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1 Introduction

The goal of this project was to read Dan Edidin’s article What is a Stack? [8] and then fill in
enough details to make the article accessible to anyone taking Math 581g. This goal depended
on my ability to fill in enough details so that the article became accessible to me, something I
ultimately failed to achieve. However, I have tried to fill in what gaps I could, in the hopes that
someone with the same goal could use this paper as a stepping stone.

As the goal of this paper is understanding Edidin’s article, it makes sense to state the motivation
behind Edidin’s article. Edidin begins:

A Riemann surface of genus 1 is homeomorphic to the torus T = S1 × S1. Therefore, a
choice of a point to be the origin determines a group structure on the Riemann surface.
An elliptic curve is a Riemann surface of genus 1 together with a choic of origin for
the group structure. Although all elliptic curves are homeomorphic to the topological
group S1 × S1, they may have nonisomorphic complex structures. A natural question,
called the problem of moduli, is to describe the space of all possible isomorphism classes
of objects of a certain type. In this article we discuss this question for elliptic curves
and explain how we are led to consider the notion of stacks.

We wish to construct a moduli space for elliptic curves. Points of the moduli space
should correspond to isomorphism classes of elliptic curves.

Thus, this paper will also aim at constructing a moduli space for elliptic curves. I begin with a
discussion of the j-invariant of an elliptic curve. Two elliptic curves are isomorphic over C if and
only if they have the same j-invariant. This makes C seem a natural choice for the moduli space
of elliptic curves and so I felt some discussion of the j-invariant would be useful. In class we gave
one definition of the j-invariant. Edidin provides a different definition, which I had not previously
seen. Referring to Silverman’s book [10], I argue that the definitions are equivalent and state some
useful results about the j-invariant. In the second section, I introduce families of elliptic curves
and the notion of a universal family. Then, following a post on mathoverflow.net [6], I construct an
isotrivial family of elliptic curves and argue that C cannot be the moduli space of elliptic curves.
Finally, I give Edidin’s construction of the stack of elliptic curves, but do not prove that it is in
fact the moduli space of elliptic curves.

When looking up material to try and understand the article, I frequently ran into mathematical
objects I had little or no familiarity with and was not able to gain the familiarity which would allow
me to use them confidently. Thus, I have tried to indicate places where my arguments lack rigor.
Given that I was not able to flesh out Edidin’s article to my own satisfaction, I have also tried to
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indicate what further clarifications would be helpful for me, as a student in Math 581g, in better
understanding the article.

2 The j-invariant

Definition 2.1. Given an elliptic curve E with Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

let b2, b4, b6, b8, c4, and ∆ be the quantities

b2 = a2
1 + 4a2 b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4

b4 = 2a4 + a1a3 c4 = b22 − 24b4
b6 = a2

3 + 4a6 ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

We define the j-invariant j(E) of E to be the quantity

j =
c34
∆

The usefulness of the j-invariant in classifying elliptic curves comes from the following result:

Proposition 2.2. Let K be a field. Then two elliptic curves are isomorphic over K̄ if and only
if they have the same j-invariant. Furthermore, for each j0 ∈ K̄, there exists an elliptic curve E
defined over K such that j(E) = j0.

Proof: See Chapter 3 of [10]

In class we defined the j-invariant for an elliptic curve E (over C) with equation
E : y2 = 4x3 − g2x− g3 to be given by

1728g3
2

g3
2 − 27g2

3

(See Chapter 11 of [9].) Substituting y 7→ 2y into the equation for E, we obtain

E′ : y2 = x3 − g2
4
x− g3

4

This is a Weierstrass equation of the form used in definition 2.1 and so we may compute its j-
invariant. We have

a1 = a3 = a2 = 0, a4 = −g2
4
, and a6 = −g3

4

Thus

b2 = 0 b8 = −g
2
2

16
b4 = −g2

2
c4 = 12g2

b6 = −g3 ∆ = g3
2 − 27g2

3
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and we see that

j(E′) =
c34
∆

=
(12g2

2)2

g3
2 − 27g2

3

=
1728g3

2

g3
2 − 27g2

3

The map (x, y) 7→ (x, 2y) defines an isomorphism of elliptic curves, so by Proposition 2.2,
j(E) = j(E′). Thus, we see that the two definitions of the j-invariant agree (when both make
sense). It will be useful later to have the following result. Let K be a field and let E be an elliptic
curve defined over K with equation E : y2 = x3 + ax + b. Let d ∈ K× and let E′ be the elliptic
curve defined over K with equation E′ : dy2 = x3 + ax+ b (E′ is a quadratic twist of E).

Fact 2.3. E and E′ are isomorphic over K(
√
d), but not over K if K 6= K(

√
d).

The j-invariant presented in Edidin’s paper is defined differently from those above. However, his
definition agrees with the other two:

Proposition 2.4. Let E be an elliptic curve over a field K with char(K) 6= 2. Then there exists
λ ∈ K̄\{0, 1} such that E is isomorphic over K̄ to the curve Eλ given by

Eλ : y2 = x(x− 1)(x− λ)

This curve Eλ is said to be in Legendre form. Furthermore, the j-invariant of Eλ is given by

j(Eλ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2

and the association
K̄\{0, 1} → K̄

λ 7→ j(λ)

is surjective and is exactly six-to-one except above j = 0 and j = 1728.

Proof: See Chapter 3 of [10]

3 Coarse Moduli Space

Proposition 2.2 tells us that two elliptic curves are isomorphic over C if and only they have the
same j-invariant and that every z ∈ C is the j-invariant of some curve. In this sense, C seems
like a good candidate to be the moduli space of elliptic curves over C. However, we would like our
moduli space to have an additional property which C lacks. To describe this property, we need to
first introduce some more definitions. Following Edidin, let us define families of elliptic curves:

Definition 3.1. A family of elliptic curves over a base space B is a fibration π : X → B with a
section O : B → X (i.e., a right inverse π ◦O = idB) such that for every b ∈ B the fiber π−1(b) is
an elliptic curve with origin O(b).

I struggled for a while with this definition and am not yet completely comfortable with it, so let me
unwind (hopefully without completely misinterpreting) what this means. First, note that elements
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of X are not elliptic curves, but instead points on an elliptic curve. The elliptic curves correspond
to the fibers of π:

π−1(b) = {x ∈ X : π(x) = b} 3 O(b)

Next, I’ll admit that I do not know what is meant by a fibration. Later in the article, Edidin
makes it clear that π : X → B is a map of varieties. There is a Wikipedia article on fibrations [1].
However, it was pointed out to me that the definition presented there involves a map in the category
of topological spaces rather than the category of algebraic varieties. I will present this definition
and leave it to a more ingenious reader to determine the appropriate analogue in the category of
algebraic varieties, if such an analogue exists. (Here it may be worthwile to note that there also
exist fibred categories [2], and that the term fibration may stem from there instead.) According
to Wikipedia, a fibration is a continuous map π : X → B satisfying the homotopy lifting property
with respect to every space Y . That is, given a homotopy H : Y × [0, 1]→ B and a lift H̃0 : Y → X
of H0(y) = H(y, 0) making the diagram

Y
H̃0−−−−→ X

idY ×{0}
y yπ

Y × [0, 1] H−−−−→ B

commute, there exists a lift H̃ : Y × [0, 1]→ X such that π ◦ H̃ = H and H̃0(y) = H̃(y, 0).

Given an family of elliptic curves π : X → B, let us define a classifying map jB : B → C by

jB(b) = j(π−1(b))

Now, let us give one more definition:

Definition 3.2. Let C be a category, let X,Y, and Z be objects of C such that there exist morphisms
f : X → Z and g : Y → Z. The pullback of f : X → Z and g : Y → Z is an object P along with
two morphisms p1 : P → X and p2 : P → Y such that the diagram

P
p2−−−−→ Y

p1

y yg
X

f−−−−→ Z

commutes and such that, given any object Q ∈ C and pair of morphisms q1 : Q→ X and q2 : Q→ Y
such that the diagram

Q
q2−−−−→ Y

q1

y yg
X

f−−−−→ Z

commutes, there exists a unique morphism r : Q→ P such that q1 = r ◦ p1 and q2 = r ◦ p2. If the
pullback exists, it is unique up to isomorphism.
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The additional condition we wish a moduli space to satisfy is that there should exist a universal
family πE : E → C such that every family of elliptic curves π : X → B is obtained by pulling back
jB : B → C and πE : E → C:

X −−−−→ E

π

y yπE

B
jB−−−−→ C

However, no such universal family exists. To see why, consider the following example given as
an answer to a question on mathoverflow.net [6]. (The original example was described in terms
of schemes and I have tried to reinterpret it in a way that makes sense to me so I will give my
standard warning about the potential for mistakes in what follows.) Let E0 be an elliptic curve
over Q with equation E0 : y2 = x3 + ax+ b. For each d ∈ Q×, let Ed denote the elliptic curve over
Q given by Ed : dy2 = x3 + ax+ b (so E1 = E0). Now, let X,X0 be the spaces

X =
⊔
d∈Q×

Ed and X0 =
⊔
d∈Q×

E0 = E0 ×Q×

(here t denotes the disjoint union) and let π : X → Q×, π0 : X0 → Q× be the projections onto Q×:
for each p ∈ Ed, p0 ∈ E0

π(p, d) = d and π0(p0, d) = d

Then, for each d ∈ Q×

π−1(d) = Ed × {d} ∼= Ed and π−1
0 (d) = E0 × {d} ∼= E0

Finally, letting O : Q× → X and O0 : Q× → X0 denote the sections mapping d ∈ Q× to the origin
of Ed and E0, respectively, we see that π : X → Q× and π0 : X0 → Q× are two families of elliptic
curves. Note that, by Fact 2.3 and Proposition 2.2, both families induce the same classifying map,
namely the constant map jQ× : Q× → C, d 7→ j(E0):

d 7→ j(π−1(d)) = j(Ed) = j(E0) = j(π−1
0 (d)) 7→d

However, the two families are not equivalent. The family π0 : X0 → Q× is trivial: for all d1, d2 ∈ Q×,
the elliptic curves π−1

0 (d1) and π−1
0 (d2) are isomorphic over Q. However, the family π : X → Q×

is isotrivial: the j-invariant of each elliptic curve π−1(d) is the same, but by Fact 2.3, we see that
there exist d1, d2 ∈ Q× such that the curves π−1(d1) and π−1(d2) are not isomorphic over Q. In
particular, we see that the isomorphism classes of the fibers π−1(d) over Q are in bijection with
Q×/(Q×)2. Thus, there cannot exist a universal family πE : E → C. For otherwise, both X and X0

would be obtained by pulling back πE : E → C and jQ× → C, but we have seen that these families
are not isomorphic. Hence, C is not the moduli space of elliptic curves. However, insofar as points
in C correspond to isomorphism classes of elliptic curves via the j-invariant, we call C the coarse
moduli space of elliptic curves.

4 Stacks

As C does not quite work, we need to turn elsewhere in our search for the moduli space of elliptic
curves. For the answer, we turn to stacks.
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Let M denote the category with the following objects and morphisms: an object of M is a family
of elliptic curves π : X → B and a morphism of M, (π′ : X ′ → B′) → (π : X → B), is a pair of
maps, e : X ′ → X and β : B′ → B, such that the diagram

X ′
e−−−−→ X

π′
y yπ
B′

β−−−−→ B

commutes and X ′ is isomorphic to the pullback of X via the map β : B′ → B. We callM the stack
of elliptic curves. The subcategory ofM corresponding to families over a fixed base B is called the
fiber over B.

M is an example of an algebraic stack, which Edidin defines as follows:

Definition 4.1. An algebraic stack is a category fibered in groupoids which has a smooth covering
by an affine variety.

M also turns out to be the moduli space of elliptic curves and Edidin constructs the universal
family C → M where C is a category whose objects are families of elliptic curves with a section
and morphisms defined the same way as for M. The map C → M is the forgetful functor, taking
a family with a section to the same family without the section. I will not try and recreate this
argument as I do not understand it.

5 Final Comments

A useful contribution towards clarifying the rest of Edidin’s argument would be an explanation of
how the functor B →M is defined. Given a map of varieties t : T → B, how does one obtain the
corresponding family of elliptic curves π : X → B?

Finally, for those interested in learning more about stacks, a guide to the literature can be found
at the Stacks Project [5]. (Though it should be noted that Edidin’s article was the least technical
of those I found there.)
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