊗Z` C. This
implies

dimC Tatem⊗Z`C = 2 dimC Tm ⊗Z` C

which completes the proof.

18.3.1 Vague comments

Ogus commented that this same proof shows that T⊗Z C is Gorenstein. Then he
said that something called “faithfully flat descent” could then show that T⊗Z Q
is Gorenstein.

We have given the classical argument of Mazur that Tm is Gorenstein, but we
still haven’t shown that J [m] has dimension 2. This will be accomplished next time
using Dieudonné modules.

18.4 Finite flat group schemes

Let S be a scheme. Then a group scheme over S is a group object in the category
of S-schemes. Thus a group scheme over S is a scheme G/S equipped with S-
morphisms m : G×G→ G, inv : G→ G and a section 1G : S → G satisfying the
usual group axioms.

Suppose G is a group scheme over the finite field Fq. If R is an Fq-algebra then
G(R) = Mor(SpecR,G) is a group. It is the group of R-valued points of G.

We consider several standard examples of group schemes.
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Example 18.4.1. The multiplicative group scheme Gm is Gm = Spec Z[x, 1
x ] with

morphisms. [[give maps, etc.]] The additive group scheme is Spec Z[x]...

Example 18.4.2. The group scheme µp is the kernel of the morphism Gm → Gm
induced by x 7→ xp. Thus µp = Spec Z[x]/(xp − 1) and so for any Fq-algebra R
we have that µp(R) = {r ∈ R : rp = 1}. The group scheme αp is the kernel of the
morphism Ga → Ga induced by [[what!! what is alphap?? it should be the additive
group scheme of order p, no?]].

Let A be a finite algebra over Fp and suppose G = SpecA affine group scheme
(over Fp). Then the order of G is defined to be the dimension of A as an Fp vector
space.

Example 18.4.3. Let E/Fp be an elliptic curve. Then G = E[p] is a group scheme
of order p2 [[why is this true?]]. This is wonderful because this is the order that
E[p] should have in analogy with the characteristic 0 situation. When we just look
at points we have

#G(Fp) =

{
1 supersingular

p ordinary
.

18.5 Reformulation of V = W problem

Let J = J0(N) be the Jacobian of X0(N). Then J is defined over Q and has
good reduction at all primes not dividing N . Assume ` is a prime not dividing N .
J [`] extends to a finite flat group scheme over Z[ 1

N ]. This is a nontrivial result of
Grothendieck (SGA 7I, LNM 288). Since ` - N , J [`] gives rise to a group scheme
over F`.

We have “forcefully” constructed a Galois representation ρm : G → V of di-
mension 2 over T/m. Our goal is to show that this is isomorphic to the naturally
defined Galois representation W = J [m]. So far we know that

0 ⊂ V ⊂W ⊂ J [`].

Our assumptions are that ` - N , V is irreducible, and ` 6= 2.
Let J be J thought of as a scheme over Z`. Grothendieck showed that J is the

spectrum of a free finite Z`-module. Raynaud (1974) showed that if ` 6= 2 then
essentially everything about J [`] can be seen in terms of J [`](Q`). He goes on to
construct group scheme V and W over Z` such that

V ⊂W ⊂ J [`].

Our goal is to prove that the inclusion V ↪→ W of Galois modules is an iso-
morphism. Raynaud showed noted that the category of finite flat group schemes
over Z` is an abelian category so the cokernel Q = W/V is defined. Furthermore,
V = W if and only if Q = 0. Since Q is flat Q

F`
has the same dimension over F`

as Q
Q`

has over Q`. Passing to characteristic ` yields an exact sequence

0→ V F`
→WF`

→ Q
F`
→ 0.

Thus V ↪→ W is an isomorphism if and only if V F`
↪→ WF`

is an isomorphism.
Since V , W , and Q have an action of k = T/m that are k-vector space schemes.
This leads us to Dieudonné theory.
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18.6 Dieudonné theory

Let G/k be a finite k-vector space scheme where k is a finite field of order q.
Suppose G has order qn so G is locally the spectrum of a rank n algebra over k.
The Dieudonné functor contravariantly associates to G an n dimensional k-vector
space D(G). Let Frob : G → G be the morphism induced by the pth power map
on the underlying rings and let Ver be the dual of Frob. Let ϕ = D(Frob) and
ν = D(Ver), then it is a property of the functor D that ϕ ◦ ν = ν ◦ ϕ = 0. The
functor D is a fully faithful functor.

Example 18.6.1. Let k = Fp. If G is either µp, αp, or Z/pZ then D(G) is a one-
dimensional vector space over k. In the case of αp, ϕ = ν = 0. For µp, ϕ = 0 and
ν 6= 1 and for Z/pZ, ϕ 6= 1 and ν = 0. [[The latter two could be reversed!]]

Let G∨ = Hom(G,µp) denote the Cartier dual of the scheme G. Then

D(G∨) = Homk(D(G), k)

(ϕ and ν are switched.)

Example 18.6.2. Let A/F` be an abelian variety and let G = A[`]. Then G is
an F`-vector space scheme of order `2g. Thus D(G) is a 2g-dimensional F`-vector
space and furthermore D(G) = H1

DR(A/F`). The Hodge filtration on H1
DR of the

abelian variety A gives rise to a diagram

Hom(H0(A∨,Ω1),F`) Tan(A∨)

H0(A,Ω1)
� � // D(G) // H1

DR(A/F`) // // H1(A,O)

D(A[`]) // // D(A[Ver])

There is an exact sequence

0→WF` → JF` [`]
m−→ JF` [`]

so because D is an exact functor the sequence

D(JF` [`])
m−→ D(JF` [`])→ D(WF`)→ 0

is exact. Following Fontaine we consider

D(WF` [Ver]) = H1(J,O)/mH1(J,O).

18.7 The proof: part II

[[We all just returned from the Washington D.C. conference and will now resume
the proof.]]

Let J0(N) be the Jacobian of X0(N). Let m ⊂ T be a maximal ideal and
suppose m|`. Assume that ` 6= 2 and ` - N . The assumption that ` 6= 2 is necessary
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for Raynaud’s theory and we assume that ` - N so that our group schemes will
have good reduction. We attach to m a 2 dimensional semisimple representation
ρm : Gal(Q/Q)→ V and only consider the case that ρm is irreducible.

The m-torsion of the Jacobian, W = J0(Q)[m], is naturally a Galois module. We
have shown that W 6= 0. By [BpR91] W ∼= V × · · · × V (the number of fractions
is not determined). We proved that W s.s. ∼= V × · · · × V . Choose an inclusion
V ↪→W and let Q = W/V be the cokernel.

Theorem 18.7.1. Q = 0 so dimT/mW = 2

To prove the theorem we introduce the “machine” of finite flat group schemes
over Z`. For example, W extends to a finite flat group scheme WZ` which is defined
to be the Zariski closure of W in JZ` [`]. Passing to group schemes yields an exact
sequence

0→ VZ` →WZ` → QZ` → 0.

Reducing mod ` then yields an exact sequence of F`-group schemes

0→ VF` →WF` → QF` → 0.

The point is that Q = 0 if and only if QZ` = 0 if and only if QF` = 0.
Next we introduced the exact contravariant Dieudonné functor

D : ( Groups Schemes /F` ) −→ ( Linear Algebra ).

D sends a group scheme G to a T/m vector space equipped with two endomor-
phisms ϕ = Frob and ν = Ver. Applying D gives an exact sequence of T/m-vector
spaces

0→ D(Q)→ D(W )→ D(V )→ 0

where everything is now viewed over F`.

Lemma 18.7.2. D(W [Ver]) = (H0(X0(N)F` ,Ω
1)[m])∗

Proof. We have the diagram

D(JF` [`]) = H1
DR(JF`)

↓ ↓
D(JF` [Ver]) = H1(JF` ,OJF` )

↓ ↓
D(W [Ver]) = H1(JF` ,OJ)/mH1(JF` ,OJ)

Furthermore we have the identifications

H1(JF` ,OJ) = Tan(J∨F`) = Cot(J∨F`)
∗

= H0(J∨,Ω1)∗ = H0(X0(N),Ω1)∗

For the last identification we must have J∨ = Alb(X0(N)). Finally

D(W [Ver]) = H1(J,OJ)/mH1(J,OJ)

= (H0(X0(N)F` ,Ω
1)[m])∗.
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Lemma 18.7.3. H0(X0(N)F` ,Ω
1)[m] has T/m dimension ≤ 1.

Proof. Let S = H0(X0(N)F` ,Ω
1)[m]. Then S ↪→ F`[[q]]. We defined the Hecke

operators Tn on S via the identification S ∼= H1(J,OJ) so that they act on S ⊂
F`[[q]] in the standard way. Let T(S) be the subalgebra of End(S) generated by
the images of the Tn in End(S). (T(S) is not a subring of T.) There is a perfect
pairing

T(S)× S −→ F`

(T, f) 7→ a1(f |T )

Thus dimF` T(S) = dimF` S and so dimT(S) S ≤ 1. Since m acts trivially on S
there is a surjection T/m→→ T(S). Thus

dimT/m S ≤ dimT(S) S ≤ 1

as desired.

An application of the above lemma shows that D(W [Ver]) has T/m dimension
≤ 1.

Lemma 18.7.4. D(W [Ver]) ∼= D(V [Ver])

Proof. Consider the following diagram.

0

��

0

��

0

��
0 // D(Q) //

Ver��

D(W ) //

Ver��

D(V ) //

Ver��

0

0 // D(Q) //

��

D(W ) //

��

D(V ) //

��

0

0 // D(Q)/VerD(Q)

��

// D(W )/VerD(W )

��

?∼=? // D(V )/VerD(V ) //

��

0

0 0 0

D(V ) has dimension 2 so since Ver ◦Frob = Frob ◦Ver = 0 and Ver, Frob are
both nonzero they must each have rank 1 (in the sense of undergraduate lin-
ear algebra). Since D is exact, D(V [Ver]) = D(V )/VerD(V ) and D(W [Ver]) =
D(W )/VerD(W ). By the previous lemma dimD(W )/VerD(W ) = 1. ThusD(W )/VerD(W )→
D(V )/VerD(V ) is a map of 1 dimensional vector spaces so to show that it is an
isomorphism we just need to show that it is surjective. This follows from the com-
mutativity of the square

D(W ) //

��

D(V ) //

��

0

D(W )/VerD(W ) // D(V )/VerD(V )

��
0
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Suppose for the moment that we admit [BpR91]. Then

W = V × · · · × V = V ⊕t

so
D(W [Ver]) ∼= D(V [Ver])⊕t

and hence t = 1.
Alternatively we can avoid the use of [BpR91]. Suppose Q 6= 0. Then there is

an injection V ↪→ Q. [[I can’t see this without using B-L-R. It isn’t obvious to me
from 0 → V → W → Q → 0.]] Thus over F`, V [Ver] ↪→ Q[Ver]. Since V [Ver] 6= 0
this implies Q[Ver] 6= 0. Thus D(Q)/VerD(Q) = D(Q[Ver]) 6= 0. But the bottom
row of the above diagram implies D(Q)/VerD(Q) = 0 so Q = 0.

18.8 Key result of Boston-Lenstra-Ribet

Let G be a group (i.e., G = Gal(Q/Q)), let k be a field (i.e., k = T/m), and let V
be a two dimensional k-representation of G given by

ρ : k[G]→ Endk(V ) = M2(k).

The key hypothesis is that V is absolutely irreducible, i.e., that ρ is surjective. For
each g ∈ G consider

pg = g2 − g tr ρ(g) + det ρ(g) ∈ k[G].

By the Cayley-Hamilton theorem ρ(pg) = 0. Let J be the two-sided ideal of k[G]
generated by all pg such that g ∈ G. Since J ⊂ ker ρ , ρ induces a map

σ : k[G]/J → Endk(V ).

Theorem 18.8.1 (Boston-Lenstra-Ribet). If σ is surjective then σ is an isomor-
phism.

In particular if V is absolutely irreducible then σ is surjective. The theorem can
be false when dimV > 2.

Suppose W is a second representation of G given by µ : k[G] → End(W ) and
that µ(J) = {0} ⊂ End(W ). Then W is a module over k[G]/J = End(V ). But
End(V ) is a semisimple ring so any End(V ) module is a direct sum of simple
End(V ) modules. The only simple End(V ) module is V . Thus W ∼= V ⊕

n

for some
n.
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Local Properties of ρλ

Let f be a newform of weight 2 on Γ0(N). To f we have associated an abelian
variety A = Af furnished with an action of E = Q(. . . , an(f), . . .). Let OE be the
ring of integers of E and λ ⊂ OE a prime. Then we obtain a λ-adic representation

ρλ : Gal(Q/Q)→ GL2(Eλ)

on the Tate module Tate`A = lim←−A[λi]. We will study the local properties of ρλ
at various primes p.

19.1 Definitions

To view ρλ locally at p we restrict to the decomposition group Dp = Gal(Q/Q)
at p. Recall the definition of Dp. Let K be a finite extension of Q and let w be a
prime of K lying over p. Then the decomposition group at w is defined to be

Dw = {σ ∈ Gal(K/Q) : σw = w}.

Proposition 19.1.1. Dw
∼= Gal(Kw/Qp)

Proof. Define a map Gal(Kw/Qp) → Dw by σ 7→ σ|K . Since σ|K fixes Q this
restriction is an element of Gal(K/Q). Since wOKw is the unique maximal ideal of
OKw and σ induces an automorphism of OKw , it follows that σ(wOKw) = wOKw .
Thus σ|K(w) = w so σ|K ∈ Dw. The map σ 7→ σ|K is bijective because K is dense
in Kw.

Let
Dp = lim←−

w|p
Dw = lim←−

w|p
Gal(Kw/Qp) = Gal(Qp/Qp).

For each w|p let the inertia group Iw be the kernel of the map from Dw into
Gal(OK/w,Z/pZ). Let Ip = lim←−w|p Iw.
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19.2 Local properties at primes p - N
Next we study local properties of ρλ at primes p - N . Thus suppose p - N and
p 6= ` = char(OE/λ). Let Dp = Gal(Qp/Qp). Then

1) ρλ|Dp is unramified (i.e., ρλ(Ip) = {1}) thus ρλ|Dp factors through Dp/Ip
so ρλ(Frobp) is defined.

2) tr(ρλ(Frobp)) = ap(f)

2+) We can describe ρλ|Dp up to isomorphism. It is the unique semisimple rep-
resentation satisfying 1) and 2).

19.3 Weil-Deligne Groups

Notice that everything is sort of independent of λ. Using Weil-Deligne groups we
can summarize all of these λ-adic representations in terms of data which makes λ
disappear.

We have an exact sequence

1→ Ip → Gal(Qp/Qp)→ Gal(Fp/Fp)→ 0.

Since Gal(Fp/Fp) = Ẑ there is an injection Z ↪→ Gal(Fp/Fp). Define the Weil
group W (Qp/Qp) ⊂ Gal(Qp/Qp) to be the set of elements of Gal(Qp/Qp) map-

ping to Z ⊂ Gal(Fp/Fp). W fits into the exact sequence

1→ Ip →W (Qp/Qp)→ Z→ 1.

There is a standard way in which the newform f gives rise to a representation
of W . Factor the polynomial x2 − ap(f)x + p as a product (x − r)(x − r′) with
r, r′ ∈ C. Define maps α, β by

α : Z→ C∗ : 1 7→ r

β : Z→ C∗ : 1 7→ r′

Combining α and β and the map W (Qp/Qp)→ Z yields a map

α⊕ β : W (Qp/Qp)→ GL2(C)

σ 7→
(α(σ) 0

0 β(σ)

)
.

Moreover α ⊕ β gives rise via some construction to all the λ-adic representations
ρλ.

19.4 Local properties at primes p | N
Suppose p|N but p 6= `. Carayol was able to generalize 1) in his thesis which builds
upon the work of Langlands and Deligne in the direction of Deligne-Rapaport and
Katz-Mazur. The idea is that the abelian variety A has a conductor which is a
positive integer divisible by those primes of bad reduction. The conductor of A
satisfies cond(A) = Mg where g = dimA and M is the reduced conductor of A.
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Theorem 19.4.1 (Carayol). M = N .

How can we generalize 2) or 2+)? For each p dividing N there is a representation
σp of WD(Qp/Qp) over C such that σp gives rise to ρλ|Dp for all λ - p. Here

WD(Qp/Qp) is the Weil-Deligne group which is Deligne’s generalization of the

Weil group. WD(Qp/Qp) is an extension of W (Qp/Qp). What is σp supposed to
be? The point is that σp is determined by f . Thus every f gives rise to a family
(σp)p prime. To really think about σp we must think about modular forms in an
adelic context instead of viewing them as holomorphic functions on the complex
upper halfplane.

If p2|N and f =
∑
anq

n is a newform of level p2 then it is a classical fact that
ap = 0. But the study of ρλ|Dp is rich and “corresponds to a rather innocuous
looking crystal”.

19.5 Definition of the reduced conductor

We now define the reduced conductor. Let λ be a prime of E and p a prime of Q
such that λ - p. We want to define some integer e(p) so that pe(p) is the p-part of
the reduced conductor. We will not define e(p) but what we will do is define an
integer e(p, λ) which is the p part of the conductor. e(p, λ) is independent of λ but
this will not be proved here.

Consider
ρλ|Dp : Gal(Qp/Qp)→ AutEλ V.

Let V I ⊂ V be the inertia invariants of V , i.e.,

V I = {v ∈ V : ρλ(σ)(v) = v for all σ ∈ I}.

Since ρλ is unramified at p if and only if ρλ(Ip) = {1} we comment that ρλ is
unramified at p if and only if V I = V . Let

e(p, λ) = dimV/V I + δ(p, λ)

where δ(p, λ) is the Swan conductor. By working with finite representations we
define δ(p, λ) as follows. Choose a Dp-stable lattice L in V by first choosing an
arbitrary one then taking the sum of its finitely many conjugates. Let V = L/λL
which is a 2 dimensional vector space over k = OE/λ. Let G be the quotient
of Gal(Qp/Qp) by the kernel of the map Gal(Qp/Qp) → AutK V . Thus G =
Gal(K/Qp) for some finite extension K/Qp. The extension K is finite over Qp

since G ⊂ Autk V and Autk V is a 2 × 2 matrix ring over a finite field. The
corresponding diagram is

Gal(Qp/Qp) //

((QQQQQQQQQQQQ
Autk V

G = Gal(K/Qp)

OO

Consider in G the sequence of “higher ramification groups”

G = G−1 ⊃ G0 ⊃ G1 ⊃ · · · .
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Here G0 is the inertia group of K/Qp and G1 is the p-sylow subgroup of G0

[[the usages of “the” in this sentence makes me nervous.]] Let Gi = {g ∈ G0 :
ord(gπ − π) ≥ i + 1} where π is some kind of uniformizing parameter [[I missed
this – what is π?]] Let

δ(p, λ) =

∞∑
i=1

1

(G0 : Gi)
dim(V /V

Gi
).

It is a theorem that δ(p, λ) is an integer and does not depend on λ.
If to start with we only had V and not V we could define

cond(V ) =

∞∑
i=0

1

(G0 : Gi)
dim(V /V

Gi
).

Then
e(p, λ) = cond(V ) + (dimV

I − dimV I).

A reference for much of this material is Serre’s Local Factors of L-functions of
λ-adic Representations.
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Adelic Representations

Our goal is to study local properties of the λ-adic representations ρλ arising from a
weight 2 newform of level N on Γ0(N). There is a theorem of Carayol which states
roughly that if p 6= ` then ρλ|Dp is predictable from “the component at p of f”. To
understand this theorem we must understand what is meant by “the component
at p of f”. If p2 - N this component is easy to determine but if p2|N it is harder.
One reason is that when p2|N then ap(f) = 0. [[this should be easy to see so there
should be an argument here.]] If ap(f) = 0 and ρλ : Gal(Q/Q) → Aut(Vλ) then

V
Ip
λ = 0. This means that there is no ramification going on at p. See Casselman,

“On representations of GL(2) and the arithmetic of modular curves”, Antwerp II.

20.1 Adelic representations associated to modular forms

Let R be a subring of A2 = R2 × (Ẑ ⊗Z Q)2, suppose that R ∼= Q2 and that

R ⊗Q A ∼= A2. Let L = R ∩ (R2 × Ẑ2). Then the natural map L ⊗ Ẑ → Z2 is
an isomorphism. [[Is the isomorphism implied by the definition of L or is it part
of the requirement for L to actually form an adelic lattice?]] L is called an adelic
lattice.

The space of modular forms S2(Γ0(N)) is isomorphic to a certain space of func-
tions on G(A) = GL(2,A). See Borel-Jacquet [[Corvallis?]] or Diamond-Taylor,
Inventiones Mathematica, 115 (1994) [[what is title?]] We will describe this iso-
morphism.

Write A = R × Af = A∞ × A∞ where Af =
∏

Qp (restricted product) is
the ring of finite adeles. A∞ denotes the adeles with respect to the place ∞ so
A∞ = R, and A∞ denotes the adeles away from the place ∞ so A∞ = Af .
S2(Γ0(N)) is isomorphic to the set of functions ϕ : G(A)→ C which satisfy

0) ϕ is left invariant by G(Q), i.e., ϕ(x) = ϕ(gx) for all g ∈ G(Q) and all
x ∈ G(A),
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1) ϕ(xu∞) = ϕ(x) for all x ∈ G(A) and all u∞ ∈ U∞,

2) ϕ(xu∞) = ϕ(x)j(u∞, i)
−k det(u∞) for all x ∈ G(A) and u∞ ∈ U∞,

3) holomorphy, cuspidal, and growth conditions.

U∞ is the adelic version of Γ0(N). Thus U∞ is the compact open subgroup

U∞ = {
(a b
c d

)
∈ GL2(Ẑ) : c ≡ 0 (mod N)} ⊂ G(Af ).

(For Γ1(N) the condition is that c ≡ 0 (mod N) and d ≡ 1 (mod N) but a is not
restricted.)

Next we describe U∞ ⊂ GL2(R). GL2(R) operates on h± = C−R by z 7→ az+b
cz+d .

Let U∞ be the stabilizer of i.
The third condition involves the automorphy factor j defined by

j(
(a b
c d

)
, z) = cz + d.

To explain the holomorphy condition 3) we define, for any g ∈ G(Af ) a map

αg,ϕ : h± → C

hi 7→ ϕ(gh)j(h, i)k(det(h))−1.

Here h ∈ G(Af ) so hi ∈ h±. There may be several different h ∈ G(Af ) which give
the same hi ∈ h± so it must be checked that αg,ϕ is well-defined. Suppose hi = h′i,
then h−1h′i = i. Thus h−1h′ ∈ U∞, so by 2),

ϕ(gh−1h′) = ϕ(g)j(h−1h′, i)−k det(h−1h′).

Thus
ϕ(gh−1h′) det(h′)−1 = ϕ(g)j(h−1h′, i)−k det(h)−1.

Substituting gh for g yields

ϕ(gh′)(det(h′))−1 = ϕ(gh)j(h−1h′, i)−k(det(h))−1.

[[The the automorphy factor work out right. Why?]] The holomorphy condition is
that the family of maps αg,ϕ are all holomorphic.

The cuspidal condition is that for all g ∈ G(A), the integral∫
u∈A/Q

ϕ(
(

1 u
0 1

)
, g)du = 0

vanishes. Since A/Q is compact it has a Haar measure defined modulo k∗ which
induces du. Although the integral is not well-defined the vanishing or non-vanishing
of the integral is.

We can now describe the isomorphism between Sk(Γ0(N)) and the space of such
functions ϕ on G(A).

{ space of ϕ satisfying 0-3} → Sk(Γ0(N))

ϕ 7→ f
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where f is the restriction to h = h+ of the function

hi 7→ ϕ(h)j(h, i)k(deth)−1.

Now we can associate to a newform f a representation of G(A). We can weaken
condition 1) to get

1-) ϕ(xu∞) = ϕ(x) for all x ∈ G(A) and all u∞ ∈ U∞ where U∞ is some
compact open subgroup of G(Af ).

[[can the U∞ vary for each x ∈ G(A) or are they fixed throughout?]] Let S be the
space of all functions satisfying all conditions except 1-) replaces 1). This space
has a left action of G(A):

(g ∗ ϕ)(x) = ϕ(xg)

If f is a newform corresponding to some ϕ via the above isomorphism then via
this action f gives rise to an infinite dimensional representation π of G(A). In fact
we obtain, for each prime p, a representation πp of GL(2,Qp). The representation
space is

∑
g∈GL2(Qp) C ·g ∗ϕ. Our immediate goal is to understand πp for as many

p as possible. [[spherical representations have something to do with this. are the
πp spherical reps?]]

We are studying local properties of the λ-adic representations ρλ associated to a
newform f of weight 2, level N and character ε : (Z/NZ)∗ → C∗ (with cond(ε)|N).
Let ` ∈ Z be the prime over which λ lies. We look at ρλ locally at p, p 6= `.

As we saw last time f gives rise to an irreducible representation of GL(2,A).
An irreducible representation of GL(2,A) gives rise to a family of representations
(πv) where v is a prime or∞ and πv is an irreducible representation of GL(2,Qv).
This is because Qv ⊂ A so GL(2,Qv) ⊂ GL(2,A).

Carayol proved that if p 6= ` then ρλ|Dp depends, up to isomorphism, only on
πp. The most difficult case in the proof of this theorem is when p2 - N . The tools
needed to obtain a proof were already available in the work of Langlands [1972].

To get an idea of what is going on we will first consider the case when p - N .
The characteristic polynomial of Frobenious (at least psychologically) under the
representation ρλ|Dp is

x2 − apx+ pε(p) = (x− r)(x− s).

Because of Weil’s proof of the Riemann hypothesis for abelian varieties [over finite
fields?] one knows that |r| = |s| =

√
p. Since ρλ arises from the action of Galois

on an abelian variety which has good reduction at p (since p - N) it follows that
ρλ|Dp is unramified. [[Is this in Serre-Tate, 1968?]] We also know that ρλ(Frobp)
has characteristic polynomial

x2 − apx+ pε(p) ∈ E[x].

In this situation one also knows that ρλ(Frobp) is semisimple [[proof: Ribet nodded
at Coleman who smiled at nodded back.]] Thus

ρλ ∼
(r 0

0 s

)
.

In this situation what is the representation πp of GL(2,Qp)? There are two char-
acters

α, β : Q∗p → C∗

(called “Grössencharacters of type (a,0)”) such that
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1. α and β are unramified in the sense that

α|Z∗p = β|Z∗p = 1.

This is a reasonable condition since under some sort of local class field theory
Q∗p embeds as a dense subgroup of Gal(Qp/Qp) and under this embedding

the inertia subgroup I ⊂ Gal(Qp/Qp) corresponds to Z∗p. [[This could be
wrong. Also, is I ∩Q∗p = Z∗p?]]

2. α(p−1) = r, β(p−1) = s.

In the 1950’s Weil found a way under which α and β correspond to continuous
characters αλ, βλ on Gal(Qp/Qp) with values in E

∗
λ such that

1. αλ and βλ are unramified.

2. αλ(Frobp) = r and βλ(Frobp) = s.

One has that ρλ = αλ ⊕ βλ. See [ST68]. [[Why see this?]]
Define a character Θ on the Borel subgroup

B =
(∗ ∗

0 ∗
)
⊂ GL(2,Qp)

by

Θ
(x y

0 z

)
= α(x)β(z) ∈ C∗.

Then
πp = Ind

GL(2,Qp)
B := C[GL(2,Qp)]⊗C[B] C.

We call this induced representation πp the unramified principal series representa-
tion associated to α and β and write πp = PS(α, β). People say πp is spherical
in the sense that there is a vector in the representation space invariant under the
maximal compact subgroup of GL(2,Qp). [[Ribet was slightly unsure about the
correct definition of spherical.]] [[For some mysterious reason]] since πp = PS(α, β)
it follows that α, β and hence ρλ|Dp is completely determined by πp. [[This is the
point and i don’t see this.]]

Next we consider the more difficult case when p||N (p divides N exactly). There
are two cases to consider

a ε is ramified at p (p| cond(ε))

b ε is unramified at p (p - cond(ε)).

20.2 More local properties of the ρλ.

Let f be a newform of level N . Then f corresponds to a representation π = ⊗πv. If
λ|` and ` 6= p then ρλ|Dp corresponds to πp under the Langlands correspondence.
The details of this correspondence were figured out by Philip Kutzko, but Carayol
completed it in the exceptional case (to be defined later). There are three cases to
consider.
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a) p - N

b) p||N

c) p2 | N

We considered the first two cases last time. The third case is different because the
same sort of analysis as we applied to the first two cases no longer works in the
sense that we no longer know what πp looks like.

20.2.1 Possibilities for πp

Case 1 (principal series) In this case, πp = PS(α, β). Here α, β : Q∗p → C∗

are unramified characters. Q∗p corresponds to a dense subgroup of the abelian
Galois group of Qp under the correspondence elucidated in Serre’s “Local Classfield
Theory” (in Cassels and Frohlich).

Q∗p //

��

Gal(Qp/Qp)
A∩B

��
Z // Ẑ = Gal(Fp/Fp)

Under this correspondence α and β correspond to Galois representations αλ and
βλ and ρλ|Dp ∼ αλ ⊕ βλ.

Case 2 (special) In this case, πp is the special automorphic representation
corresponding to the Galois representation κ⊗ st where st is the Steinberg repre-
sentation which arises somehow from a split-multiplicative reduction elliptic curve
and κ is a Dirichlet character. In this case

ρλ|Dp = κ⊗
(χ` ∗

0 1

)
.

Case 3 (cuspidal) Case 3 occurs when πp does not fall into either of the
previous cases. Such a πp is called cuspidal or super-cuspidal. Some of these πp
come from the following recipe. Fix an algebraic closure Qp of Qp. Let K be a
quadratic extension of Qp. Let ψ : K∗ → C∗ be a Grössencharacter. Then ψ gives
rise to a character

ψλ : Gal(Qp/K)→ E
∗
λ

which induces ρλ|Dp. That is,

ρλ|Dp = Ind
Gal(Qp/Qp)

Gal(Qp/K)
ψλ : Gal(Qp/Qp)→ GL(2, Eλ).

This representation is irreducible if and only if ψ is not invariant under the canoni-
cal conjugation of K/Qp. The pair ψ, K gives rise (via the construction of Jacquet-
Langlands) to a representation of πψ,K of GL(2,Qp). Those representations which
do not come from this recipe and which do not fall into case 1 or case 2 above are
called extraordinary. They can only occur when p ≤ 2.

When can the various cases occur?
Case 1) occurs, e.g, if p - N , and also if p||N and ε (the character of f) is ramified

at p.
Case 2) occurs if p||N and ε is unramified at p.
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20.2.2 The case ` = p

We consider ρλ|Dp where λ|p and p = `. Write f =
∑
anq

n. The case when λ - ap
is called the ordinary case. This case is very similar to the case for an ordinary
elliptic curve. In other words,

ρλ|Dp =
(α ∗

0 β

)
.

[[Ribet mentioned that there is a paper on this by Mazur and Wiles in the American
Journal of Mathematics. Look the reference up.]] An important point is that β is
unramified so it makes sense to consider β(Frobp) = ap ∈ E∗λ. Since αβ is the
determinant, αβ = χk−1

p ε = χpε (after setting k = 2 to fix ideas), this gives some
description of what is going on. The obvious question to ask is whether or not * is
nontrivial. That is, is ρλ|Dp semisimple or not?

When f has weight 2, then f gives rise to an abelian variety A = Af . Then ρλ
is defined by looking at the action of Galois on the λ-adic division points on A. If
none of the λ lying over p divide ap then A is ordinary at p. A stronger statement
is that the p-divisible group A[p∞] has good ordinary reduction.

One simple case is when f has CM. By this we mean that there is a character
κ 6= 1 of order 2 such that an = κ(n)an for all n prime to cond(κ). [[This is not a
typo, I do not mean an = κ(n)an. Coleman said that an = κ(n)an is just a funny
way to say that half of the an are 0.]] It is easy to prove that f has CM if and only if
the ρλ become abelian on some open subgroup of Gal(Q/Q) of finite index. Ribet
explains this in his article in [Rib77]. If f has CM then since the representation
ρλ is almost abelian one can show that * is trivial. Ribet said he does not know
whether the converse is true. Note that f has CM if and only if Af/Q has CM. If
all λ|p are ordinary (i.e., they do not divide ap) and if * is trivial for every ρλ|Dp

it is easy to show using [Ser98] that A has CM.
Next we will say something more about representations which appear to be

ordinary. Consider the situation in which f has weight 2 and p exactly divides the
level N of f . Suppose furthermore that the character ε of f is unramified at p.
Then πp is a special representation. The λ-adic representations for ` 6= p are (up
to characters of finite order) like representations attached to some Tate curve. The
situation is similar when ` = p since

ρλ|Dp =
(
α ∗
0 β

)
.

As in the case of a Tate curve α/β = χp. Up to a quadratic character we know the
situation since αβ = χpε. Also β is still unramified and β(Frobp) = ap is a unit.
We know that a2

p = ε(p) is a root of unity. When k = 2 the case of a spherical
representation mimics what happens for ordinary reduction. The upper right hand
entry * is never trivial in this case [[because of something to do with extensions
and Kummer theory]].

Ribet said he knows nothing about the situation when k > 2. If p||N and ε is
unramified at p then πp is special so ρλ, ` 6= p are again of the form

( α ∗
0 β

)
. So we

still know everything up to a quadratic character. But if ` = p some characters
are Hodge-Tate [[what does that mean?]] so by a theorem of Faltings they can
not be bizarre powers of the cyclotomic character. The multiplicative case like the
ordinary case is very special to the case k = 2. Wiles uses this heavily in his proof.
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If k is arbitrary then a2
p = ε(p)p

k
2−1 so ap is not a unit for k > 2 so there is

no invariant line. So the representation is probably irreducible in the case k > 2.
[[Echos of “yeah”, “strange” and “very strange” are heard throughout the room.]]

20.2.3 Tate curves

Suppose E/Qp is an elliptic curve with multiplicative reduction at p and that
j ∈ Qp is the j-invariant of E. Using a formula which can be found in [Sil94, V]
one finds q = q(j) with |q| < 1. The Tate curve is E(Qp) = Qp/q

Z. The p torsion

on the Tate curve is {ζap (q1/p)b : 0 ≤ a, b ≤ p − 1}. Galois acts by ζp 7→ ζap and

q1/p 7→ ζap q
1/p. Thus the associated Galois representation is

( χp ∗
0 1

)
.
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21
Serre’s Conjecture

This is version 0.2 of this section. I am still unsatisfied with the
organization, level of detail, and coherence of the presentation. A
lot of work remains to be done. Some of Ken’s lectures in Utah will
be integrated into this chapter as well.

Let ` be a prime number. In this chapter we study certain mod ` Galois repre-
sentations, by which we mean continuous homomorphisms ρ

Gal(Q/Q)
ρ // GL(2,F)

where F is a finite field of characteristic `. Modular forms give rise to a large class
of such representations.

newforms f ///o/o/o/o/o/o/o/o/o/o/o/o mod ` representations ρ

The motiving question is:

Given a mod ` Galois representation ρ, which newforms f if any, of
various weight and level, give rise to ρ?

We will assume that ρ is irreducible. It is nevertheless sometimes fruitful to consider
the reducible case (see [SW97] and forthcoming work of C. Skinner and A. Wiles).

Serre [Ser87] has given a very precise conjectural answer to our motivating ques-
tion. The result, after much work by many mathematicians, is that certain of
Serre’s conjectures are valid in the sense that if ρ arises from a modular form at
all, then it arises from one having a level and weight as predicted by Serre. The
main trends in the subject are “raising” and “lowering.”

Our motivating question can also be viewed through the opposite optic. What
is the most bizarre kind of modular form that gives rise to ρ? A close study of the
ramification behavior of ρ allows one to at least obtain some sort of control over
the possible weights and levels. This viewpoint appears in [Wil95].
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In this chapter whenever we speak of a Galois representation the homomorphism
is assumed to be continuous. The reader is assumed to be familiar with local fields,
some representation theory, and some facts about newforms and their characters.

21.1 The Family of λ-adic representations attached to a
newform

First we briefly review the representations attached to a given newform. Let

f =
∑
n≥1

anq
n ∈ Sk(N, ε)

be a newform of level N , weight k, and character ε. Set K = Q(. . . , an, . . .) and let
O be the ring of integers of K. If λ is a nonzero prime ideal of O we always let ` be
the prime of Z over which λ lies, so λ ∩Z = (`). Let Kλ denote the completion of
K at λ, thus Kλ is a finite extension of Q`. The newform f gives rise to a system
(ρf,λ) of λ-adic representations

ρf,λ : Gal(Q/Q) −→ GL(2,Kλ)

one for each λ.

Theorem 21.1.1 (Carayol, Deligne, Serre). Let f be as above and ` a prime.
There exists a Galois representation

ρf,` : Gal(Q/Q) −→ GL(2,K ⊗Q`)

with the following property: If p - `N is a prime, then ρf,` is unramified at p, and
the image under ρf,` of any Frobenius element for p is a matrix with trace ap and
determinant ε(p)pk−1.

The actual construction of ρf,` won’t be used in what follows. Since K ⊗Q` is
a product

∏
λKλ of the various completions of K at the primes λ of K lying over

`, we have a decomposition

GL(2,K ⊗Q`) =
∏
λ|`

GL(2,Kλ)

and projection onto GL(2,Kλ) gives ρf,λ.
By Lemma 18.1.1 ρf,λ is equivalent to a representation taking values in GL(2,O)

where O is the ring of integers of K. Since λ is a prime of O reduction modulo λ
defines a map GL(2,O)→ GL(2,F) where F = O/λ is the residue class field of λ,
and we obtain a mod ` Galois representation

ρf,λ : Gal(Q/Q) −→ GL(2,F).

21.2 Serre’s Conjecture A

Serre [Ser87] conjectured that certain mod ` representations arise from modular
forms, and then gave a precise recipe for which type of modular form would give
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rise to the representation. We refer to the first part of his conjecture as “Conjecture
A” and to the second as “Conjecture B”.

Let ρ : Gal(Q/Q) → GL(2,F) be a Galois representation with F a finite field.
We say that ρ arises from a modular form or that ρ is modular if there is some
newform f =

∑
anq

n and some prime ideal λ of K = Q(. . . , an, . . .) such that ρ
is isomorphic to ρf,λ over F.

O/λ � � // F

F

Recall that a Galois representation ρ is odd if det(ρ(c)) = −1 where c ∈ Gal(Q/Q)
is a complex conjugation. Galois representation arising from modular forms are
always odd. [More detail?]

Conjecture 21.2.1 (Serre’s Conjecture A). Suppose

ρ : Gal(Q/Q)→ GL(2,F)

is an odd irreducible (continuous) Galois representation with F a finite field. Then
ρ arises from a modular form.

21.2.1 The Field of definition of ρ

One difficulty is that ρ sometimes takes values in a slightly smaller field than
O/λ. We illustrate this by way of an example. Let f be one of the two conjugate
newforms of level 23, weight 2, and trivial character. Then

f = q + αq2 + (−2α− 1)q3 + (−α− 1)q4 + 2αq5 + · · ·

with α2 +α− 1 = 0. The coefficients of f lie in O = Z[α] = Z[ 1+
√

5
2 ]. Take λ to be

the unique prime of O lying over 2, then O/λ ∼= F4 and so ρf,λ is a homomorphism
to GL(2,F4).

Proposition 21.2.2. If p 6= 2 then ap ∈ Z[
√

5].

Proof. We have f = f1 + αf2 with

f1 = q − q3 − q4 + · · ·
f2 = q2 − 2q3 − q4 + 2q5 + · · ·

Because S2(Γ0(23)) has dimension two, it is spanned by f1 and f2. Let η(q) =

q
1
24

∏
n≥1(1− qn). By Proposition ??, g = (η(q)η(q23))2 ∈ S2(Γ0(23)). An explicit

calculation shows that g = q2 − 2q3 + · · · so we must have g = f2. Next observe
that g is a power series in q2, modulo 2:

g = q2
∏

(1− qn)2(1− q23n)2

≡ q2
∏

(1− q2n)(1− q46n) (mod 2)

≡ q2
∏

(1 + q2n + q46n + q48n) (mod 2)

Thus the coefficient in f2 of qp with p 6= 2 prime is even and the proposition
follows.
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Thus those ap with p 6= 2 map modulo λ to F2 ⊂ F4, and hence the traces
and determinants of Frobenius, at primes where Frobenius is defined, take values
in F2. This is enough to imply that ρf,λ is isomorphic over F to a representation

ρ : Gal(Q/Q)→ GL(2,F2). Geometrically, GL(2,F2) ∼= S3 and the representation
ρ is one in which Galois acts via S3 on three points of X0(23).

Thus in general, if we start with ρ and wish to see that ρ satisfies Conjecture A,
we may need to pass to an algebraic closure of F. In our example, starting with
ρ : Gal(Q/Q)→ GL2(F2) we say that “ρ is modular” because ρ ∼= ρλ,f , but keep
in mind that this particular isomorphism only takes place over F4.

At this point K. Buzzard comments, “Maybe there is some better modular form
so that all of the ap actually lie in F2 and the associated representation is isomor-
phic to ρ. That would be a stronger conjecture.” Ribet responds that he has never
thought about that question.

21.3 Serre’s Conjecture B

Serre’s second conjecture asserts that ρ arises from a modular form in a particular
space. Suppose

ρ : Gal(Q/Q)→ GL(2,F)

is an odd irreducible Galois representation with F a finite field.

Conjecture 21.3.1 (Serre’s Conjecture B). Suppose ρ arises from some modular
form. Then ρ arises from a modular form of level N(ρ), weight k(ρ) and character
ε(ρ). The exact recipe for N(ρ) and k(ρ) will be given later.

Conjecture B has largely been proven.

Theorem 21.3.2. Suppose ` is odd. If the mod ` representation ρ is irreducible
and modular, then ρ arises from a newform f of level N(ρ) and weight k(ρ).

21.4 The Level

The level N(ρ) is a conductor of ρ, essentially the Artin conductor except that we
omit the factor corresponding to `. The level is a product

N(ρ) =
∏
p 6=`

pe(p).

We now define the e(p). Let V be the representation space of ρ, so V is a two
dimensional F-vector space and we view ρ as a homomorphism

ρ : Gal(Q/Q)→ Aut(V ),

or equivalently view V as an F[Gal(Q/Q)]-module. Let K = Q
ker(ρ)

be the field
cut out by ρ, it is a finite Galois extension of Q with Galois group which we call
G. Choose a prime ℘ of K lying over p and let

D = {σ ∈ G : σ(℘) ⊂ ℘}
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denote the decomposition group at ℘. Let O be the ring of integers of K and recall
that the higher ramification groups G−1 ⊃ G0 ⊃ G1 ⊃ G2 ⊃ · · · are

Gi = {σ ∈ D : σ acts trivially on O/℘i+1}.

Thus G−1 = D and G0 is the inertia group. Each Gi is a normal subgroup of D
because Gi is the kernel of D → Aut(O/℘i+1). Let

V Gi = {v ∈ V : σ(v) = v for all σ ∈ Gi}.

Lemma 21.4.1. The subspace V Gi is invariant under D.

Proof. Let g ∈ D, h ∈ Gi and v ∈ V Gi . Since Gi is normal in D, there exists
h′ ∈ Gi so that g−1hg = h′. Then h(gv) = gh′v = gv so gv ∈ V Gi .

By [Frö67, §9] that there is an integer i so that Gi = 0. We can now define

e(p) =

∞∑
i=0

1

[G0 : Gi]
dim(V/V Gi).

Thus e(p) depends only on ρ|Ip where Ip = G0 is an inertia group at p. In partic-
ular, if ρ is unramified at p then all Gi for i ≥ 0 vanish and e(p) = 0. Separating
out the term dim(V/V Ip) corresponding to i = 0 allows us to write

e(p) = dim(V/V Ip) + δ(p) ≤ 2 + δ(p)

since dimV = 2. The term δ(p) is called the Swan conductor. By [Ser77, 19.3] δ(p)
is an integer, hence e(p) is an integer. We call ρ tamely ramified at p if all Gi for
i > 0 vanish, in which case the Swan conductor is 0.

Suppose ρ ∼= ρf,λ (over F) for some newform f of level N . There is a relationship
between e(p) and something involving only f . Let Vλ be the representation space
of ρf,λ, so Vλ is a vector space over an extension of Q`. It turns out that

ordp(N) = dim(Vλ/V
Ip
λ ) + δ(p).

Thus
ordp(N) = e(p) + error term

where the error term is dim(V Ip) − dim(V
Ip
λ ) ≤ 2. The point is that more can

become invariant upon reducing modulo λ. Thus if f gives rise to ρ then the power
of p in the level N of f is constrained as it is given by a certain formula only
depending on e(p) and an error term which has magnitude at most 2.

As we will see, the weight k(ρ) depends only on ρ|I`. Thus k(ρ) can be viewed
as an analogue of e(`).

21.4.1 Remark on the case N(ρ) = 1

One consequence of Conjecture B is that every modular mod ` representation ρ
must come from a newform f of level prime to `. Suppose that f is a modular
form of level `. Consider the corresponding mod ` representation. It is unramified
outside ` so N(`) = 1. The conjecture then implies that this mod ` representation
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comes from a level 1 modular form, i.e., a modular form on SL2(Z), of possibly
higher weight. This is a classical result.

For the rest of this subsection we assume that ` ≥ 11. There is a relationship
between mod ` forms on SL2(Z) of weight `+1 and mod ` forms on Γ0(`) of weight
2. The dimensions of each of these spaces are the same over F` or over C, i.e.,

dimF` S2(Γ0(`); F`) = dimC S2(Γ0(`); C).

dimF` S`+1(SL2(Z); F`) = dimC S`+1(SL2(Z); C).

We now describe a map

F : S2(Γ0(`); F`) −→ S`+1(SL2(Z); F`).

The weight k Eisenstein series

Ek = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

is a modular form for SL2(Z). Here the Bernoulli numbers Bk are defined by

t

et − 1
=

∞∑
k=0

Bk
tk

k!
,

so B0 = 1, B1 = − 1
2 , B2 = 1

12 , B3 = − 1
720 , . . ..

Proposition 21.4.2. If ` ≥ 5, then

E`−1 ≡ 1 (mod `).

Proof. We must check that ` | 2(`−1)
B`−1

, or equivalently that ` | 1
B`−1

. Set n = `− 1,

p = ` and apply [Lan95, X.2.2].

Suppose f ∈ S2(Γ0(`); F`) is the reduction of f ∈ S2(Γ0(`); F`). Multiplication
by E`−1 gives a mod ` form f · E`−1 of weight `+ 1 on Γ0(`). We have

F (f) = tr(f · E`−1) ∈ S`+1(SL2(Z); F`)

where tr is induced by X0(`)→ X0(1). The map F was discovered by Serre [DK73].
That F has the properties necessary to deduce the prime level case of Serre’s
Conjecture B was proved by explicit computation in the Berkeley Ph.D. thesis of
C. Queen [Que77]. Katz believes that it is easy to prove the formula from the right
magical moduli point of view, but neither author has seen this. The first author
gave a concrete proof for ` > 2 in [Rib94]. It would be nice if someone would
construct a clear proof for the case ` = 2.

21.4.2 Remark on the proof of Conjecture B

We now give a very brief outline of the proof of Conjecture B when ` > 2. Start
with a representation ρ which comes from some (possibly terrible) newform f of
level N(f) and weight k(f).
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Step 1. Using a concrete argument replace f by another newform giving rise to ρ
so that ` - N(f).

Step 2. Compare N(ρ) and N(f). These are two prime to ` numbers. What if

p | N(f)
N(ρ) ? Carayol separated this into several cases. In each case replace f by a

better form so that the ratio has a smaller power of p in it. This is level lowering.
Eventually we get to the case N(ρ) = N(f).

Step 3. Using a paper of Edixhoven [Edi92b] one shows that f can be replaced
with a another form of the same level so that the weight k is equal to k(ρ).

21.5 The Weight

21.5.1 The Weight modulo `− 1

We first give some background which motivates Serre’s numerical recipe for the
weight. We start with a newform f of low weight k and consider the behavior of
the representation ρ = ρf,λ|I`, where I` is an inertia group at `. Assume that we
are in the following situation:

• N = N(f) is prime to `,

• 2 ≤ k ≤ `+ 1.

There are other cases to consider but we consider this one first. Let ε be the
character of f and recall that for p - `N

det(ρf,`(Frobp)) = ε(p)pk−1.

The mod ` cyclotomic character χ` : Gal(Q/Q) → F∗` is the homomorphism
sending Frobp to p ∈ F∗` . Thus

det(ρ) = εχk−1
` .

Since ε is a Dirichlet character mod N and ` - N , ε|I` = 1 and so

det(ρ|I`) = χk−1
` .

We see immediately that det(ρ|I`) determines k modulo ` − 1. Since 2 ≡ ` + 1
(mod `− 1), this still doesn’t distinguish between 2 and `+ 1.

21.5.2 Tameness at `

Let
ρ : Gal(Q/Q) −→ GL(2,F`ν )

be a modular mod ` Galois representation. Let D = D` ⊂ Gal(Q/Q) be a de-
composition group at `. Let σ be the semisimplification of ρ|D. Thus σ is either
a direct sum of two characters or σ = ρ|D depending on whether or not ρ|D is
irreducible. By [Frö67, 8.1] the ramification group P = G1 is the unique Sylow
`-subgroup of I` = G0.
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Lemma 21.5.1. The semisimplification σ of ρ is tame, i.e., σ|P = 0 where P is
the Sylow `-subgroup of the inertia group I`.

Proof. Since I` is normal in D and any automorphism of I` sends P to some
Sylow `-subgroup and P is the only such, it follows that P is normal in D. Let
W = F`ν × F`ν be the representation space of σ. Then

WP = {w ∈W : σ(τ)w = w for all τ ∈ P}

is a subspace of W invariant under the action of D. For this let α ∈ D and suppose
w ∈WP . Since P is normal in D, α−1τα = τ ′ for some τ ′ ∈ P . Therefore

σ(α)−1σ(τ)σ(α)w = σ(τ ′)w = w

so σ(τ)σ(α)w = σ(α)w hence σ(α)w ∈WP .
But WP 6= 0. To see this write W as a disjoint union of its orbits under the

action of P . Since P is an `-Sylow group and W is finite we see that the size of
each orbit is either 1 or a positive power of `. Now {0} is a singleton orbit, W
has `-power order, and all non-singleton orbits have order a positive power of ` so
there must be at least ` − 1 other singleton orbits. Each of these other singleton
orbits gives a nonzero element of WP .

If WP = W then P acts trivially so we are done. If WP 6= W , then since WP is
nonzero it is a one dimensional subspace invariant under D, so by semisimplicity
σ is diagonal. Let τ ∈ P , then τ has order `n for some n. Write

σ(τ) =

(
α 0
0 β

)
,

then α`
n

= β`
n

= 1. Since α, β ∈ F`ν they have order dividing |F∗`ν | = `ν − 1. But
gcd(`ν − 1, `n) = 1 from which it follows that α = β = 1. Thus P = {1} and again
P acts trivially, as claimed.

21.5.3 Fundamental characters of the tame extension

The lemma implies σ|I` factors through the tame quotient It = I`/P . We now de-
scribe certain characters of It more explicitly. Denote by Qtm

` the maximal tamely
ramified extension of Q`, it is the fixed field of P . Let K = Qur

` be the maximal
unramified extension, i.e., the fixed field of the inertia group I`. By Galois theory

It = Gal(Qtm
` /Qur

` ).

For each positive integer n coprime to ` there is a tower of Galois extensions

Qtm
`

It
K( n
√
`)

µn(K)

K = Qur
`

Q`
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Since Q(ζn)/Q is unramified at ` the nth roots of 1 are contained in K so by
Kummer theory

Gal(K(
n
√
`)/K) ∼= µn(K)

where µn(K) denotes the group of nth roots of unity in K. Thus for each n prime
to ` we obtain a map It → µn(K). They are compatible so upon passing to the
limit we obtain a map

It −→ lim←−µn(K) =
∏
r 6=`

lim←−µra(K) =
∏
r 6=`

Zr(1).

In fact [Frö67, 8, Corollary 3] the above maps are isomorphisms. Viewed more
cleverly mod ` we obtain a map

It −→ lim←−µn(F`) = lim←−F∗`i .

Thus for each i we have a map

It → F∗`i .

which is called the fundamental character of level i. The construction of this charac-
ter on It is somewhat unnatural because we had to choose an embedding F`i ↪→ F`.
Instead Serre begins with a “disembodied” field F of order `i. There are i different
maps F`i → F corresponding to the i automorphisms of F`i . Restricting these
maps to F∗`i and composing with It → F∗`i gives the i fundamental characters
of level i. The unique fundamental character of level 1 is the mod ` cyclotomic
character χ`.

21.5.4 The Pair of characters associated to ρ

Recall that we have a representation ρ whose semisimplification gives a represen-
tation which we denote by σ:

σ : It −→ GL(2,F`ν ).

Since σ(It) is a finite abelian group and the elements of It have order prime to `,
this representation is semisimple and can be diagonalized upon passing to F`. In
fact, since the characteristic polynomials all have degree two, σ can be diagonalized
over F`2ν . Thus σ corresponds to a pair of characters

α, β : It −→ F∗`2ν .

These characters have some stability properties since σ is the restriction of a
homomorphism from the full decomposition group. Consider the tower of fields

K( n
√
`)

K = Qur
`

Q`



212 21. Serre’s Conjecture

LetG = Gal(K( n
√
`)/Q`). Recall that Gal(K( n

√
`)/K) ∼= µn(K) and Gal(K/Q`)

is topologically generated by Frob`. If h ∈ µn(K) and g ∈ G restricts to Frob`
then we have the conjugation formula:

ghg−1 = h`.

Applying this to our representation σ with h ∈ It we find that

σ(ghg−1) = σ(h`) = σ(h)`

so
σ(g)σ(h)σ(g−1) = σ(ghg−1) = σ(h)`.

The point is that the representation h 7→ σ(h)` is equivalent to h 7→ σ(h) via
conjugation by σ(g). We conclude that the pair of characters {α, β} is stable
under `-th powering, i.e., as a set

{α, β} = {α`, β`}.

What does this mean? There are two possibilities:

• Level 1: α` = α and β` = β.

• Level 2: α` = β and β` = α, but α 6= β.

Note that in the level 1 case, α and β take values in F∗`ν .

21.5.5 Recipe for the weight

We will play a carnival game, “guess your weight.” First we consider the level 2 case.
Our strategy is to express α and β in terms of the two fundamental characters of
level 2. We then observe how the characters associated to a newform are expressed
in terms of the two fundamental characters.

The remainder of this chapter is devoted to motivating the following definition.
Let ρ and σ be as above. Let ψ, ψ′ be the two fundamental characters of level
2 and χ the fundamental character of level 1 (the cyclotomic character). Serre’s
recipe for k(ρ) is as follows.

1. Suppose that α and β are of level 2. We have

ρ|I` =

(
α 0
0 β

)
.

After interchanging α and β if necessary, we have (uniquely) α = ψr+`q =
ψr(ψ′)q and β = (ψ′)rψq with 0 ≤ r < q ≤ `− 1. We set k(ρ) = 1 + `r + q.

2. Suppose that α and β are of level 1. We have

ρ|I` =

(
χr ∗

0 χq

)
.

(a) If ∗ = 0, normalize and reorder r, q so that 0 ≤ r ≤ q ≤ ` − 2. We set
k(ρ) = 1 + `r + q.

(b) If ∗ 6= 0, normalize so that 0 ≤ q ≤ ` − 2 and 1 ≤ r ≤ ` − 1. We set
a = min(r, q), b = max(r, q). If χr−q = χ and ρ⊗ χ−q is not finite at `
then we set k(ρ) = 1 + `a+ b+ `− 1; otherwise we set k(ρ) = 1 + `a+ b.
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21.5.6 The World’s first view of fundamental characters

First some background. Suppose E/Q is an elliptic curve and ` is a prime (2 is
allowed). Assume E has good supersingular reduction at `, so Ẽ(F`)[`] = {0}.
Then there is a Galois representation

ρ : Gal(Q/Q) −→ Aut(E[`])

which, a priori, may or may not be irreducible. As above, ρ gives rise to two
characters

α, β : It → F∗`2 .

Serre (see [V7́2]) proved that α, β are the two fundamental characters of level 2
and that It acts irreducibly over F`. [[Is this right?]] He also observed that there
is a map

It → F∗`2 ⊂ GL(2,F`)

where F∗`2 sits inside GL(2,F`) via the action of the multiplicative group of a field
on itself after choice of a basis, and the map to F∗`2 is through one of the two
fundamental characters of level 2.

21.5.7 Fontaine’s theorem

Serre next asked Fontaine to identify the characters α and β attached to more gen-
eral modular representations. Fontaine’s answer was published in [Edi92b]. Suppose
f =

∑
anq

n is a newform of weight k such that 2 ≤ k ≤ ` and the level N(f)
of f is prime to `. Let ρ = ρf,λ where λ is a prime of Q(. . . , an, . . .) lying over `.
Assume we are in the supersingular case, i.e.,

a` ≡ 0 mod λ.

Semisimplifying as before gives a pair of characters

α, β : It −→ F∗`2ν .

Let ψ, ψ′ : It → F∗`2 be the two fundamental characters of level 2 so ψ = (ψ′)` and
ψ′ = ψ`.

Theorem 21.5.2. With the above notation and hypothesis, the characters α, β
arising by semisimplifying and restricting ρf,λ satisfy

{α, β} = {ψk−1, (ψ′)k−1}.

21.5.8 Guessing the weight (level 2 case)

We now try to guess the weight in the level 2 case. We begin with a representation
ρ whose semisimplification is a representation σ, which in turn gives rise to a pair
of level 2 characters

{α, β} = {ψa, (ψ′)a = ψ`a}.
Since ψ takes values in F∗`2 , we may think of a as a number modulo `2 − 1. Note
also that the pair is unchanged upon replacing a by `a. The condition that we are
not in level 1 is that a is not divisible by `+ 1 since

ψψ′ = ψ`+1 : It → F∗`
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is the unique fundamental character of level 1, i.e., the mod ` cyclotomic character.
Normalize a so that 0 ≤ a < `2 − 1 and write a = q`+ r. What are the possible

values for q and r? By the Euclidean algorithm 0 ≤ r ≤ `− 1 and 0 ≤ q ≤ `− 1. If
r = q then a is a multiple of `+ 1, so r 6= q. If r > q, multiply the above relation
by ` to obtain a` = q`2 + r`. But we are working mod `2 − 1 so this becomes
a` = q + r` (mod `2 − 1). Thus if we replace a by a` then the roles of q and r are
swapped in the Euclidean division. Thus we can assume that 0 ≤ r < q ≤ ` − 1.
Now

α = ψa = ψq`+r = (ψ′)qψr = (ψψ′)r(ψ′)q−r,

so
{α, β} = {(ψψ′)r(ψ′)q−r, (ψψ′)rψq−r}.

Since ψψ′ = χ is the mod ` cyclotomic character, we can view {α, β} as a pair of
characters (ψ′)q−r and ψq−r which has been multiplied, as a pair, by χr.

What weight do we guess if r = 0? In this case

{α, β} = {(ψ′)k−1, ψk−1}

where k = 1 + q. So in analogy with Theorem 21.5.2 we guess that

k(ρ) = 1 + q (r = 0, supersingular case).

What do we guess in general? Suppose f =
∑
anq

n is a modular form thought
of mod ` which gives rise to ρ, and that ` does not divide the level of f . We might
as well ask what modular form gives rise to ρ⊗ χ. In [?] we learn that

θf =
∑

nanq
n (mod `)

is a mod ` eigenform, and it evidently gives rise to ρ⊗ χ. Furthermore, if k is the
weight of f , then θf has weight k + `+ 1. Since

{α, β} = {ψq−r, (ψ′)q−r} · χr

we guess that

k(ρ) = q − r + 1 + (`+ 1)r = 1 + `r + q (supersingular case)

But be careful! the minimal weight k does not have to go up by ` − 1, though
it usually does. This is described by the theory of θ-cycles which we will review
shortly.

21.5.9 θ-cycles

The theory of the θ operator was first developed by Serre and Swinnerton–Dyer
and then later jazzed up by Katz in [?]. There is a notion of modular forms mod
` and of q-expansion which gives a map

α :
⊕
k≥0

Mk(Γ1(N); F`) −→ F`[[q]].

This map is not injective. The kernel is the ideal generated by A − 1 where A is
the Hasse invariant.
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Suppose f ∈ F`[[q]] is in the image of α. If f 6= 0 let w(f) denote the smallest k
so that f comes from some Mk. If f does not coming from any single Mk do not
define w(f). Define an operator θ on F`[[q]] by

θ(
∑

anq
n) = q

d

dq
(
∑

anq
n) =

∑
nanq

n.

Serre and Swinnerton-Dyer showed that θ preserves the image of α.

Theorem 21.5.3. Suppose f 6= 0 is a mod ` modular form as above. If ` - w(f)
then w(θf) = w(f) + `+ 1.

Associated to f we have a sequence of nonnegative integers

w(f), w(θf), w(θ2f), . . .

Fermat’s little theorem implies that this sequence is periodic because θ`f = θf
and so w(θ`f) = w(θf). We thus call the cyclic sequence w(f), w(θf), w(θ2f), . . .
the θ-cycle of f . Tate asked:

What are the possible θ-cycles?

This question was answered in [Joc82] and [Edi92b]. We now discuss the answer
in a special case.

Let f be an eigenform such that 2 ≤ k = w(f) ≤ ` and f is supersingular, i.e.,
a`(f) = 0. Since f is an eigenform the an are multiplicative (anm = anam for
(n,m) = 1) and if ε denotes the character of f then

a`i = a`i−1 · a` − ε(`)`k−1a`−2

= a`i−1 · a` = 0

since we are working in characteristic ` and k ≥ 2. Thus an(f) = 0 whenever ` | n
and so θ`−1f = f hence w(θ`−1f) = w(f).

If we apply θ successively to f what happens? Before proceeding we remark that
it can be proved that there is at most one drop in the sequence

k = w(f), w(θf), w(θ2f), . . . , w(θ`−2f).

First suppose k = 2. The θ-cycle must be

2, 2 + (`+ 1), 2 + 2(`+ 1), . . . , 2 + (`− 2)(`+ 1).

This is because, by Theorem 21.5.3, applying θ raises the weight by `+ 1 so long
as the weight is not a multiple of `. Only the last term in the above sequence is
divisible by `. There are `− 1 terms so this is the full θ-cycle.

Next suppose k = `. The θ-cycle is

`, 3, 3 + (`+ 1), . . . , 3 + (`+ 1)(`− 3).

The last term is divisible by `, no earlier term after the first is, and there are `− 1
terms so this is the full θ-cycle. We know that the second term must be 3 since it
is the only number so that the θ-cycle works out right, i.e., so that the (` − 1)st
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term is divisible by ` but no earlier term except the first is. For example, if we
would have tried 2 instead of 3 we would have obtained the sequence

`, 2, 2 + (`+ 1), . . . , 2 + (`+ 1)(`− 3), 2 + (`+ 1)(`− 2).

This sequence has one too many terms.
Now we consider the remaining values of k: 2 < k < `. The θ-cycle is

k, k + (`+ 1), . . . , k + (`+ 1)(`− k), k′, k′ + `+ 1, . . . , k′ + (`+ 1)(k − 3).

The first `− k+ 1 terms of the sequence are obtained by adding `+ 1 successively
until obtaining a term k + (` + 1)(` − k) which is divisible by `. Applying θ to a
form of weight k + (` + 1)(` − k) causes the weight to drop to some k′. How can
we guess k′? It must be such that k′ + (` + 1)(k − 3) is divisible by `. Thus the
correct answer is

k′ = `+ 3− k.

21.5.10 Edixhoven’s paper

Suppose that ρ is an irreducible mod ` representation so that the level of the char-
acters α, β associated to the semisimplification of ρ are level 2. To avoid problems
in a certain exceptional case assume ` ≥ 3. Edixhoven [Edi92b] proved that if
ρ arises from an eigenform in Sk(Γ1(N)) with (N, `) = 1, then ρ arises from an
eigenform in Sk(ρ)(Γ1(N)). What are the elements of the proof?

1. The behavior of ρ|I` when ρ arises from an f with 2 ≤ w(f) ≤ `+ 1.

2. The fact that every modular representation ρ has the form ρf,λ ⊗ χi where
i ∈ Z/(`− 1)Z, and 2 ≤ w(f) ≤ `+ 1.

Serre knew the second element but never published a proof. How did Serre talk
about his result before Edixhoven’s paper? The eigenform f correponds to a system
of eigenvalues in F` of the Hecke operators Tr, r - `N . Eigenforms of weight at
most `+ 1 give, up to twist, all systems of Hecke eigenvalues. A possible proof of
this uses the construction of ρf in terms of certain étale cohomology groups.

21.6 The Character

Let
ρ : GQ = Gal(Q/Q) −→ GL(2,F`ν )

be a Galois representation. Assume that ρ is irreducible, modular ρ ∼= ρλ,f , and
` > 2. The degree of a character ϕ : (Z/NZ)∗ → C∗ is the cardinality |ϕ((Z/NZ)∗)|
of its image.

Theorem 21.6.1. Under the above hypothesis, ρ comes from a modular form f
of weight k(ρ), level N(ρ), and under a certain extra assumption, character ε of
degree prime to `.

Extra Assumption: Not all of the following are true.

1. ` = 3,



21.6 The Character 217

2. ρ|Gal(Q/Q(
√
−3)) is abelian, and

3. det(ρ) is not a power of the mod 3 cyclotomic character χ.

Example 21.6.2. If ρ comes from the Galois representation on the 3-torsion of an
elliptic curve, then det(ρ) = χ is the mod 3 cyclotomic character, so the extra
assumption does hold and the theorem applies.

Let ρ be a representation as above. Then it is likely that

det ρ : GQ → F`ν

is ramified at `. Let χ be the mod ` cyclotomic character.

Proposition 21.6.3. Let ϕ : GQ → F∗`ν be a continuous homomorphism. Then
ϕ = θχi for some i and some θ : GQ → F∗`ν which is unramified at `.

Proof. Since ϕ is continuous and F∗`ν is finite, the subfield K of Q fixed by ker(ϕ) is
a finite Galois extension of Q. Since the image of ϕ is abelian, the Galois group of K
over Q is abelian. By the Kronecker-Weber theorem [Lan94, X.3] there is a cyclo-
tomic extension Q(ζn) = Q(exp2πi/n) which contains K. Since Gal(Q(ζn)/Q) ∼=
(Z/nZ)∗, the character ϕ gives a homomorphism ϕ′ : (Z/nZ)∗ → F∗`ν . Write
n = m`j with m coprime to `. Then

(Z/nZ)∗ ∼= (Z/mZ× Z/`jZ)∗ ∼= (Z/mZ)∗ × (Z/`jZ)∗

which decomposes ϕ′ as a product θ′ × ψ′ where

θ′ : (Z/mZ)∗ → F∗`ν

ψ′ : (Z/`jZ)∗ → F∗`ν .

Q

Q(ζn)

uuuuuuuuu

IIIIIIIII

Q(ζ`j )

JJJ
JJJ

JJJ
J

(Z/`jZ)∗

Q(ζm)

ttt
ttt

ttt
t

(Z/mZ)∗

K

⊂F∗`ν

Q

The character θ is obtained by lifting θ′. It is unramified at ` because it factors
through Gal(Q(ζm)/Q) and ` - m. The cardinality of (Z/`jZ)∗ is (` − 1)`j−1

whereas the cardinality of F∗`ν is (`− 1)(`ν−1 + · · ·+ 1) so the image of ψ′ lies in
F∗` . Thus ψ′ lifts to a power χi of the cyclotomic character.

Using the proposition write det(ρ) = θχi with θ unramified at `. As in the proof
of the proposition we can write θ as a Dirichlet character (Z/mZ)∗ → F∗`ν . It can
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be shown using properties of conductors that m can be chosen so that m|N(ρ).
Thus we view θ as a Dirichlet character

θ : (Z/N(ρ)Z)∗ → F∗`ν .

Let H = ker θ ⊂ (Z/N(ρ)Z)∗. Define a congruence subgroup ΓH(N) by

ΓH(N) =

{(
a b
c d

)
∈ Γ0(N) : a, d ∈ H

}
.

We have the following theorem.

Theorem 21.6.4. Suppose ` > 2 and ρ satisfies the above assumptions including
the extra assumption. Then ρ arises from a form in

Sk(ρ)( ΓH(N(ρ)) ).

In particular, the theorem applies if ρ comes from the `-torsion representation
on an elliptic curve, since then det = χ so the extra assumption is satisfied.

21.6.1 A Counterexample

One might ask if the extra assumption in Theorem 21.6.4 is really necessary. At
first Serre suspected it was not. But he was surprised to discover the following
example which shows that the extra assumption can not be completely eliminated.
The space S2(Γ1(13)) is 2 dimensional, spanned by the eigenform

f = q + αq2 + (−2α− 4)q3 + (−3α− 7)q4 + (2α+ 3)q5 + · · ·

and the Gal(Q(
√
−3)/Q)-conjugate of f , where α2 + 3α + 3 = 0. The character

ε : (Z/13Z)∗ → C∗ of f has degree 6. Let λ = (
√

3) and let

ρf,λ : Gal(Q/Q)→ GL(2,F3)

be the associated Galois representation. Then det(ρf,λ) = χθ where χ is the mod
3 cyclotomic character and θ ≡ ε (mod 3). In particular θ has order 2. Thus
H = ker(θ) ⊂ (Z/13Z)∗ is exactly the index two subgroup of squares in (Z/13Z)∗.
The conclusion of the theorem can not hold since S2(ΓH(13)) = 0. This is because
any form would have to have a character whose order is at most two since it must
be trivial on H, but S2(ΓH(13)) ⊂ S2(Γ1(13)) and S2(Γ1(13)) is spanned by f and
its Galois conjugate, both of which have character of order 6. In this example

• ` = 3,

• ρλ,f |Gal(Q/Q(
√
−3)) is abelian, and

• det ρ is not a power of χ.

A good way to see the second assertion is to consider the following formula:

f ⊗ ε−1 = f

(up to an Euler factor at 13) in the sense that

ρf,λ ⊗ ε−1 = ρf .



21.7 The Weight revisited: level 1 case 219

Now reduce mod 3 to obtain

ρf,λ ⊗ ε−1 ∼= ρf,λ

since f ≡ f (mod
√
−3) (since 3 is ramified). Thus ρf,λ is isomorphic to a twist

of itself by a complex character so ρf,λ is reducible and abelian over the field
corresponding to its kernel. In fact, by the same argument, ρf,λ is also abelian

when restricted to the Galois groups of Q(
√

13) and Q(
√

39).
[[Give more details and describe David Jones’s thesis.]]

21.7 The Weight revisited: level 1 case

We are interested in the recipe for k(ρ) in the level 1 case. If we semisimplify and
restrict to inertia we obtain a direct sum of two representations. In the level 1 case
both representations are powers of the cyclotomic character. There are thus two
possibilities for ρ|I:

ρ|I =

(
χα ∗

0 χβ

)
or ρ|I =

(
χα 0

0 χβ

)
.

In the second case we guess k(ρ) by looking at the exponents and normalizing as
best we can. Since α and β are only defined mod `− 1 we may, after relabeling if
necessary, assume that 0 ≤ α ≤ β ≤ `− 2. Factoring out χα we obtain

χα ⊗
(

1 0
0 χβ−α

)
.

Next (secretly) recall that if f is ordinary of weight k then f gives rise to the
representation (

χk−1 ∗
0 1

)
(here ∗ can be trivial). If f is of weight β−α+ 1, applying the θ operator α times
gives the desired representation. Thus the recipe for the weight is

w(ρ) = (`+ 1)α+ β − α+ 1 = β + `α+ 1.

There is one caveat: Serre was uncomfortable with weight 1 forms, so if α = β = 0
he defines k(ρ) = ` instead of k(ρ) = 1.

Ogus asks what is wrong with weight 1, and Ribet replies that Serre didn’t know
a satisfactory way in which to define modular forms in weight 1. Merel then adds
that Serre was frustrated because he could not do explicit computations in weight
1.

21.7.1 Companion forms

Suppose f is ordinary (a` 6∈ λ) of weight k, 2 ≤ k ≤ ` + 1, and let ρf,λ be the
associated representation. Then

ρf,λ|I` =

(
χk−1 ∗

0 1

)
.
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To introduce the idea of a companion form suppose that somehow by chance ∗ = 0.
Twisting ρ by χ1−k gives

ρ⊗ χ1−k|I` = ρ⊗ χ`−k|I` =

(
1 0
0 χ`−k

)
.

What is the minimum weight of a newform giving rise to such a representation?
Because the two characters 1 and χ take values in F∗` we are in the level 1 situation.
The representation is semisimple, reducible, and α = 0, β = `− k, so the natural
weight is `+1−k. Thus Conjecture B predicts that there should exist another form
g of weight `+ 1− k such that ρg ∼= ρf ⊗ χ`−k (over F`). Such a form g is called
a companion of f . In characteristic `, we have g = θ`−kf . This conjecture was for
the most part proved by Gross [Gro90] when k 6= 2, `, and by Coleman-Voloch
[CV92] when k = `. [[It would be nice to say something here about the subtleties
involved in going from this mod ` form g to the companion form g produced by
Gross-Coleman-Voloch. Roughly, how are the two objects linked?]]

21.7.2 The Weight: the remaining level 1 case

Let
ρ : Gal(Q/Q) −→ GL(2,F`ν )

be a Galois representation with ` > 2. Assume that ρ is irreducible and modular.
Then ρ comes from a modular form in Sk(ρ)(Γ1(N`)), with 2 ≤ k(ρ) ≤ `2 − 1. We
still must define k(ρ) in the remaining level 1 case in which

ρ|I` =

(
χα ∗

0 χβ

)
.

If α 6= β + 1 then
k(ρ) = 1 + `a+ b

where a = min(α, β) and b = max(α, β). Now assume α = β + 1. Then

ρ|I` = χβ ⊗
(
χ ∗
0 1

)
.

Define a representation of Gal(Q/Q) by

σ = ρ⊗ χ−β ∼=
(
χ ∗
0 1

)
.

We now give a motivated recipe for k(σ). Granted that “finite at `” is defined in
the next section, the recipe is

k(σ) =

{
2 if σ is finite at `,

`+ 1 otherwise.

This is enough to determine k(ρ) giving

k(ρ) = k(χβ ⊗ σ) = (`+ 1)β + k(σ).
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21.7.3 Finiteness

We continue with the notation of the previous section. Let

D = D` = Gal(Q`/Q`) ↪→ Gal(Q/Q)

denote a decomposition group at `.

Definition 21.7.1. We say that σ|D is finite if it is equivalent to a representation
of the form G(Q`), where G is a finite flat F`ν -vector space scheme over Z`.

This definition may not be terribly enlightening, so we consider the following
special case. Suppose E/Q is an elliptic curve with semistable (=good or multi-
plicative) reduction at `. Then E[`] defines a representation

σ : Gal(Q/Q)→ AutE[`] ∼= GL(2,F`).

Let ∆E be the minimal discriminant of E.

Proposition 21.7.2. With notation as above, σ is finite at ` if and only if

ord` ∆E ≡ 0 (mod `).

If p 6= ` (and E has semistable reduction at p) then σ is unramified at p if and
only if

ordp ∆E ≡ 0 (mod `).

We give some hint as to how the proof goes when p ≡ 1 (mod `). Let E be an
elliptic curve with multiplicative reduction at p. Set V = E[`] = F`⊕F`. We have
a representation

σ : D = Gal(Q`/Q`)→ AutV.

The theory of Tate curves gives an exact sequence of D-modules

0→ X → V
α−→ Y → 0.

Each of these terms is a D module and X and Y are 1-dimensional as F`-vector
spaces. The action of D on Y is given by an unramified character ε of degree
dividing 2. The action of D on X is given by χε.

Next we define an element of H1(D,HomF`(Y,X)). A splitting s : Y → V is
an F`-linear map (not necessarily a map of D-modules) such that αs = 1. Choose
such a splitting. For each d ∈ D consider the twisting ds : Y → V defined by
ds(y) = ds(d−1y). Since

α(ds(d−1y)) = d(α(s(d−1y))) = d(d−1y) = y

if follows that ds is again a splitting. Thus ds−s : Y → V followed by α : V → Y is
the zero map. Since ds− s is a linear map, ds− s ∈ HomF`(Y,X). The map d 7→ ds
defines a 1-cocycle which gives an element of H1(D,HomF`(Y,X)). There is an
isomorphism of D-modules HomF`(Y,X) ∼= µ` so we have isomorphisms

H1(D,HomF`(Y,X)) ∼= H1(D,µ`) ∼= Q∗p/(Q
∗
p)
`.

The last isomorphism follows from Kummer theory since Qp is assumed to contain
the `-th roots of unity (our assumption that p ≡ 1 (mod `)). Thus σ defines an
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element of Q∗p/(Q
∗
p)
`. Serre proved that τ is finite if and only if the corresponding

element of Q∗p/(Q
∗
p)
` is in the image of Z∗p.

If E/Qp is an elliptic curve with multiplicative reduction then there exists a
Tate parameter q ∈ Q∗p with Valp(q) > 0 such that

E ∼= Eq := Gm/q
Z

over the unique quadratic unramified extension of Qp. The kernel of multiplication
by ` gives rise to an exact sequence as above, which is obtained by applying the
snake lemma connecting E[`] to Y in the following diagram:

0 //

��

qZ
` //

��

qZ //

��

Y

��
X

��

// Gm
` //

��

Gm

��

// 0

E[`] // E
` // E

Furthermore, the element of Q∗p/(Q
∗
p)
` defined by the representation comming

from E[`] is just the image of q. One has

∆E = q

∞∏
n=1

(1− qn)24.

Note that the product factor is a unit in Qp, so Valp ∆E = Valp q.
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Fermat’s Last Theorem

22.1 The application to Fermat

“As part of this parcel, I can sketch the application to Fermat.”

Suppose that semistable elliptic curves over Q are modular. Then FLT is true.
Why? “As I have explained so many times. . . ” Suppose ` > 5 and

a` + b` + c` = 0

with abc 6= 0, all relatively prime, and such that A = a` ≡ −1 (mod 4), B = b` is
even and C = c` ≡ 1 (mod 4). Then we consider the elliptic curve

E : y2 = x(x−A)(x−B).

The minimal discriminant is

∆E =
(ABC)2

28

as discussed in Serre’s [Ser87] and [DK95]. The conductor NE is equal to the prod-
uct of the primes dividing ABC (so in particular NE is square-free). Furthermore,
E is semistable – the only hard place to check is at 2. Diamond-Kramer checks
this explicitly.

Here is how to get Fermat’s theorem. View E[`] as a G = Gal(Q/Q)-module.
The idea is to show that this representation must come from a modular form of
weight 2 and level 2. This will be a contradiction since there are no modular forms
of weight 2 and level 2. But to apply the level and weight theorem we need to
know that E[`] is irreducible. The proof of this is due to Mazur.

Let ρ : G → AutE[`] be the Galois representation on the ` torsion of E. Since
E is semistable for p 6= `,

ρ|Ip ∼=
(1 ∗

0 1

)
.
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Assume ρ is reducible. Then ρ has an invariant subspace so

ρ ∼=
(α ∗

0 β

)
.

Then from the form of ρ|Ip we see that the characters α and β could be ramified
only at `. Thus α = χi and β = χ1−i where χ is the mod ` cyclotomic character.
The exponents are i and 1− i since αβ is the determinant which is χ. [[Why is χ
supposed to be the only possible unramified character? probably since whatever
the character is, it is a product of χ times something else, and the other factor is
ramified.]]

What happens to ρ at `, i.e., what is ρ|I`? There are only two possibilities. Either
ρ|I` is the direct sum of the two fundamental characters or it is the sum of the
trivial character with χ. The second possibility must be the one which occurs. [[I
do not understand why... something about “characters globally are determined by
local information.”]] So either i = 0 or i = 1. If i = 0,

ρ =
(

1 ∗
0 χ

)
.

This means that there is an element of E[`] whose subspace is left invariant under
the action of Galois. Thus E has a point of order ` rational over Q. If i = 1 then

ρ =
(
χ ∗
0 1

)
.

Therefore µ` ↪→ E[`]. Divide to obtain E′ = E/µ`. The representation on E[`]/µ`
is constant (this is basic linear algebra) so the resulting representation on E′[`] has

the form
(

1 ∗
0 χ

)
so E′ has a rational point of order `.

Now E[2] is a trivial Galois module since it contains 3 obvious rational points,
namely (0, 0), (A, 0), and (B, 0). Thus the group structure on the curve E (or E′)
(which we constructed from a counterexample to Fermat) contains

Z/2Z⊕ Z/2Z⊕ Z/`Z.

In Mazur’s paper [[“rational isogenies of prime degree”]] he proves that ` ≤ 3.
Since we assumed that ` > 5, this is a contradiction. Notice that we have not just
proved FLT. We have demonstrated the irreducibility of the Galois representation
on the ` torsion of the elliptic curve E arising from a hypothetical counterexample
to FLT.

We now have a representation

ρ : Gal(Q/Q)→ GL(2,F`) = AutE[`]

which is irreducible and modular of weight 2 and level N = NE (the conductor
of E). Because ρ is irreducible we conclude that ρ is modular of weight k(ρ) and
level N(ρ). Furthermore

ord` ∆E = ord`(ABC)2 = 2` ord` abc ≡ 0 (mod `)

so k(ρ) = 2.
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We can also prove that N(ρ) = 2. Clearly N(ρ)|NE . This is because N(ρ)
computed locally at p 6= ` divides the power of p in the conductor of the `-adic
representation for E at p. [[I do not understand this.]] Since ρ is only ramified at 2
or maybe `, N(ρ) must be a power of 2. For p 6= `, ρ is ramified at p if and only if
ordp ∆E 6≡ 0 (mod `) which does happen when p = 2. Since NE is square free this
implies that N(ρ) = 2. But S2(Γ1(2)) = 0, which is the ultimate contradiction!

But how do we know semistable elliptic curves over Q are modular?

22.2 Modular elliptic curves

Theorem 22.2.1 (Theorem A). Every semistable elliptic curve over Q is modular.

There are several ways to define a modular elliptic curve. Let E be an elliptic
curve. Then E is modular if there is a prime ` > 2 such that the associated `-adic
Galois representation

ρE,`∞ : G = Gal(Q/Q)→ GL(2,Z`)

defined by the `-power division points on E is modular (i.e., it is a ρf,λ). Let E be
an elliptic curve of conductor NE . For each prime p not dividing NE one associates
a number ap related [[in a simple way!]] to the number of points on the reduction
of E modulo p. Then E is modular if there exists a cusp form f =

∑
bnq

n which
is an eigenform

for the Hecke operators such that ap = bp for almost all p. In the end one deduces
that f can be chosen to have weight 2, trivial character, and level NE . [Shimura]
An elliptic curve E is modular if there is nonconstant map X0(N) → E for some
N .

Theorem 22.2.2 (Theorem B. Wiles, Taylor-Wiles). Suppose E is a semistable
elliptic curve over Q and suppose ` is an odd prime such that E[`] is irreducible
and modular, then ρE,`∞ is modular and hence E is modular.

Now we sketch a proof that theorem B implies theorem A. First take ` = 3. If
E[3] is irreducible then by work of Langlands-Tunnel we win. The idea is to take

ρ : G→ GL(2,F3) ↪→ GL(2,Z[
√
−2]) ⊂ GL(2,C).

The point is that there are two maps Z[
√
−2]→ F3 given by reduction modulo each

of the primes lying over 3. Choosing one gives a map GL(2,Z[
√
−2])→ GL(2,F3)

which, for some amazing reason [[which is?]], has a section. Then ρ : G→ GL(2,C)
is a continuous representation with odd determinant which must still be irreducible.
By Langlands-Tunnel we know that ρ is modular and in fact ρ comes from a weight
1 cusp form f of level a power of 3 times powers of most primes dividing cond(E).
Reducing f modulo some prime of Z[

√
−2] lying over 3 we obtain a mod 3 modular

form which corresponds to ρ : G → E[3]. The proof of all this uses the immense
base-change business in Langlands’ book. [[Ribet next says: “have to get 3’s out
of the level! This jacks up the weight, and the level is still not square free. Then
have to adjust the weight again.” I do not know what the point of this is.]]

Kevin Buzzard asked a question relating to how one knows the hypothesis needed
for the theorem on weights and levels applies in our situation. To answer this
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suppose ` = 3 or 5. Form the associated representation ρ : G→ GL(2,F`) coming
from E[`] and assume it is irreducible, modular and semistable.

A mod ` Galois representation is semistable if for all p 6= `, the inertia group Ip
acts unipotently and the conjectured weight is 2 or `+ 1.

Note that det ρ = χ.

Lemma 22.2.3. Under the above assumptions ` divides the order of the image of
ρ.

Proof. If not, then ρ is finite at all primes p, since for primes p 6= ` inertia acts
trivially [[some other argument for `]]. Inertia acts trivially because if the order of
the image of ρ is prime to ` then ρ acts diagonally. For if not then since ρ|Ip is

unipotent (hence all eigenvalues are 1), in a suitable basis something like
(

1 ψ
0 1

)
is

in the image of ρ and has order `, a contradiction. Because of finiteness k(ρ) = 2
and N(ρ) = 1 which is a contradiction since there are no forms of weight 2 and
level 1.

Next we consider what happens if E[3] is reducible. There are two cases to
consider. First suppose E[5] is also reducible. Then E contains a rational subgroup
of order 15. We can check by hand that all such curves are modular. The key result
that is that X0(15)(Q) is finite.

The second possibility is that E[5] is irreducible. In this case we first find a curve
E′ which is semistable over Q such that

• E′[5] ∼= E[5] (this is easy to do because of the lucky coincidence that X0(5)
has genus 0)

• E′[3] is irreducible

Next we discover that E′ is modular since E′[3] is irreducible. This implies E′[5]
is modular hence E[5] is modular. Theorem B then implies E is modular.
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Deformations

23.1 Introduction

For the rest of the semester let ` be an odd prime. Let ρ : G→ GL(2,F`ν ) be such
that

• ρ is modular

• ρ is irreducible

• ρ is semistable

The representation ρ is semistable if

• for all p 6= `,

ρ|Ip ∼=
(

1 ∗
0 1

)
,

(∗ is typically trivial since most primes are unramified.)

• k(ρ) = 2 or `+ 1.

This means that there are 2 possibilities.

1. ρ is finite at D`.

2.

ρ|D`
∼=
(α ∗

0 β

)
where β is unramified. (Since det(ρ) = χ we can add that α|I` = χ.)

If k(ρ) = 2 then possibility 1 occurs. If k(ρ) = ` + 1 then we are in case 2, but
being in case 2 does not imply that k(ρ) = `+ 1. If ρ comes from an elliptic curve
E/Q, then case 1 occurs if E has good reduction at ` whereas case 2 occurs if
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E has ordinary multiplicative reduction [[I am not sure about this last assertion
because I missed it in class.]].

What is a deformation of ρ and when can we prove that it is modular?
Let A be a complete local Noetherian ring with maximal ideal m and residue

field F`ν (so A is furnished with a map A/m
∼−→ F`ν ). Let

ρ̃A : G→ GL(2, A)

be a representation which is ramified at only finitely many primes. Assume ρ̃ = ρ̃A
lifts ρ, i.e., the reduction of ρ̃ mod m gives ρ.

Theorem 23.1.1. Let the notation be as above, then ρ̃ is modular if and only if
it satisfies (∗).

Neither of the terms in this theorem have been defined yet.

23.2 Condition (∗)
Let

ρ : G = Gal(Q/Q)→ GL(2,F`ν )

be a Galois representation.
The statement we wish to understand is

“All ρ̃ which satisfy (∗) are modular.”

Let A be a complete local Noetherian ring with residue field F`ν . This means
that we are given a map A/m ∼= F`ν . Suppose ρ̃ : G → GL(2, A) satisfies the
following conditions:

• ρ̃ lifts ρ,

• det ρ̃ = χ̃,

• ρ̃ is ramified at only finitely many primes, and

• condition (∗).

What is condition (∗)? It the requirement that ρ̃ have the same qualitative
properties as ρ locally at `. There are two cases to consider.

Case 1. (arising from supersingular reduction at `) Suppose ρ is finite and flat
at `. Then ρ|I` is given by the 2 fundamental characters

I` → F∗`2

of level 2 (instead of from powers of these characters because of the semistability
assumption). Condition (∗) is that the lift of ρ is also constrained to be finite and
flat. This means that for every n ≥ 1,

ρ̃|D` mod mn : D` → GL(2, A/mn)

is finite and flat, i.e., it comes from a finite flat group scheme over Z` which is
provided with an action of A/mn as endomorphisms.
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Case 2. (bad multiplicative reduction at ` or good ordinary reduction at `) In
case 2

ρ|D`
∼=
(α ∗

0 β

)
where β is unramified (equivalently α|I` = χ). [[In the case of good ordinary
reduction β is given by the action of Galois on E[`] in characteristic `.]] Condition
(∗) is the requirement that

ρ̃|D`
∼=
(α̃ ∗

0 β̃

)
,

where β̃ is unramified, α̃|I` = χ̃. It follows automatically that β̃ lifts β.

23.2.1 Finite flat representations

In general what does it mean for ρ to be finite and flat. It means that there exists
a finite flat group scheme G over Z` such that G(Q`) is the representation space
of ρ. This definition is subtle.

Coleman asked if there is a way to reformulate the definition without mention-
ing group schemes. Ribet mentioned Hopf algebras but then stopped. Buzzard
suggested some of the subtlety of the definition by claiming that in some situa-
tion χ is finite flat whereas χ2 is not. Ogus vaguely conjectured that Fontaine’s
language is the way to understand this.

It is possible in case 2 above for ρ|D` to be finite flat without ρ̃ finite flat. The
quintessential example is an elliptic curve E with supersingular reduction at ` such
that `| ord` ∆E .

23.3 Classes of liftings

Let Σ be a finite set of prime numbers. We characterize a class of liftings ρ̃ which
depends on Σ. What does it mean for ρ̃ to be in the class of deformations corre-
sponding to Σ?

23.3.1 The case p 6= `

First we talk about the case when p 6= `. If p ∈ Σ then there is no special condition
on ρ̃|Ip. If p 6∈ Σ one requires that ρ̃ is qualitatively the same as ρ. This means

1. If ρ is unramified at p (which is the usual case), then we just require that ρ̃
is unramified at p.

2. If ρ is ramified but unipotent at p so

ρ|Ip ∼=
(1 ∗

0 1

)
we require that

ρ̃|Ip ∼=
(

1 ∗
0 1

)
.

This situation can occur with an elliptic curve which has multiplicative re-
duction at p and for which ` - ordp ∆E .
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At this point I mention the prime example.

Example 23.3.1. Suppose ρ̃ = ρf,λ is the λ-adic representation attached to f . What
can we say about ordpN(f)? We know that

ordpN(f) = ordpN(ρ) + dim(ρ)Ip − dim(ρ̃)Ip

where (ρ)Ip means the inertia invariants in the representation space of ρ. If ρ is
semistable then

ordpN(ρ) + dim(ρ)Ip = 2.

Since we are assuming ρ is semistable, ordpN(f) ≤ 2. Furthermore, the condition
p 6∈ Σ is a way of saying

ordpN(f) = ordpN(ρ).

Thus the requirement that p 6∈ Σ is that the error term dim(ρ)Ip−dim(ρ̃)Ip vanish.
Note that ordpN(ρ̃) = ordpN(f) by Carayol’s theorem. Thus ordpN(f) is just

a different way to write ordpN(ρ̃).

Example 23.3.2. Imagine ρ is ramified at p and ordpN(ρ) = 1. Then ordpN(f) is
either 1 or 2. The requirement that p 6∈ Σ is that ordpN(f) = 1.

23.3.2 The case p = `

Next we talk about the case p = `. There are two possibilities: either ` ∈ Σ or
` 6∈ Σ. If ` ∈ Σ then we impose no further condition on ρ̃ (besides the already
imposed condition (∗), semistability at `, etc.). If ` 6∈ Σ and ρ if finite and flat
(which is not always the case) then we require ρ̃ to be finite and flat. If ` 6∈ Σ and
ρ is not finite flat then no further restriction (this is the Tate curve situation).

Suppose ρ̃ = ρf,λ, and ρ̃ belongs to the class defined by Σ. We want to guess
(since there is no Carayol theorem) an integer NΣ such that N(f)|NΣ. What is
NΣ? It will be

NΣ =
∏
p 6=`
p∈Σ

p2 ·
∏
p 6=`
p 6∈Σ

pordpN(ρ) · `δ.

Here ordpN(ρ) is 1 if and only if ρ is ramified at p. The exponent δ is either 0 or
1. It is 1 if and only if k(ρ) = `+ 1 or ` ∈ Σ and ρ is ordinary at `, i.e.,

ρ|D`
∼=
(α ∗

0 β

)
.

[[This definition could be completely wrong. It was definitely not presented clearly
in class.]]

There is an exercise associated with this. It is to justify a priori the definition
of δ. Suppose, for example, that ρf,λ satisfies (∗), then we want to show that
`2 - N(f).

Theorem 23.3.3. Every ρ̃ of class Σ comes from S2(Γ0(NΣ)).

Define an approximation T to the Hecke algebra by letting

T = Z[. . . , Tn, . . .] ⊂ End(S2(Γ0(NΣ)))
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where we adjoin only those Tn for which (n, `NΣ) = 1. For some reason there exists
a map

T→ F`ν : Tr 7→ tr ρ(Frobr).

Why should such a map exist? The point is that we know by the theorem that ρ
comes by reduction from a ρf,λ with f ∈ S2(Γ0(NΣ)).

But there is a wrinkle. [[I do not understand: He says: “Clearly N(ρ)|NΣ. k(ρ) =
2 or ` + 1. If k(ρ) = ` + 1 then δ = 1 so `|NΣ. Have to slip over to weight 2 in
order to get f .” This does not make any sense to me.]]

23.4 Wiles’s Hecke algebra

Composing the map T→ OEf with reduction mod λ from OEf to F`ν we obtain
a map T → F`ν . Let m be the kernel. Then m is a maximal ideal of T. Wiles’s
Hecke algebra is the completion Tm of T at m. [[For some reason]] there exists

ρ̃ : G = Gal(Q/Q)→ GL(2,Tm)

such that tr(ρ̃(Frobr)) = Tr. What makes this useful is that ρ̃ is universal for lifts
of type Σ. This means that given any lift τ of type Σ there exists a map

ϕ : GL(2,Tm)→ GL(2, A)

such that τ = ϕρ̃.
Another key idea that the approximation T obtained by just adjoining those

Tn with (n, `NΣ) = 1 is, after completing at certain primes, actually equal to the
whole Hecke algebra.



232 23. Deformations



24
The Hecke Algebra TΣ

24.1 The Hecke algebra

Throughout this lecture ` 6= p and ` ≥ 3. We are studying the representation
ρ : G→ GL(2,F`ν ). This is an irreducible representation, ` is odd, ρ is semistable,
and det ρ = χ. To single out certain classes of liftings we let Σ be a finite set of
primes. Let A be a complete local Noetherian ring with residue filed F`ν . We take
liftings ρ̃ : G→ GL(2, A) such that ρ̃ reduces down to ρ, det ρ̃ = χ̃, and ρ̃ is “like”
ρ away from Σ. For example, if ρ is unramified at p we also want ρ̃ unramified at
p, etc.

Assume ρ̃ is modular. We guess the serious divisibility condition that N(f)|NΣ.
Recall that

NΣ =
∏
p 6=`
p∈Σ

p2 ·
∏
p 6=`
p 6∈Σ

pordpN(ρ) · `δ.

To define δ consider two cases.

• level 1 case. Take δ = 1 if ` ∈ Σ or if ρ is not finite at `. Take δ = 0 otherwise.

• level 2 case. This is the case when ρ|I` has order `2 − 1. Take δ = 0.

A priori nobody seems to know how to prove that N(f)|NΣ given only that ρ̃
is modular. In the end we will show that all modular ρ̃ in fact come from

S2(Γ0(NΣ)).

This can be regarded as a proof that N(ρ)|NΣ.
Last time we tried to get things going by defining the anemic Hecke algebra

T = Z[. . . , Tn, . . .] ⊂ End(S2(Γ0(NΣ)))

where we only adjoin those Tn for which (n, `NΣ) = 1. By some level lowering
theorem there exists an f ∈ Sw(Γ0(NΣ)) giving ρ̃ so we obtain a map T→ F. The
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map sends Tn to the reduction modulo λ of its eigenvalue on f . (λ is a prime of
the ring of integers of Ef lying over `.) [[... something about needing an f of the
right level = N(ρ).]]

Let m ⊂ T be the kernel of the above defined map T→ F. Then m is a maximal
ideal. Let Tm be the completion of T at m and note that

Tm ↪→ T⊗Z Z`.

We need to know that Tm is Gorenstein. This is done by comparing Tm to some
full Hecke ring. Thus

T ⊂ R = Z[. . . , Tn, . . .] ⊂ End(S2(Γ0(NΣ)))

where the full Hecke ring R is obtained by adjoining the Tn for all integers n. We
should think of R as

R = T[T`, {UP : p|NΣ}].

Note that T` may or may not be a U` depending on if `|NΣ.

Lemma 24.1.1. If ` - NΣ then R = T[Up, . . .]. Thus if T` is not a U` then we do
not need T`.

Proof. “This lemma is an interesting thing and the proof goes as follows. Oooh.
Sorry, this is not true. Ummm.... hmm.”

The ring T[Up, . . .] is clearly of finite index in R since: if q is a random prime
number consider R ⊗Z Qq compared to T[Up, . . .] ⊗Z Qq. [[I do not know how to
do this argument. The lemma as stated above probably isn’t really true. The point
is that the following lemma is the one we need and it is true.]]

Let T[Up, . . .] be the ring obtained by adjoining to T just those Up with p|NΣ.

Lemma 24.1.2. If ` - NΣ then the index (R : T[Up, . . .]) is prime to `. Note that
we assume ` ≥ 3.

Proof. We must show that the map T[Up, . . .] → R/`R is surjective. [[I thought
about it for a minute and did not see why this suffices. Am I being stupid?]] Let
A = F`[Tn : (n, `) = 1] be the image of T[Up, . . .] in R/`R so we have a diagram

T[Up, . . .] //

((PPPPPPPPPPPPPP
R/`R

A

<<zzzzzzzz

We must show that A = R/`R. There is a beautiful duality

R/`R× S2(Γ0(NΣ); F`) −→ F` (perfect pairing).

Thus A⊥ = 0 if and only if A = R/`R.
Suppose 0 6= f ∈ A⊥, then an(f) = 0 for all n such that (n, `) = 1. Thus

f =
∑
an`q

n`. Let θ = q ddq be the theta operator. Since the characteristic is `,

θ(f) = 0. On the other hand w(f) = 2 and since ` ≥ 3, ` - 2. Thus w(θf) =
w(f)+`+1 = 2+`+1 which is a contradiction since θf = 0 and w(0) = 0 6= 3+`.
[[The weight is an integer not a number mod `, right?]]



24.2 The Maximal ideal in R 235

Example 24.1.3. The lemma only applies if ` ≥ 3. Suppose ` = 2 and consider
S2(Γ0(23)). Then

T[Up, . . .] = Z[
√

5] ⊂ R = Z[
1 +
√

5

2
]

so (R : T[Up, . . .]) is not prime to 2.

Remark 24.1.4. If N = NΣ then

rankZ T =
∑
M |N

S2(Γ0(M))new

and
rankZR = dimS2(Γ0(N)).

There is an injection ⊕
M |N

S2(Γ0(M))new ↪→ S2(Γ0(N))

but ⊕S2(Γ0(M))new is typically much smaller than S2(Γ0(N)).

24.2 The Maximal ideal in R

The plan is to find a special maximal ideal mR of R lying over m.

mR R

m T

Once we finally find the correct m and mR we will be able to show that the map
Tm → RmR is an isomorphism. In finding mR we will not invoke some abstract
going up theorem but we will “produce” mR by some other process. The ideal m
was defined by a newform f level M |NΣ. The coefficients of f lie in

Oλ = (OEf )λ

where Ef is the coefficient ring of f and λ is a prime lying over `. Thus Oλ is an
`-adic integer ring. Composing the residue class map Oλ → F with the eigenvalue
map T→ Oλ we obtain the map T→ F.

In order to obtain the correct mR we will make a sequence of changes to f to
make some good newform. [[Is the motivation for all this that the lemma will not
apply if `|NΣ?]]

24.2.1 Strip away certain Euler factors

Write f =
∑
anq

n. Replace f by

h =
∑

certain n

anq
n
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where the sum is over those n which are prime to each p ∈ Σ. What does this mean?
If we think about the L-function L(f, s) =

∏
p Lp(f, s), then h has L-function

L(h, s) =
∏
p 6∈Σ

Lp(f, s).

Furthermore making this change does not take us out of S2(Γ0(NΣ)), i.e., h ∈
S2(Γ0(NΣ)). [[He explained why but my notes are very incomplete. They say:
Why. Because h = (f ⊗ ε) ⊗ ε, (ε Dirichlet character ramified at primes in NΣ).
Get a form of level lcm(

∏
p∈Σ p

2, N(f))|NΣ. Can strip and stay in space since NΣ

has correct squares built into it.]]

Remark 24.2.1. Suppose that p||NΣ. Then p 6∈ Σ and p||N(ρ). The level of f is

N(f) =

{
N(ρ), if k(ρ) = 2

N(ρ)`, if k(ρ) = `+ 1
.

If p||N(ρ) then f |Tp = ap(f)f . Thus h is already an eigenform for Tp unless p ∈ Σ
in which the eigenvalue is 0.

[[I do not understand this remark. Why would the eigenvalue being 0 mean that
Tp is not an eigenform? Furthermore, what is the point of this remark in the wider
context of transforming f into a good newform.]]

24.2.2 Make into an eigenform for U`

We perform this operation to f to obtain a form g then apply the above operation
to get the ultimate h having the desired properties. Do this if `|NΣ but ` - N(f).
This happens precisely if ` ∈ Σ and ρ is good and ordinary at `. Then f |U` is
just some random junk. Consider g = f + ∗f(q`) where ∗ is some coefficient. We
see that if ∗ is chosen correctly then g|U` = Cg for some constant C. There are 2
possible choices for ∗ which lead to 2 choices for C. Let a` = a`(f), then C can be
either root of

X2 + a`X + ` = 0.

This equation has exactly one unit root in Oλ. The reason is because we are in
the ordinary situation so a` is a unit. But ` is not a unit. The sum of the roots is
a unit but the product is not. [[Even this is not clear to me right now. Definitely
check this later.]] Make the choice of ∗ so that real root is C. Then we obtain a g
such that

g|U` = (unit) · g.
Next apply the above procedure to strip g and end up with an h such that

• h|U` = (unit) · h,

• h|Up = 0 for p ∈ Σ (p 6= `), and

• h|Tp = ap(f) · h for p 6∈ Σ.

Now take the form h. It gives a map R → Oλ which extends T → Oλ. Let mR
be the kernel of the map R → F obtained by composing R → Oλ with Oλ → F.
A lot of further analysis shows that Tm → Rmr is an isomorphism. We end up
having to show separately that the map is injective and surjective.

[[In this whole lecture p 6= `.]]
[[Wiles’s notation: His TmR is my R and his T′ is my Tm.
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24.3 The Galois representation

We started with a representation ρ, chose a finite set of primes Σ and then made the
completed Hecke algebra Tm. Our goal is to construct the universal deformation
of ρ of type Σ. The universal deformation is a representation

ρ̃ : G→ GL(2,Tm)

such that for all primes p with p - `NΣ, ρ̃(Frobp) has trace Tp ∈ Tm and determi-
nant p.

We now proceed with the construction of ρ̃. Let

T = Z[. . . , Tn, . . .], (n, `NΣ) = 1

be the anemic Hecke algebra. Then T⊗Q decomposes as a product of fields

T⊗Q =
∏
f

Ef

where the product is over a set of representatives for the Galois conjugacy classes
of newforms of weight 2, trivial character, and level dividing NΣ. Since T is integral
(it is for example a finite rank Z-module), T ↪→

∏
f Of . Since Z` is a flat Z-module,

T⊗ Z` ↪→
∏
f

Of ⊗ Z` =
∏
f,λ

Of,λ

where the product is over a set of representatives f and all λ|`.
Tm is a direct factor of T⊗ Z`. [[This is definitely not the assertion that Tm is

an Of,λ. What exactly is it the assertion of really?]]
We can restrict the product to a certain finite set S and still obtain an injection

Tm ↪→
∏

(f,λ)∈S

Of,λ.

The finite set S consists of those (f, λ) such that the prime λ of Of pulls back to m
under the map T → Of obtained by composing T →

∏
f Of with the projection

onto Of . [[Why is this enough so that Tm still injects in?]] Restricting to a finite
product is needed so that

[
∏

(f,λ)∈S

Of,λ : Tm] <∞.

Given f and λ there exists a representation

ρf,λ : G→ GL(2,Of,λ).

It is such that tr ρf,λ(Frobp) = ap is the image of Tp under the inclusion

T⊗ Z` ↪→
∏

(f,λ)∈S

Of,λ.

Put some of these ρf,λ together to create a new representation∏
(f,λ)∈S

ρf,λ : G
ρ′−−−−−−−−→ GL(2,

∏
Of,λ) ⊂ GL(2,Tm ⊗Q).
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The sought after universal deformation ρ̃ is a map making the following diagram
commute

G
ρ′ //

ρ̃ $$I
IIIIIIIII GL(2,Tm ⊗Q)

GL(2,Tm)
) 	

66nnnnnnnnnnnn

Theorem 24.3.1. ρ′ is equivalent to a representation taking values in GL(2,Tm).

One way to [[try to]] prove this theorem is by invoking a general theorem of
Carayol. [[and then what? does this way work? why is it not a good way?]] But
the right way to prove the theorem is Wiles’s way.

24.3.1 The Structure of Tm

Just as an aside let us review the structure of Tm.

• Tm is local.

• Tm is not necessarily a discrete valuation ring.

• Tm ⊗Q is a product of finite extensions of Q`.

• Tm is not necessarily a product of rings Of,λ.

• Tm need not be integral.

24.3.2 The Philosophy in this picture

Choose c to be a complex conjugation inG = Gal(Q/Q). Since ` is odd det(c) = −1
is a very strong condition which rigidifies the situation.

24.3.3 Massage ρ

Choose two 1-dimensional subspaces so that

ρ(c) =
(−1 0

0 1

)
with respect to any basis consisting of one vector from each subspace. For any
σ ∈ G write

ρ(σ) =
(
aσ bσ
cσ dσ

)
.

Then aσdσ and bσcσ are somehow intrinsically defined. This is because

ρ(σc) =
(−aσ ?

? dσ

)
so

aσ =
tr(ρ(σ))− tr(ρ(σc))

2
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and

dσ =
tr(ρ(σ)) + tr(ρ(σc))

2
.

Since we know the determinant it follows that bσcσ is also intrinsically known.
[[The point is that we know certain things about these matrices in terms of their
traces and determinants.]]

Proposition 24.3.2. There exists g ∈ G such that bgcg 6= 0.

Proof. Since ρ is irreducible there exists σ1 such that bσ1
6= 0 and there exists σ2

such that cσ2
6= 0. If bσ2

6= 0 or cσ1
6= 0 then we are done. So the only problem

case is when bσ1 = 0 and cσ2 = 0. Easy linear algebra shows that in this situation
g = σ1σ2 has the required property.

Now rigidify by choosing a basis so that bg = 1. Doing this does not fix a basis
because they are many ways to choose such a basis.

24.3.4 Massage ρ′

Choose a basis of (Tm ⊗Q)2 so that

ρ′(c) =
(−1 0

0 1

)
.

For any σ ∈ G write

ρ′(σ) =
(
aσ bσ
cσ dσ

)
Using an argument as above shows that aσ, dσ ∈ Tm since the traces live in Tm.

Furthermore bσcσ ∈ Tm since the determinant is in Tm.
The key observation is that bσcσ reduces mod m to give the previous bσcσ ∈ F

corresponding to ρ(σ). This is because the determinants and traces of ρ′ are lifts
of the ones from ρ. Since m is the maximal ideal of a local ring and bgcg reduces
mod m to something nonzero it follows that bgcg is a unit in Tm.

Choose a basis so that

ρ′(c) =
(−1 0

0 1

)
and also so that

ρ′(g) =
(ag 1
u dg

)
∈ GL(2,Tm).

Here u is a unit in Tm.

Proposition 24.3.3. Write

ρ′(σ) =
(
aσ bσ
cσ dσ

)
with respect to the basis chosen above. Then aσ, bσ, cσ, dσ ∈ Tm.

Proof. We already know that aσ, dσ ∈ Tm. The question is how to show that
bσ, cσ ∈ Tm. Since

ρ′(σg) =
(aσag + bσu ?

? cσ + dσdg

)
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we see that aσag + bσu ∈ Tm. Since aσag ∈ Tm it follows that bσu ∈ Tm. Since u
is a unit in Tm this implies bσ ∈ Tm. Similarly cσ + dσdg ∈ Tm so cσ ∈ Tm.

As you now see, in this situation we can prove Carayol’s theorem with just some
matrix computations. [[This is basically a field lowering representation theorem.
The thing that makes it easy is that there exists something (namely c) with distinct
eigenvalues which is rational over the residue field. Schur’s paper, models over
smaller fields. “Schur’s method”.]]

24.3.5 Representations from modular forms mod `

If you remember back in the 70’s people would take an f ∈ S2(Γ0(N); F) which is
an eigenform for almost all the Hecke operators

Tpf = cpf for almost all p, and cp ∈ F.

The question is then: Can you find

ρ : G→ GL(2,F)

such that

tr(ρ(Frobp)) = cp and det(ρ(Frobp)) = p

for all but finitely many p? The answer is yes. The idea is to find ρ by taking ρf,λ
[[which was constructed by Shimura?]] for some f and reducing mod λ. The only
special thing that we need is a lemma saying that the eigenvalues in characteristic
` lift to eigenvalues in characteristic 0.

24.3.6 Representations from modular forms mod `n

Serre and Deligne asked: “What happens mod `n?”
More precisely, let R be a local finite Artin ring such that `nR = 0 for some n.

Take f ∈ S2(Γ0(N);R) satisfying the hypothesis

{r ∈ R : rf = 0} = {0}.

This is done to insure that certain eigenvalues are unique. Assume that for almost
all p one has Tpf = cpf with cp ∈ R. The problem is to find ρ : G → GL(2, R)
such that

tr(ρ(Frobp)) = cp and det(ρ(Frobp)) = p

for almost all p.
The big stumbling block is that ρ need not be the reduction of some ρg,λ for any

g, λ. [[I couldn’t understand why – I wrote “can mix up f ’s from characteristic 0
so can not get one which reduces correctly.”]]

Let T = Z[. . . , Tp, . . .] where we only adjoin those Tp for which f is an eigen-
vector [[I made this last part up, but it seems very reasonable]]. Then f obviously
gives a rise to a map

T→ R : T 7→ eigenvalue of T on f .
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The strange hypothesis on f insures that the eigenvalue is unique. Indeed, suppose
Tf = af and Tf = bf , then 0 = Tf−Tf = af−bf = (a−b)f so by the hypothesis
a− b = 0 so a = b.

Since the pullback of the maximal ideal of R is a maximal ideal of T we get a
map Tm → R for some m. [[I do not understand why we suddenly get this map
and I do not know why the pullback of the maximal ideal is maximal.]]

Now the problem is solved. Take ρ′ : G→ GL(2,Tm) with the sought after trace
and determinant properties. Then let ρ be the map obtained by composing with
the map GL(2,Tm)→ GL(2, R).

24.4 ρ′ is of type Σ

Let ρ be modular irreducible and semistable mod ` representation with ` > 2. Let Σ
be a finite set of primes. Then N(ρ)|NΣ. We constructed the anemic Hecke algebra
T which contains a certain maximal ideal m. We then consider the completion Tm

of T at m. Next we constructed

ρ′ : G→ GL(2,Tm)

lifting ρ. Thus the diagram

G
ρ′ //

ρ
((PPPPPPPPPPPPPP GL(2,Tm)

��
GL(2,F)

commutes.
Some defining properties of ρ′ are

• det ρ′ = χ̃.

• tr ρ′(Frobr) = Tr. Since topologically Tm is generated by the Frobr this is a
tight condition.

• ρ′ is a lift of type Σ.

To say ρ′ is a lift of type Σ entails that ρ′ is unramified outside primes p|NΣ.
This is true because ρ′ is constructed from various ρf,λ with N(f)|NΣ. If p 6= `
and p|N(ρ) then p||NΣ. Recall that

ρ|Dp ∼
(
α ∗
0 β

)
where α = βχ and α and β are unramified. For ρ′ to be a lift of type Σ we require
that

ρ′|Dp ∼
(
α̃ ∗
0 β̃

)
where α̃ and β̃ are unramified lifts and α̃ = β̃χ. [[I find it mighty odd that α
is χ times an unramified character and yet α is not ramified! How can that be?
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Restricted to inertia β and α would be trivial but χ would not be.]] Is this true of
ρ′? Yes since by a theorem of Langlands the factors

ρf,λ|Dp ∼
(
α̃ ∗
0 β̃

)
.

[[Ribet said more about this but it does not form a cohesive whole in my mind. Here
is what I have got. Since ρf,λ obviously ramified at p, p||N(f)|NΣ. ρf,λ|Dp is like an

elliptic curve with bad multiplicative reduction at p. That ρf,λ|Dp ∼
(
a b
c d

)
α̃∗0β̃

really comes down to Deligne-Rapaport. If write f =
∑
anq

n, then ap 6= 0 and

β̃(Frobp) = ap, α̃(Frobp) = pap. Thus a2
p = 1 since α̃β̃ = χ. Thus ap = ±1 and

ap mod λ = β(Frobp) = ±1 independent of (f, λ). So we have these numbers
ap = ap(f) = ±1, independent of λ. ]]

24.5 Isomorphism between Tm and RmR

Let T ⊂ R = Z[. . . , Tn, . . .] be the anemic Hecke algebra with maximal ideal m.
The difference between T and R is that R contains all the Hecke operators whereas
T only contains the Tp with p - `NΣ. Wiles proved that the map Tm → RmR is
an isomorphism. Which Hecke operators are going to hit the missing Tp? If we do
the analysis in RmR we see that [[I think for p 6= `!]]

Tp =

{
±1, for p|NΣ, p 6∈ Σ

0, for p ∈ Σ
.

This takes care of everything except T`. In proving the surjectivity of Tm → RmR

we are quite happy to know that Tp = ±1 or 0. The nontrivial proof is given in
[DDT94].

Consider the commuting diagram

Tm
� � //

##G
GG

GG
GG

GG
∏
Of,λ

RmR

OO

The map RmR →
∏
Of,λ is constructed by massaging f by stripping away certain

Euler factors so as to obtain an eigenvector for all the Hecke operators. This
diagram forces Tm → RmR to be injective.

[[Ogus: Is it clearly surjective on the residue field? Ribet: Yes. Ogus: OK, then
we just need to prove it is ètale.]]

From the theory of the θ operator we already know two-thirds of the times that
T contains T`.

Suppose `|NΣ. This entails that we are in the ordinary case, ρ is not finite at `,
or ` ∈ Σ. We did not prove in this situation that T` ∈ Z[. . . , Tn, . . . : (n, `) = 1].

Using generators and relations and brute force one shows that RmR →
∏
Of,λ

is an injection. Then we can compare everything in
∏
Of,λ. Now

ρf,λ|D` ∼
(
α̃ ∗
0 β̃

)
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and

β̃(Frob`) = T` ∈
∏
Of,λ.

Using arguments like last time one shows that β̃(Frob`) can be expressed in terms
of the traces of various operators. This proves surjectivity in this case.

Ultimately we have Tm
∼= RmR . The virtue of Tm is that it is generated by

traces. The virtue of RmR is that it is Gorenstein. We have seen this if ` - NΣ. In
fact it is Gorenstein even if `||NΣ. [[Ribet: As I stand here today I do not know how
to prove this last assertion in exactly one case. Ogus: You mean there is another
gap in Wiles’s proof. Ribet: No, it is just something I need to work out.]] When
`||NΣ there are 2 cases. Either ρ is not finite at ` or it is. The case when ρ is not
finite at ` was taken care of in [MR91]. A proof that RmR is Gorenstein when ρ is
finite at ` (` ∈ Σ) is not in the literature.

Now forget RmR and just think of Tm in both ways: trace generated and Goren-
stein.

24.6 Deformations

Fix an absolutely irreducible modular mod ` representation ρ and a finite set of
primes Σ. Consider the category C of complete local Noetherian W (F)-algebras A
(with A/m = F). Here F = F`ν and W (F) is the ring of Witt vectors, i.e., the ring
of integers of an unramified extension of Q` of degree ν.

Define a functor F : C → Set by sending A in C to the set of equivalence classes
of lifts

ρ̃ : G→ GL(2, A)

of ρ of type Σ. The equivalence relation is that ρ̃1 ∼ ρ̃2 if and only if there exists

M ∈ GL(2, A) with M ≡
(

1 0
0 1

)
(mod m) such that ρ̃1 = M−1ρ̃2M.

Mazur proved [Maz89] that F is representable.

Theorem 24.6.1. There exists a lift

ρuniv : G→ GL(2, RΣ)

of type Σ such that given any lift ρ̃ : G → GL(2, A) there exists a unique homo-
morphism ϕ : RΣ → A such that ϕ◦ρuniv ∼ ρ̃ in the sense of the above equivalence
relation.

Lenstra figured out how to concretely construct RΣ.
Back in the student days of Ribet and Ogus, Schlessinger wrote a widely quoted

thesis which gives conditions under which a certain class of functors can be repre-
sentable. Mazur checks these conditions in his paper.

[[Buzzard: What happened to Schlessinger anyways? Ribet: He ended up at
University of North Carolina, Chapel Hill.]]

We have constructed ρ̃ = ρ′ : G → GL(2,Tm). By the theorem there exists a
unique morphism ϕ : RΣ → Tm such that ρ′ = ϕ ◦ ρuniv.

Theorem 24.6.2. ϕ is an isomorphism thus ρ′ is the universal deformation and
Tm is the universal deformation ring.
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This will imply that any lift of type Σ is modular.
The morphism ϕ is surjective since

Tp = tr ρ̃(Frobp) = trϕ ◦ ρuniv(Frobp) = ϕ(tr(ρuniv(Frobp))).

We have two very abstractly defined local Noetherian rings. How would you
prove they are isomorphic? Most people would be terrified by this question. Wiles
dealt with it.

24.7 Wiles’s main conjecture

“We are like a train which is trying to reach Fermat’s Last Theorem.
Of course it has not made all of its scheduled stops. But it is on its
way.”

We have a representation ρ : G → GL(2,F). Take F = F` for our applications
today. Then the ring of Witt vectors is W (F) = Z`. The Hecke algebra can be
embedded as

Tm ⊂
∏

(g,µ)∈A

Og,µ.

The Hecke algebra Tm has the following properties.

• The index of Tm in
∏
Og,µ is finite.

• Gorenstein as a Z`-module, i.e., there exists an isomorphism HomZ`(Tm,Z`) ∼=
Tm.

• Tm is generated by the Tr with r prime and (r, `NΣ) = 1.

We have constructed a representation

ρ′ : G→ GL(2,Tm).

Composing appropriately with the map Tm ↪→
∏
Og,µ gives a map

G→
∏

(g,µ)

GL(2,Og,µ).

This is the product of representations
∏
ρg,µ. The triangle is

G
ρ′ //

∏
ρg,µ ((QQQQQQQQQQQQQQQQ GL(2,Tm)

��∏
GL(2,Og,µ)

Moreover, ρ′ is a deformation of ρ of type Σ so it lifts ρ and satisfies certain “nice
as ρ” properties at primes p 6∈ Σ.

Let
ρuniv : G→ GL(2, RΣ)
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be the universal deformation of ρ of type Σ. Lenstra gave a very concrete paper
[dSL97] constructing this ρuniv. Before his paper there was only Schlesinger’s thesis.
By the definition of ρuniv there exists a unique map ϕ : RΣ → Tm = TΣ such that
ϕ ◦ ρuniv = ρ′. By ϕ ◦ ρuniv we mean the composition of ρuniv with the map
GL(2, RΣ)→ GL(2,Tm) induces by ϕ. As noted last time it is easy to see that ϕ
is surjective.

Theorem 24.7.1 (Wiles’s main ‘conjecture’). ϕ is an isomorphism (for each Σ).

The theorem implies the following useful result.

Theorem 24.7.2. Suppose E is a semistable elliptic curve over Q and that for
some ` > 2 the representation ρ = ρ`,E on E[`] is irreducible and modular. Then
E is modular.

Proof. The representation

ρ̃ = ρ`∞,E : G→ GL(2,Z`)

on the `-power torsion E[`∞] = ∪E[`n] is a lift of

ρ : G→ Aut(E[`]) = GL(2,F`).

Furthermore, ρ̃ is a deformation of ρ of type Σ. Applying universality and using
the theorem that RΣ

∼= TΣ we get a map

TΣ → Z` : Tr 7→ ar = ar(E) = Tr ρ̃(Frobr).

The relevant diagram is
RΣ

�� !!B
BB

BB
BB

B

TΣ
// Z`

where the map RΣ → Z` is given by

Tr ρuniv(Frobr) 7→ ar.

Now the full Hecke algebra Z[. . . , Tn, . . .] embeds into the completion TΣ. Com-
posing this with the map TΣ → Z` above we obtain a map

α : Z[. . . , Tn, . . .]→ Z`.

Because of the duality between the Hecke algebra and modular forms there exists a
modular form h ∈ S2(Γ0(NΣ),Z`) corresponding to α. Since α is a homomorphism
h is a normalized eigenform. Furthermore ar(h) = ar(E) ∈ Z for all primes r -
`NΣ. Since almost all coefficients of h are integral it follows that h is integral.
Because we know a lot about eigenforms we can massage h to an eigenform in
S2(Γ0(NE),Z).

[[Some undigested comments follow.]]

• Once there is any connection between ρ and a modular form one can prove
Taniyama-Shimura in as strong a form as desired. See the article Number
theory as Gadfly.



246 24. The Hecke Algebra TΣ

• Take the abelian variety Ah attached to h. The λ-adic representation will
have pieces with the same representations. Using Tate’s conjecture we see
that E is isogenous to Ah. Use at some points Carayol’s theorem: If g is a
form giving rising to the abelian variety A then the conductor of A is the
same as the conductor of g.

• Tate proved that if two elliptic curves have isomorphic ρ`∞ for some ` then
they are isogenous.

24.8 TΣ is a complete intersection

Recall the construction of TΣ = Tm. Let T be the anemic Hecke algebra. Then

T⊗ Z` ↪→
∏
Og,µ

where the product is over a complete set of representatives (for the action of Galois
on eigenforms) g and primes µ lying over `. We found a specific (f, λ) for Σ = ∅
such that ρλ,f = ρ. The maximal ideal m was defined as follows. The form f
induces a map T → Of,λ. Taking the quotient of Of,λ by its maximal ideal we
obtain a map T→ F`. Then m is the kernel of this map. The diagram is

T

�� !!D
DD

DD
DD

D

Of,λ // F`

The map Of,λ → F` is
ar(f) 7→ Tr ρ(Frobr).

To fix ideas we cheat and suppose Of,λ = Z`. [[In Wiles’s optic this is OK since
he can work this way then tensor everything at the end.]]

Now ρf,λ is a distinguished deformation of ρ [[“Distinguished” is not meant in
a mathematical sense]]. The map f gives rise to a map TΣ → O = Z` which we
also denote by f

RΣ

##H
HH

HH
HH

HH
ϕ // TΣ

f

��
O = Z`

24.9 The Inequality #O/η ≤ #℘T/℘
2
T ≤ #℘R/℘

2
R

Let
ρ : G = Gal(Q/Q)→ GL(2,F`)

be irreducible and modular with ` > 2. Let Σ be a finite set of primes. We assume
there is a modular form f of weight 2 with coefficients in Z` which gives rise ρ. Let

ρf,λ : G→ GL(2,Z`)
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be the representation coming from f , then ρf,λ reduces to ρ modulo `.
Let RΣ be the universal deformation ring, so every deformation of ρ of type Σ

factors through RΣ in an appropriate sense. Let TΣ be the Hecke ring associated
to Σ. It is a Z`-algebra which is free of finite rank. Furthermore

TΣ ⊂
∏

(g,µ)∈A

Og,µ = Of,µ ×
∏

(g,µ)∈A−{(f,µ)}

Og,µ

where A is as defined before. Define projections pr1 and pr2 onto the first and rest
of the factors, respectively

pr1 :
∏

(g,µ)∈A

Og,µ → O = Of,λ

pr2 :
∏

(g,µ)∈A

Og,µ →
∏

(g,µ)6=(f,λ)

Og,µ

Let ϕ : RΣ → TΣ be the map coming from the universal property of RΣ. This
map is surjective. The famous triangle which dominates all of the theory is

RΣ

##F
FFFFFFFFFFF

ϕ // TΣ

pr1

��
O = Z`

24.9.1 The Definitions of the ideals

We now define two ideals. View TΣ as sitting in the product
∏
Og,µ.

1. The congruence ideal η ⊂ O is

η := O ∩TΣ = ker
(

pr2 : TΣ →
∏

(g,µ) 6=(f,λ)

Og,µ
)

2. The prime ideal ℘T ⊂ TΣ is

℘T = ker
(

pr1 : TΣ → O
)

It is true that
#O/η ≤ #℘T /℘

2
T .

The condition for equality is a theorem of Wiles.

Theorem 24.9.1. TΣ is a complete intersection if and only if #O/η = #℘T /℘
2
T .

There is an analogous construction for

ψ = pr1 ◦ϕ : RΣ → O.

The diagram is

RΣ
ϕ−→ TΣ

ψ ↘ ↓ pr1

O
.
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Let ℘R be the kernel of ψ. From the commutativity of the above diagram we see
that ψ maps ℘R →→ ℘T . Thus we have an induced map ψ on “tangent spaces”

ψ : ℘R/℘
2
R →→ ℘T /℘

2
T .

It follows that
#O/η ≤ #℘T /℘

2
T ≤ #℘R/℘

2
R.

There is an analogous theorem.

Theorem 24.9.2. The above inequalities are all equalities iff

• ϕ : RΣ → TΣ is an isomorphism, and

• TΣ is a complete intersection ring.

24.9.2 Aside: Selmer groups

Let M be the set of matrices in M(2,Q`/Z`) which have trace 0. Then GL(2,Z`)
operates on M by conjugation. Thus G acts on M via the representation ρ′ : G→
GL(2,Z`). To ℘R/℘

2
R there corresponds the Selmer group which is a subgroup of

H1(Gal(Q/Q),M). The subgroup is

H1
Σ(G,M) = HomO(℘R/℘

2
R,Q`/Z`) ⊂ H1(Gal(Q/Q),M).

[[Since Flach’s thesis there has been a problem of trying to get an upper bound
for the Selmer group. Wiles converted it into the above problem.]]

24.9.3 Outline of some proofs

We outline the key steps in the proof that #℘R/℘
2
R ≤ #O/η.

Step 1: Σ = ∅

The key step is the minimal case when Σ = ∅. This is done in [TW95]. They claim
to be proving the apparently weaker statement that TΣ a complete intersection
implies

#℘T /℘
2
T = #O/η.

But in Wiles’s paper [Wil95] he obtains the inequality

#℘R/℘
2
R ≤

(#℘T /℘
2
T )2

#O/η
.

Combining these two shows that

#℘R/℘
2
R ≤ #O/η.

In an appendix to [TW95] Faltings proves directly that

#℘R/℘
2
R ≤ #O/η.

At this point there were some remarks about why Wiles might have taken a
circuitous route in his Annals paper. Ribet replied,

“As Serre says, it is sometimes better to leave out any psychological
behavior related to how people did something but instead just report
on what they did.”
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Step 2: Passage from Σ = ∅ to σ general

The second step is the induction step in which we must understand what happens
as Σ grows. Thus Σ is replaced by Σ′ = Σ ∪ {q} where q is some prime not in Σ.

We will use the following notation. The object attached to Σ′ will be denoted
the same way as the object attached to Σ but with a ′. Thus (℘R/℘

2
R)′ denotes

the Selmer group for Σ′.
The change in the Selmer group when Σ is replaced by Σ′ is completely governed

by some local cohomology group. There is a constant cq such that

#(℘R/℘
2
R)′ ≤ cq#(℘R/℘

2
R) ≤ cq#O/η.

So we just need to know that

#O/η′ ≥ cq#O/η,

i.e., that η′ is small as an ideal in O. We need a formula for the ratio of the two
orders.

Let T be the anemic ring of Hecke operators on S2(Γ0(NΣ)) obtained by adjoin-
ing to Z all the Hecke operators Tn with n prime to `NΣ. Let T′ be the anemic
Hecke ring of Hecke operators on S2(Γ0(NΣ′)).

Since NΣ|NΣ′ there is an inclusion

S2(Γ0(NΣ)) ↪→ S2(Γ0(NΣ′)).

There is one subtlety, this injection is not equivariant for all of the Hecke operators.
But this is no problem because T and T′ are anemic. So the inclusion induces a
restriction map r : T′ → T.

We now introduce a relative version of η which is an ideal I ⊂ T. One way to
think of I is as T ∩T′ where T and T′ are both viewed as subrings of

∏
Og,µ

T′
r //

� _

��

T� _

��
T′m′� _

��

Tm� _

��∏
(g,µ)Og,µ

� � //
∏

more (g,µ)Og,µ

The definition Lenstra would give is that

I := r(AnnT′(ker(r))).

The amazing formula is
η′ = η · f(I)

where f : T → O is the map induced by the modular form f . [[After introducing
this definition Ogus was very curious about how deep it is, in particular, about
whether its proof uses the Gorensteiness of T. Ribet said, “somehow I do not think
this formula can possibly be profound.”]]
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We pause with an aside to consider Wiles’s original definition of η. By duality
the map f : TΣ → Z` induces

f∨ : HomZ`(Z`,Z`)→ HomZ`(TΣ,Z`) ∼= TΣ.

Because TΣ is Gorenstein there is an isomorphism HomZ`(TΣ,Z`) ∼= TΣ. Now
f∨(id) ∈ TΣ so f(f∨(id)) ∈ O = Z`. Wiles let η = (f(f∨(id))) be the ideal
generated by f(f∨(id)).

To finish step 2 we must show that #O/f(I) ≥ cq, i.e., that “I is small”. [[I do
not see how this actually finishes step 2, but it is reasonable that it should. How
does this index relate to the index of f(I)η in O?]]

Let J = J0(NΣ) and J ′ = J0(NΣ′). Since

S2(Γ0(NΣ)) ↪→ S2(Γ0(NΣ′))

functoriality of the Jacobian induces a map J ↪→ J ′. By autoduality we also
obtain an injection J∨ ↪→ J ′ and J ∩ J∨ is a finite subgroup of J ′. [[I definitely do
not understand why J is not just equal to J⊥. Where does the other embedding
J⊥ ↪→ J ′ come from?]]

It can be seen that J ∩ J∨ = J [δ] for some δ ∈ T. It turns out that

AnnT(J ∩ J∨) = T ∩ δ End(J) ⊇ δT.

It is an observable fact that f(δT) is an ideal of O of norm cq. The heart of the
whole matter is to see that the inclusion

δT ⊆ T ∩ δ End(J)

is an equality after localization at m. To do this we have to know that Tatem(J) ∼=
T2

m. This is equivalent to the Gorenstein business. With this in hand one can just
check this equality.

Unfortunately, it is the spring of 1996 and we are now 10 minutes past when the
course should end. Realizing this, Ken brings the course to a close. In the grand
Berkeley tradition, the room fills with applause.
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26
The Modular Curve X0(389)

Let N be a positive integer, and let X0(N) be the compactified coarse moduli space
that classifies pairs (E,C) where E is an elliptic curve and C is a cyclic subgroup
of order N . The space X0(N) has a canonical structure of algebraic curve over Q,
and its properties have been very well studied during the last forty years. For
example, Breuil, Conrad, Diamond, Taylor, and Wiles proved that every elliptic
curve over Q is a quotient of some X0(N).

The smallest N such that the Jacobian of X0(N) has positive Mordell-Weil rank
is 37, and Zagier studied the genus-two curveX0(37) in depth in his paper [Zag85b].
From this viewpoint, the next modular curve deserving intensive investigation is
X0(389), which is the first modular curve whose Jacobian has Mordell-Weil rank
larger than that predicted by the signs in the functional equations of the L-series
attached to simple factors of its Jacobian; in fact, 389 is the smallest conductor
of an elliptic curve with Mordell-Weil rank 2. Note that 389 is prime and X0(389)
has genus g = 32, which is much larger than the genus 2 of X0(37), which makes
explicit investigation more challenging.

Work of Kolyvagin [Kol88b, Kol88a] and Gross-Zagier [GZ86] has completely
resolved the rank assertion of the Birch and Swinnerton-Dyer conjecture (see,
e.g., [Tat66]) for elliptic curves E with ords=1 L(E, s) ≤ 1. The lowest-conductor
elliptic curve E that doesn’t submit to the work of Kolyvagin and Gross-Zagier
is the elliptic curve E of conductor 389 mentioned in the previous paragraph. At
present we don’t even have a conjectural natural construction of a finite-index
subgroup of E(Q) analogous to that given by Gross and Zagier for rank 1 (but see
Mazur’s work on universal norms, which might be used to construct E(Q) ⊗ Zp
for some auxiliary prime p).

Inspired by the above observations, and with an eye towards providing helpful
data for anyone trying to generalize the work of Gross, Zagier, and Kolyvagin,
in this paper we compute everything we can about the modular curve X0(389).
Some of the computations of this paper have already proved important in several
other papers: the discriminant of the Hecke algebra attached to X0(389) plays
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a roll in [Rib99], the verification of condition 3 in [MS01], and the remark after
Theorem 1 of [?]; also, the arithmetic of J0(389) provides a key example in [AS02,
§4.2]. Finally, this paper serves as an entry in an “encyclopaedia, atlas or hiker’s
guide to modular curves”, in the spirit of N. Elkies (see [Elk98, pg. 22]).

We hilight several surprising “firsts” that occur at level 389. The discriminant
of the Hecke algebra attached to S2(Γ0(389)) has the apparently unusual property
that it is divisible by p = 389 (see Section 26.2.1). Also N = 389 is the smallest
integer such that the order of vanishing of L(J0(N), s) at s = 1 is larger than
predicted by the functional equations of eigenforms (see Section 26.1.3). The author
conjectures that N = 389 is the smallest level such that an optimal newform factor
of J0(N) appears to have Shafarevich-Tate group with nontrivial odd part (see
Section 26.4.1). Atkin conjectures that 389 is the largest prime such that the cusp
of X+

0 (389) fails to be a Weierstrass point (see Section 26.4.2).

26.1 Factors of J0(389)

To each newform f ∈ S2(Γ0(389)), Shimura [Shi73] associated a quotient Af of
J0(389), and J0(389) is isogeneous to the product

∏
Af , where the product runs

over the Gal(Q/Q)-conjugacy classes of newforms. Moreover, because 389 is prime
each factor Af cannot be decomposed further up to isogeny, even over Q (see
[Rib75]).

26.1.1 Newforms of level 389

There are five Gal(Q/Q)-conjugacy classes of newforms in S2(Γ0(389)). The first
class corresponds to the unique elliptic curve of conductor 389, and its q-exansion
begins

f1 = q − 2q2 − 2q3 + 2q4 − 3q5 + 4q6 − 5q7 + q9 + 6q10 + · · · .

The second has coefficients in the quadratic field Q(
√

2), and has q-expansion

f2 = q +
√

2q2 + (
√

2− 2)q3 − q5 + (−2
√

2 + 2)q6 + · · · .

The third has coefficients in the cubic field generated by a root α of x3 − 4x− 2:

f3 = q + αq2 − αq3 + (α2 − 2)q4 + (−α2 + 1)q5 − α2q6 + · · · .

The fourth has coefficients that generate the degree-six field defined by a root β
of x6 + 3x5 − 2x4 − 8x3 + 2x2 + 4x− 1 and q-expansion

f4 = q + βq2 + (β5 + 3β4 − 2β3 − 8β2 + β + 2)q3 + · · · .

The fifth and final newform (up to conjugacy) has coefficients that generate the
degree 20 field defined by a root of

f5 = x20 − 3x19 − 29x18 + 91x17 + 338x16 − 1130x15 − 2023x14 + 7432x13

+6558x12 − 28021x11 − 10909x10 + 61267x9 + 6954x8 − 74752x7

+1407x6 + 46330x5 − 1087x4 − 12558x3 − 942x2 + 960x+ 148.
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FIGURE 26.1.1. Congruences Between Newforms

Congruences

The vertices in Figure 26.1.1 correspond to the newforms fi; there is an edge
between fi and fj labeled p if there is a maximal ideal ℘ | p of the field generated
by the Fourier coefficients of fi and fj such that fi ≡ fj (mod ℘).

26.1.2 Isogeny structure

We deduce from the above determination of the newforms in S2(Γ0(389)) that
J0(389) is Q-isogenous to a product of Q-simple abelian varieties

J ∼ A1 ×A2 ×A3 ×A4 ×A5.

View the duals A∨i of the Ai as abelian subvarieties of J0(389). Using modular
symbols as in [AS05, §3.4] we find that, for i 6= j, a prime p divides #(A∨i ∩ A∨j )
if and only if fi ≡ fj (mod ℘) for some prime ℘ | p (recall that the congruence
primes are given in Figure 26.1.1 above).

26.1.3 Mordell-Weil ranks

Suppose f ∈ S2(Γ0(N)) is a newform of some level N . The functional equation for
L(f, s) implies that ords=1 L(f, s) is odd if and only if the sign of the eigenvalue
of the Atkin-Lehner involution WN on f is +1.

Proposition 26.1.1. If f ∈ S2(Γ0(N)) is a newform of level N < 389, then
ords=1 L(f, s) is either0 or 1.

Proof. The proof amounts to a large computation, which divides into two parts:

1. Verify, for each newform f of level N < 389 such that WN (f) = −f , that

L(f, 1) = ∗
∫ i∞

0
f(z)dz (for some nonzero ∗) is nonzero. This is a purely

algebraic computation involving modular symbols.
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2. Verify, for each newform f of level N < 389 such that WN (f) = f , that
L′(f, 1) 6= 0 (see [FpS+01, §4.1], which points to [Cre97, §2.11,§2.13]). We do
this by approximating an infinite series that converges to L′(f, 1) and noting
that the value we get is far from 0.

Thus N = 389 is the smallest level such that the L-series of some factor Af of
J0(N) has order of vanishing higher than that which is forced by the sign in the
functional equation.

Proposition 26.1.2. The following table summarizes the dimensions and Mordell-
Weil ranks (over the image of the Hecke ring) of the newform factors of J0(N):

A1 A2 A3 A4 A5

Dimension 1 2 3 6 20

Rank 2 1 1 1 0

Proof. The elliptic curve A1 is 389A in Cremona’s tables, which is the elliptic curve
of smallest conductor having rank 2. For A5 we directly compute whether or not
the L-function vanishes using modular symbols, by taking an inner product with
the winding element ew = −{0,∞}. We find that the L-function does not vanish.
By Kolyvagin-Logachev, it follows that A5 has Mordell-Weil rank 0.

For each of the other three factors, the sign of the functional equation is odd,
so the analytic ranks are odd. As in the proof of Proposition 26.1.1, we verify that
the analytic rank is 1 in each case. By work of Gross, Zagier, and Kolyvagin it
follows that the ranks are 1.

26.2 The Hecke algebra

26.2.1 The Discriminant is divisible by p

Let N be a positive integer. The Hecke algebra T ⊂ End(S2(Γ0(N))) is the subring
generated by all Hecke operators Tn for n = 1, 2, 3, . . .. We are concerned with the
discriminant of the trace pairing (t, s) 7→ Tr(ts).

When N is prime, TQ = T ⊗Z Q is a product K1 × · · · × Kn of totally real

number fields. Let T̃ denote the integral closure of T in TQ; note that T̃ =
∏
Oi

where Oi is the ring of integers of Ki. Then disc(T) = [T̃ : T] ·
∏n
i=1 disc(Ki).

Proposition 26.2.1. The discriminant of the Hecke algebra associated to S2(Γ0(389))
is

253 · 34 · 56 · 312 · 37 · 389 · 3881 · 215517113148241 · 477439237737571441.

Proof. By [?], the Hecke algebra T is generated as a Z-module by T1, T2, . . . T65.
To compute disc(T), we proceed as follows. First, compute the space S2(Γ0(389))
of cuspidal modular symbols, which is a faithful T-module. Choose a random
element x ∈ S2(Γ0(389))+ of the +1-quotient of the cuspidal modular symbols,
then compute the images v1 = T1(x), v2 = T2(x), . . . , v65 = T65(x). If these don’t
span a space of dimension 32 = rankZ T choose a new random element x and
repeat. Using the Hermite Normal Form, find a Z-basis b1, . . . , b32 for the Z-span
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of v1, . . . , v65. The trace pairing on T induces a trace pairing on the vi, and hence
on the bi. Then disc(T) is the discriminant of this pairing on the bi. The reason
we embed T in S2(Γ0(389))+ as Tx is because directly finding a Z-basis for T
would involve computing the Hermite Norm Form of a list of 65 vectors in a 1024-
dimensional space, which is unnecessarily difficult (though possible).

We compute this discriminant by applying the definition of discriminant to a ma-
trix representation of the first 65 Hecke operators T1, . . . , T65. Matrices represent-
ing these Hecke operators were computed using the modular symbols algorithms
described in [Cre97]. [Sturm, On the congruence of modular forms].

In the case of X0(389), T ⊗ Q = K1 × K2 × K3 × K6 × K20, where Kd has
degree d over Q. We have

K1 = Q,

K2 = Q(
√

2)

K3 = Q(β), β3 − 4β − 2 = 0,

K6 = Q(γ), γ6 + 3γ5 − 2γ4 − 8γ3 + 2γ2 + 4γ − 1 = 0,

K20 = Q(δ), δ20 − 3δ19 − 29δ18 + 91δ17 + 338δ16 − 1130δ15 − 2023δ14 + 7432δ13

+6558δ12 − 28021δ11 − 10909δ10 + 61267δ9 + 6954δ8 − 74752δ7

+1407δ6 + 46330δ5 − 1087δ4 − 12558δ3 − 942δ2 + 960δ + 148 = 0.

The discriminants of the Ki are

K1 K2 K3 K6

1 23 22 · 37 53 · 3881

and

disc(K20) = 214 · 5 · 389 · 215517113148241 · 477439237737571441.

Observe that the discriminant of K20 is divisible by 389. The product of the dis-
criminants is

219 · 54 · 37 · 389 · 3881 · 215517113148241 · 477439237737571441.

This differs from the exact discriminant by a factor of 234 ·34 ·52 ·312, so the index
of T in its normalization is

[T̃ : T] = 217 · 32 · 5 · 31.

Notice that 389 does not divide this index, and that 389 is not a “congruence
prime”, so 389 does not divide any modular degrees.

Question 26.2.2. Is there a newform optimal quotient Af of J0(p) such that p
divides the modular degree of Af? (No, if p < 14000.)

26.2.2 Congruences primes in Sp+1(Γ0(1))

K. Ono asked the following question, in connection with Theorem 1 of [?].

Question 26.2.3. Let p be a prime. Is p ever a congruence prime on Sp+1(Γ0(1))?
More precisely, if K is the number field generated by all the eigenforms of weight
p + 1 on Γ0(1), can there be a prime ideal ℘ | p for which f ≡ g (mod ℘) for
distinct eigenforms f, g ∈ Sp+1(Γ0(1))?
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The answer is “yes”. There is a standard relationship between Sp+1(Γ0(1))
and S2(Γ0(p)). As noted in Section 26.2.1, p = 389 is a congruence prime for
S2(Γ0(389)), so we investigate S389+1(Γ0(1)).

Proposition 26.2.4. There exist distinct newforms f, g ∈ S389+1(Γ0(1)) and a
prime ℘ of residue characteristic 389 such that f ≡ g (mod ℘).

Proof. We compute the characteristic polynomial f of the Hecke operator T2 on
S389+1(Γ0(1)) using nothing more than [Ser73, Ch. VII]. We find that f factors
modulo 389 as follows:

f = (x+ 2)(x+ 56)(x+ 135)(x+ 158)(x+ 175)2(x+ 315)(x+ 342)(x2 + 387)

(x2 + 97x+ 164)(x2 + 231x+ 64)(x2 + 286x+ 63)

(x5 + 88x4 + 196x3 + 113x2 + 168x+ 349)

(x11 + 276x10 + 182x9 + 13x8 + 298x7 + 316x6 + 213x5

+248x4 + 108x3 + 283x2 + x+ 101)

Moreover, f is irreducible and 389 || disc(f), so the square factor (x+175)2 implies
that 389 is ramified in the degree-32 field L generated by a single root of f . Thus
there are exactly 31 distinct homomorphisms from the ring of integers of L to
F389. That is, there are exactly 31 ways to reduce the q-expansion of a newform in
S390(Γ0(1)) to obtain a q-expansion in F389[[q]]. Let K be the field generated by
all eigenvalues of the 32 newforms g1, . . . g32 ∈ S390(Γ0(1)), and let ℘ be a prime of
OK lying over 389. Then the subset {g1 (mod ℘), g2 (mod ℘), . . . , g32 (mod ℘)}
of F389[[q]] has cardinality at most 31, so there exists i 6= j such that gi ≡ gj
(mod ℘).

26.3 Supersingular points in characteristic 389

26.3.1 The Supersingular j-invariants in characteristic 389

Let α be a root of α2 + 95α + 20. Then the 33 = g(X0(389)) + 1 supersingular
j-invariants in F3892 are

0, 7, 16, 17, 36, 121, 154, 220, 318, 327, 358, 60α+ 22, 68α+ 166, 80α+ 91, 86α+ 273,
93α+ 333, 123α+ 350, 123α+ 375, 129α+ 247, 131α+ 151, 160α+ 321, 176α+ 188,
213α+ 195, 229α+ 292, 258α+ 154, 260α+ 51, 266α+ 335, 266α+ 360, 296α+ 56,
303α+ 272, 309α+ 271, 321α+ 319, 329α+ 157.

26.4 Miscellaneous

26.4.1 The Shafarevich-Tate group

Using visibility theory [AS02, §4.2], one sees that #X(A5) is divisible by an odd
prime, because

(Z/5Z)2 ≈ A1(Q)/5A1(Q) ⊂X(A5).

Additional computations suggest the following conjecture.
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Conjecture 26.4.1. N = 389 is the smallest level such that there is an optimal
newform quotient Af of J0(N) with #X(Af ) divisible by an odd prime.

26.4.2 Weierstrass points on X+
0 (p)

Oliver Atkin has conjectured that 389 is the largest prime such that the cusp on
X+

0 (389) fails to be a Weierstrass point. He verified that the cusp of X+
0 (389)

is not a Weierstrass point but that the cusp of X+
0 (p) is a Weierstrass point for

all primes p such that 389 < p ≤ 883 (see, e.g., [Elk98, pg.39]). In addition, the
author has extended the verification of Atkin’s conjecture for all primes < 3000.
Explicitly, this involves computing a reduced-echelon basis for the subspace of
S2(Γ0(p)) where the Atkin-Lehner involution Wp acts as +1, and comparing the
largest valuation of an element of this basis with the dimension of the subspace.
These numbers differ exactly when the cusp is a Weierstrass point.

26.4.3 A Property of the plus part of the integral homology

For any positive integerN , letH+(N) = H1(X0(N),Z)+ be the +1 eigen-submodule
for the action of complex conjugation on the integral homology of X0(N). Then
H+(N) is a module over the Hecke algebra T. Let

F+(N) = coker
(
H+(N)×Hom(H+(N),Z)→ Hom(T,Z)

)
where the map sends (x, ϕ) to the homomorphism t 7→ ϕ(tx). Then #F+(p) ∈
{1, 2, 4} for all primes p < 389, but #F+(389) = 8.

26.4.4 The Field generated by points of small prime order on an
elliptic curve

The prime 389 arises in a key way in the verification of condition 3 in [MS01].
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[Edi92a] B. Edixhoven, Néron models and tame ramification, Compositio Math.
81 (1992), no. 3, 291–306. MR 93a:14041

[Edi92b] , The weight in Serre’s conjectures on modular forms, Invent.
Math. 109 (1992), no. 3, 563–594.

[Eis95] D. Eisenbud, Commutative algebra with a view toward algebraic geom-
etry, Springer-Verlag, New York, 1995. MR 97a:13001

[Elk98] N. D. Elkies, Elliptic and modular curves over finite fields and related
computational issues, Computational perspectives on number theory
(Chicago, IL, 1995), Amer. Math. Soc., Providence, RI, 1998, pp. 21–
76.

[Ell02] J. Ellenberg, q-curves and Galois Representations,
http://www.math.princeton.edu/ ellenber/papers.html#MCAV

(2002).

[ES00] J. Ellenberg and C. Skinner, On the Modularity of Q-curves,
http://www.math.princeton.edu/ ellenber/papers.html#QCURVE

(2000).

[FJ02] D. W. Farmer and K. James, The irreducibility of some level 1 Hecke
polynomials, Math. Comp. 71 (2002), no. 239, 1263–1270 (electronic).
MR 2003e:11046

[FM99] G. Frey and M. Müller, Arithmetic of modular curves and applications,
Algorithmic algebra and number theory (Heidelberg, 1997), Springer,
Berlin, 1999, pp. 11–48.
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