8

Modular Forms of Higher Level

8.1 Modular Forms on $\Gamma_{1}(N)$

Fix integers $k \geq 0$ and $N \geq 1$. Recall that $\Gamma_{1}(N)$ is the subgroup of elements of $\mathrm{SL}_{2}(\mathbf{Z})$ that are of the form $\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right)$ when reduced modulo N.
Definition 8.1.1 (Modular Forms). The space of modular forms of level N and weight k is

$$
M_{k}\left(\Gamma_{1}(\cdot+)=\left\{f: f(\gamma \tau)=(c \tau+d)^{k} f(\tau) \text { all } \gamma \in \Gamma_{1}(N)\right\}\right.
$$

where the f are assumed holomorphic on $\mathfrak{h} \cup\{$ cusps $\}$ (see below for the precise meaning of this). The space of cusp forms of level N and weight k is the subspace $S_{k}\left(\Gamma_{1}(N)\right)$ of $M_{k}\left(\Gamma_{1}(N)\right)$ of modular forms that vanish at all cusps.

Suppose $f \in M_{k}\left(\Gamma_{1}(N)\right)$. The group $\Gamma_{1}(N)$ contains the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, so

$$
f(z+1)=f(z)
$$

and for f to be holomorphic at infinity means that f has a Fourier expansion

$$
f=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

To explain what it means for f to be holomorphic at all cusps, we introduce some additional notation. For $\alpha \in \mathrm{GL}_{2}^{+}(\mathbf{R})$ and $f: \mathfrak{h} \rightarrow \mathbf{C}$ define another function $f_{\mid[\alpha]_{k}}$ as follows:

$$
f_{\mid[\alpha]_{k}}(z)=\operatorname{det}(\alpha)^{k-1}(c z+d)^{-k} f(\alpha z)
$$

It is straightforward to check that $f_{\mid\left[\alpha \alpha^{\prime}\right]_{k}}=\left(f_{\mid[\alpha]_{k}}\right)_{\mid\left[\alpha^{\prime}\right]_{k}}$. Note that we do not have to make sense of $f_{\mid[\alpha]_{k}}(\infty)$, since we only assume that f is a function on \mathfrak{h} and not \mathfrak{h}^{*}.

Using our new notation, the transformation condition required for $f: \mathfrak{h} \rightarrow \mathbf{C}$ to be a modular form for $\Gamma_{1}(N)$ of weight k is simply that f be fixed by the []$_{k^{-}}$ action of $\Gamma_{1}(N)$. Suppose $x \in \mathbf{P}^{1}(\mathbf{Q})$ is a cusp, and choose $\alpha \in \mathrm{SL}_{2}(\mathbf{Z})$ such that $\alpha(\infty)=x$. Then $g=f_{\mid[\alpha]_{k}}$ is fixed by the []$_{k}$ action of $\alpha^{-1} \Gamma_{1}(N) \alpha$.
Lemma 8.1.2. Let $\alpha \in \mathrm{SL}_{2}(\mathbf{Z})$. Then there exists a positive integer h such that $\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right) \in \alpha^{-1} \Gamma_{1}(N) \alpha$.

Proof. This follows from the general fact that the set of congruence subgroups of $\mathrm{SL}_{2}(\mathbf{Z})$ is closed under conjugation by elements $\alpha \in \mathrm{SL}_{2}(\mathbf{Z})$, and every congruence subgroup contains an element of the form $\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right)$. If G is a congruence subgroup, then $\Gamma(N) \sim$ for some N, and $\alpha^{-1} \Gamma(N) \alpha=\Gamma(N)$, since $\Gamma(N)$ is normal, so $\Gamma(N) \subset \alpha^{-1}$

Letting h be as in the lemma, we have $g(z+h)=g(z)$. Then the condition that f be holomorphic at the cusp x is that

$$
g(z)=\sum_{n \geq 0} b_{n / h} q^{1 / h}
$$

on the upper half plane. We say that f vanishes at x if $b_{n}, ~ 0$ usp form is a form that vanishes at every cusp.

8.2 The Diamond bracket and Hecke operators

In this section we consider the spaces of modular forms $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$, for Dirichlet characters $\varepsilon \bmod N$, and explicitly describe the action of the Hecke operators on these spaces.

8.2.1 Diamond bracket operators

The group $\Gamma_{1}(N)$ is a normal subgroup of $\Gamma_{0}(N)$, and the quotient $\Gamma_{0}(N) / \Gamma_{1}(N)$ is isomorphic to $(\mathbf{Z} / N \mathbf{Z})^{*}$. From this structure we obtain an action of $(\mathbf{Z} / N \mathbf{Z})^{*}$ on $S_{k}\left(\Gamma_{1}(N)\right)$, and use it to decompose $S_{k}\left(\Gamma_{1}(N)\right)$ as a direct sum of more manageable chunks $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$.
Definition 8.2.1 (Dirichlet character). A Dirichlet character ε modulo N is a homomorphism

$$
\varepsilon:(\mathbf{Z} / N \mathbf{Z})^{*} \rightarrow \mathbf{C}^{*}
$$

We extend ε to a map $\varepsilon: \mathbf{Z} \rightarrow \mathbf{C}$ by setting $\varepsilon(m)=0$ if $(m, N) \neq 1$ and $\varepsilon(m)=\varepsilon(m \bmod N)$ otherwise. If $\varepsilon: \square \mathbf{C}$ is a Dirichlet character, the conductor of ε is the smallest positive integer \sim ch that ε arises from a homomorphism $(\mathbf{Z} / N \mathbf{Z})^{*} \rightarrow \mathbf{C}^{*}$.
Remarks 8.2.2.

1. If ε is a Dirichlet character modulo N and M is a multiple of N then ε induces a Dirichlet character $\bmod M$. If M is a divisor of N then ε is induced by a Dirichlet character modulo M if and only if M divides the conductor of ε.
2. The set of Dirichlet characters forms a group, which is non-canonically isomorphic to $(\mathbf{Z} / N \mathbf{Z})^{*}$ (it is the dual of this group).
3. The $\bmod N$ Dirichlet characters all take values in $\mathbf{Q}\left(e^{2 \pi i / e}\right)$ where e is the exponent of $(\mathbf{Z} / N \mathbf{Z})^{*}$. When N is an odd prime power, the group $(\mathbf{Z} / N \mathbf{Z})^{*}$ is cyclic, so $e=\varphi(\varphi(N))$. This double- φ can sometimes cause confusion.
4. There are many ways to represent Dirichlet characters with a computer. I think the best way is also the simplest-fix generators for $(\mathbf{Z} / N \mathbf{Z})^{*}$ in any way you like and represent ε by the images of each of these generators. Assume for the moment that N is odd. To make the representation more "canonical", reduce to the prime power case by writing $(\mathbf{Z} / N \mathbf{Z})^{*}$ as a product of cyclic groups corresponding to prime divisors of N. A "canonical" generator for $\left(\mathbf{Z} / p^{r} \mathbf{Z}\right)^{*}$ is then the smallest positive integer s such that $s \bmod p^{r}$ generates $\left(\mathbf{Z} / p^{r} \mathbf{Z}\right)^{*}$. Store the character that sends s to $e^{2 \pi i n / \varphi\left(\varphi\left(p^{r}\right)\right)}$ by storing the integer n. For general N, store the list of integers n_{p}, one p for each prime divisor of N (unless $p=2, ~\left(\right.$ hich case you store two integers n_{2} and n_{2}^{\prime}, where $\left.n_{2} \in\{0,1\}\right)$.
Definition 8.2.3. Lt $\square \equiv(\mathbf{Z} / N \mathbf{Z})^{*}$ and $f \in S_{k}\left(\Gamma_{1}(N)\right)$. The map $\mathrm{SL}_{2}(\mathbf{Z}) \rightarrow$ $\mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$ is surject. , 0 o there exists a matrix $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$ such that $d \equiv \bar{d}(\bmod N)$. The diamond bracket d operator is then

$$
f(\tau) \mid\langle d\rangle=f_{\mid[\gamma]_{k}}=f(\gamma \tau)(c \tau+d)^{-k}
$$

The definition of $\langle d\rangle$ does not $\left(\square \mathrm{d}\right.$ on the choice of lift matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, since any two lifts differ by an element $\left.\omega_{\perp} \perp N\right)$ and f is fixed by $\Gamma(N)$ since it is fixed by $\Gamma_{1}(N)$.

For each Dirichlet character $\varepsilon \bmod N$ let

$$
\begin{aligned}
S_{k}\left(\Gamma_{1}(N), \varepsilon\right) & =\left\{f: f \mid\langle d\rangle=\varepsilon(d) f \text { all } d \in(\mathbf{Z} / N \mathbf{Z})^{*}\right\} \\
& =\left\{f: f_{\mid[\gamma]_{k}}=\varepsilon\left(d_{\gamma}\right) f \text { all } \gamma \in \Gamma_{0}(N)\right\}
\end{aligned}
$$

where d_{γ} is the lower- \sim ntry of γ.
When $f \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$, we say that f has Dirichlet character ε. In the literature, sometimes f is said to be of "nebentypus" ε.
Lemma 8.2.4. The operator $\langle d\rangle$ on the finite-dimensional vector space $S_{k}\left(\Gamma_{1}(N)\right)$ is diagonalizable.

Proof. There exists iu such that $I=\langle 1\rangle=\left\langle d^{n}\right\rangle=\langle d\rangle^{n}$, so the characteristic polynomial of $\langle d\rangle$ divides the square-free polynomial $X^{n}-1$.

Note that $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$ is the $\varepsilon(d)$ eigenspace of $\langle d\rangle$. Thus we have a direct sum decomposition

$$
S_{k}\left(\Gamma_{1}(N)\right)=\bigoplus_{\varepsilon:(\mathbf{Z} / N \mathbf{Z})^{*} \rightarrow \mathbf{C}^{*}} S_{k}\left(\Gamma_{1}(N), \varepsilon\right)
$$

We have $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right) \in \Gamma_{0}(N)$, so if $f \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$, then

$$
f(\tau)(-1)^{-k}=\varepsilon(-1) f(\tau)
$$

Thus $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)=0$, unless $\varepsilon(-1)=(-1)^{k}$, so about half of the direct summands $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$ vanish.

8.2.2 Hecke (${ }^{2}$ ators on q-expansions

Suppose

$$
f=\sum_{n=1}^{\infty} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N), \varepsilon\right)
$$

and let p be a prime. Then

$$
f \left\lvert\, T_{p}= \begin{cases}\sum_{n=1}^{\infty} a_{n p} q^{n}+p^{k-1} \varepsilon(p) \sum_{n=1}^{\infty} a_{n} q^{p n}, & p \nmid N \\ \sum_{n=1}^{\infty} a_{n p} q^{n}+0 . & p \mid N\end{cases}\right.
$$

Note that $\varepsilon(p)=0$ when $p \mid N$, so the second part of the formula is redundant.
When $p \mid N, T_{p}$ is often denoted U_{p} in the literature, but we will not do so here. Also, the ring \mathbf{T} generated by the Hecke operators is commutative, so it is harmless, though potentially confusing, to write $T_{p}(f)$ instead of $f \mid T_{p}$.

We record the relations

$$
\begin{aligned}
T_{m} T_{n} & =T_{m n}, \quad(m, n)=1, \\
T_{p^{k}} & = \begin{cases}\left(T_{p}\right)^{k}, & p \mid N \\
T_{p^{k-1}} T_{p}-\varepsilon(p) p^{k-1} T_{p^{k-2}}, & p \nmid N .\end{cases}
\end{aligned}
$$

WARNING: When $p \mid N$, the operator T_{p} on $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$ need not be diagonalizable.

8.3 Old and new subspaces

Let M and N be positive integers such that $M \mid N$ and let $t \left\lvert\, \frac{N}{M}\right.$. If $f(\tau) \in$ $S_{k}\left(\Gamma_{1}(M)\right)$ then $f(t \tau) \in S_{k}\left(\Gamma_{1}(N)\right)$. We thus have maps

$$
S_{k}\left(\Gamma_{1}(M)\right) \rightarrow S_{k}\left(\Gamma_{1}(N)\right)
$$

for each divisor $t \left\lvert\, \frac{N}{M}\right.$. Combining these gives a map

$$
\varphi_{M}: \bigoplus_{t \mid(N / M)} S_{k}\left(\Gamma_{1}(M)\right) \rightarrow S_{k}\left(\Gamma_{1}(N)\right)
$$

Definition 8.3.1 (Old Subspace). The old subspace of $S_{k}\left(\Gamma_{1}(N)\right)$ is the subspace generated by the images of the φ_{M} for all $M \mid N$ with $M \neq N$.
Definition 8.3.2 (New Subspace). The new subspace of $S_{k}\left(\Gamma_{1}(N)\right)$ is \square romplement of the old subspace with respect to the Petersson inner product.
${ }^{1}$ Since I haven't introduced que Petersson jimer product yet, note that the new subspace of $S_{k}\left(\Gamma_{1}(\Delta)\right)$ is the largest subspade of $S_{k}\left(\Gamma_{1}(N)\right)$ that is stable under the Hecke operators and has trivial intersection with the old subspace of $S_{k}(\Gamma,(N))$.

[^0]Definition 8.3.3 (Newform). A newform is an element f of the new subspace of $S_{k}\left(\Gamma_{1}(N)\right)$ that is an eigenvector for every Hecke operator, which is normalized so that the coefficient of q in f is 1 .

If $f=\sum a_{n} q^{n}$ is a newform then the coefficient e algebraic integers, which have deep arithmetic significance. For example, when f has weight 2 , there is an associated abelian variety A_{f} over \mathbf{Q} of dimension $\left[\mathbf{Q}\left(a_{1}, a_{2}, \ldots\right): \mathbf{Q}\right]$ such that $\Pi L\left(f^{\sigma}, s\right)=L\left(A_{f}, s\right)$, where the product is over the $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-conjugates of -F . The abelian variety A_{f} was constructed Shimura as fortows. Let $J_{1}(N)$ be the Jacobian of the modular curve X_{1} (N. As we will see tomorrow, the ring \mathbf{T} of Hecke operators acts naturally on $J_{1}(N)$. Let I_{f} be the kernel of the homomorphism $\mathbf{T} \rightarrow \mathbf{Z}\left[a_{1}, a_{2}, \ldots\right]$ that sends T_{n} to a_{n}. Then

$$
A_{f}=J_{1}(N) / I_{f} J_{1}(N)
$$

In the converse direction, it is a deep theorem of P......l, Conrad, Diamond, Taylor, and Wiles that if E is any elliptic curve over $\mathbf{Q} E$ is isogenous to A_{f} for some f of level equal to the conductor N of E

When f has weight greater than 2 , Scholl constructs ${ }^{2}$, in an analogous way, a Grothendieck motive (=compatible collection of cohomology grouns s^{3}) \mathcal{M}_{f} attached to f.

[^1]
[^0]: ${ }^{1}$ Remove from book.

[^1]: 2 add reference
 ${ }^{3}$ remove

