
0 | P a g e

THE IMPLEMENTATION
OF THE POLYOMINO

CLASS INTO SAGE

Neil Johnson

Nasim Shomali

1 | P a g e

Polyominoes

Introduction
A polyomino is a plane geometric figure formed by joining one or more square polyforms edge

to edge. Polyominoes are characterized by the number of square cells per figure. Since 1907,

polyominoes have been incorporated into popular puzzles. With respect to mathematics,

polyominoes have raised numerous combinatorial problems such as enumerating polyominoes of

a given size. Although there has been extensive algorithms devised for the enumeration of

polyominoes there currently is no standard formula known to calculate the exact number of

polyominoes that could be produced for a given number of square cells.
As of today, the largest enumeration of polyominoes is for n =56, giving a total of 6915 X 1028

different combinations that could be produced. This is a huge number compared to the number of

polyominoes that could be produced for n =2, which is 2. This is because it has been proven that

limn→∞An 1n=λ where An is approximated by: An~ .3169 * (4.0626n) / n such that the number of

polyominoes grows exponentially. It a separate study, it has been written that the bounds for the

number of n-polyominoes is 3.72n < A(n) < 4.65n.
Polyominoes can also be classified as fixed and free, with and without holes, and one-sided. Free

polyominoes are defined such that the mirror image pieces are identical, fixed polyominoes are

defined such that if they have different chirality or orientation they are considered distinct, and

one-sided polyominoes are defined such that they may not be flipped but can be rotated so

different rotational orientations are the same but ones with different chirality are distinct.

Polyominoes with holes indicate that there is a region within the interior of the polyomino that is

not covered fully by a square piece.
Polyominoes have influenced popularized games such as Tetris, Sudoku, and the board game

Blokus. Although there is little research left in the field of polyominoes today, this is still an area

of fascination to some combinatorial mathematicians such as Professor Michael Reid at the

University of Central Florida where his research is focused on the titling rectangles of half strips

with congruent polyominoes.

Motivation
The inspiration for our final project was derived from the complexity of polyominoes. We saw

that there have not been any algorithms, graphical interfaces, or classes of polyominoes

incorporated into Sage yet. Thus, our final project was to devise a class titled Polyominoes that

would allow for the creation, manipulation, and enumeration of polyominoes in Sage. Included

with the code, is extensive documentation describing the necessity of each function we included

and how each function could be called to. Our goal was to implement a fast enough (via

implementation in Cython) program that it could eventually be incorporated into the Sage

library.
The following table lists the name, parameters, and a short description of what each function is

able to do. Detailed examples of each function are included in the attached .sws file called

PolyomonioExamples.Sws. Due to the excessive nature of our code, this table along with the

detailed examples and testing shown in the attached Sage worksheet, are in lieu of Sage

documentation.

Table 1: Reference table for all functions in the Polyomino and PolyominoSet classes

2 | P a g e

Name of function Description Inputs and Outputs

CLASS POLYOMINO

def__init__(self, piece

= [], color =1)

This is the “constructor”

that creates a polyomino

based on the matrix you

pass. The user can also

specify the color of the

polyomino based on any

positive integers greater

than zero

Input: An (mxn) matrix of specificying the

where the squares are located represented

by 1‟s and where the holes are represented

by 0‟s. The second parameter can be any

positive integer which is represents the

color of the polyomino

Output: A polyomino based on the

specification above

def __len__ (self) Determines the length of

the polyomino

Input: 1 polyomino

Output: Returns the number of squares in

the polyomino

def __eq__ (self,

other)

Checks if two

polyominoes are

equivalent

Input: 2 polyominoes

Output: Returns true if the 2 polyominoes

are the same height and width regardless

of color. Returns false otherwise

def __lt__(self, other) Checks if the second

polyomino is less than the

first polyomino

Input: 2 polyominoes

Output: If the widths of the 2 polyominoes

are the same, then it returns true if and

only if the height of the first polyomino is

greater than the height of the second

polyomino. Otherwise returns false

def __gt__(self, other) Checks if the second

polyomino is greater than

the first polyomonio

Input: 2 polyominoes

Output: If the widths of the 2 polyominoes

are the same, then it returns true if and

only if the height of the first polyomino is

less than the height of the second

polyomino. Otherwise returns false

def __le__(self, other) Checks if the second

polyomino is less than or

equal to the first

polyomino

Input: 2 polyominoes

Output: If the widths of the 2 polyominoes

are the same, then it returns true if and

only if the height of the first polyomino is

greater than or equal to the height of the

second polyomino. Otherwise returns false

def __ge__(self, other) Checks if the second

polyomino is greater than

or equal to the first

polyomino

Input: 2 polyominoes

Output: If the widths of the 2 polyominoes

are the same, then it returns true if and

only if the height of the first polyomino is

less than or equal to the height of the

second polyomino. Otherwise returns false

def __ne__(self, other) Checks if the two

polyominoes are not equal

Input: 2 polyominoes

Output: If the widths of the 2 polyominoes

are not equal (regardless of the heights)

then it will return true. Otherwise it will

return false

3 | P a g e

def __add__(self,

other)

Adds the two

polyominoes together by

creating a new polyomino

set

Input: 2 polyominoes

Output: Creates a new polyomino set that

adds the first polyomino then adds the

second polyomino to the set

def __str__(self) Prints out the string

representation of the

polyomino

Input: 1 polyomino

Output: Returns the string representation

of the polyomino.

def __repr__(self) Prints out the polyomino

as a nested list which is

the form that the

__init__() of the

polyomino requires

Input: 1 polyomino

Output: Prints out the polyomino as a

nested list which is the form that the

__int__() of the polyomino requires

def __copy__(self) Creates a copy of the

given polyomino that can

be altered

Input: 1 polyomino

Output: Returns a copy of the polyomino

that can be altered

def __getitem__(self,

n)

Returns the row element

of the polyomino at row n

Input: 1 polyomino and integer referring

to the row

Output: Returns the row element of the

polyomino at row n as a list while

maintaining the color. If the height and

width position is too big then it returns an

index error.

def

_isConnected(self,h,w)

Returns true if there is an

adjacent square that is not

blank.

Input: Polyomino, height position, width

position

Output: Returns true if there is an adjacent

square that is not blank. Otherwise returns

false. If the height and width position is

too big then it returns an index error. If it

is 1x1 polyomino then it will return false.

def

isCompatibleWith(self

, other)

Returns two polyomino

grids that produce the

same resulting shape after

tiling with themselves

Input: Two Polyominos

Output: Two polyomino grids that are

each composed of the first and second

polyominoes respectively that produce the

same resulting shape after tiling with

themselves.

def

isCompatibleWith2(sel

f, obj, gridList,

newGridlist2 = None)

This is a helper method

that operates with the

isCompatibleWidth()

method

Input: A polyomino (self), a polyomino, a

list of polyomino grids, and an optional

second list of polyomino grids

Output: Returns a list of lists of grids that

are all the possible combinations of the

polyomino and the grids in the required

list.

def filledSpaces(self) Returns the filled

positions (height, width)

of the polyomino

Input: A polyomino

Output: Returns a list of height and width

pairs that filled in the given polyomino

def openSpaces(self, Returns the not filled Input: A polyomino, a boolean

4 | P a g e

expand = true) positions (height, width)

of the polyomino and the

adjacent pieces.

Output: Returns a list of height and width

pairs that are not filled and adjacent to an

existing square in the given polyomino. If

expand is true it also returns the pairs that

are surrounding the piece otherwise it does

not.

def

insertColumn(self,inde

x=None,column=None

, newCopy = false)

Inserts a column to the

given polyominio

Input: Polyomino, (index where to insert

column, the column, whether to add the

column to a copy or the original

polyomino)

Output: Adds the given column to the

specified index. If no index is given it

adds the column to the far right. If no

column is given, it inserts a column of

zeros.

def

insertRow(self,index=

None,row=None,

newCopy = false)

Inserts a row to the given

polyomino

Input: Polyomino, (index where to insert

row, the row, whether to add the row to a

copy or the original polyomino)

Output: Adds the given row to the

specified index. If no index is given it

adds the row to the far right. If no row is

given, it inserts a row of zeros.

def

rotate(self,direction=1)

Rotates a polyomino by

the given number

Input: A polyomino and an integer

Output: A copy of the polyomino rotated

by the integer specified. It no integer is

given it will rotate the copy of the

polyomino once to the right. Positive

integers rotate the polyomino to the right.

Negative integers rotate the polyomino to

the left.

def

setColor(self,color=1,

RGBtuple=None)

Sets the numerical color

and the rgb color of the

given polyomino.

Input: A polyomino, integer representation

of the color

Output: Sets the color of the polyomino to

the integer specified. If no color is

specified, then it sets the color to “1”.

def getColorNum(self) Returns the numerical

value for the color of the

given polyomino

Input: A polyomino

Output: Returns an integer which indicates

what color the polyomino is

def getColorRGB(self) Returns the RGB tuple of

the given Polyomino

Input: A polyomino

Output: Tuple representing the RGB

values of the polyomino‟s color

def getColorStr(self) Returns the symbol used

when printing the

polyomino

Input: A polyomino

Output: symbol pertaining to the color of

the polyomino.

def getWidth(self) Returns the number of

rows

Input: A polyomino

Output: Returns the number of rows in

5 | P a g e

the polyomino

def getHeight(self) Returns the number of

columns

Input: A polyomino

Output: Returns the number of columns in

the polyomino

def getXY(self,x,y) Returns the number of

rows and columns

Input: A polyomino, row and column

position

Output: Returns the number of rows and

columns in the polyomino.

def addXY(self,x,y) Adds a square of the same

color at the position given

by x and y

Input: A polyomino, row, and column

position

Output: Makes a copy of the given

polyomino and adds a square of the same

color to the given position

def flipV(self) Vertically flips a copy of

the polyomino

Input: A polyomino

Output: Makes a copy of the given

polyomino and vertically flips the copy

version

def flipH(self) Horizontally flips a copy

of the polyomino

Input: A polyomino

Output: Makes a copy of the given

polyomino and horizontally flips the copy

version

def

isSymmetricV(self)

Returns true if the

polyomino is vertically

symmetric

Input: A polyomino

Output: Returns true if the polyomino is

vertically symmetric

def

isSymmetricH(self)

Returns true if the

polyomino is horizontally

symmetric

Input: A polyomino

Output: Returns true if the polyomino is

horizontally symmetric

def isSymmetricR(self,

n =1)

Returns true if the

polyomino is rotationally

symmetric

Input: A polyomino, an integer

representing the number of rotations

required

Output: Returns true if the polyomino is

rotationally symmetric after n rotations or

(1 if no integer is specified)

def isSymmetric(self) Returns true if the

polyomino is both

horizontally and vertically

symmetric

Input: A polyomino

Output: Returns true if the polyomino is

horizontally and vertically symmetric

def hasHole(self) Determines if there is a

hole in the polyomino

Input: A polyomino

Output: Returns true if there a tile that has

no other tiles adjacent to it (a hole) else it

returns false

def

createPolyomino(self,

grid = None, color =1)

Creates a polyomino of a

specific color. If no grid is

specified, it assumes the

grid of “self”

Input: A polyomino, a grid for the new

polyomino , an integer representing the

color

Output: Creates a polyomino piece of

color 1 (if no color is specified).

6 | P a g e

def

generateDrawingJS(sel

f, cellID,size,

border_width, xPos,

yPos)

Works with the draw()

method by receiving a

canvas ID and returning a

script which will draw that

piece on that canvas with

the specified parameters

passed.

Input: A polyomino, an integer

representing a cell whose outputs houses

the canvas on which it is to draw, integers

representing the size, border width, x-

position, and y-position respectively.

Output: A string of JavaScript that is

intended to draw the shape on the canvas

specified

def

draw(self,size=35,bord

erWidth=None,paddin

g=20, innerBorder =

false, outerBorder =

true, CellID= None,

boxBorder = 2)

Draws the polyomino

using JavaScript in an

HTML canvas

Input: A polyomino, three integers

representing size in pixels of the height

and width of each square, border width,

and padding (white space surrounding

piece), boolean representing innerBorder

and outerBorder, a cellID, and box border

thickness.

Output: Draws the polyomino using

JavaScript in a HTML canvas

CLASS POLYOMINOSET

def __init__ (self ,

set=None)

This is the “constructor”

that creates a polyomino

set. It no set is passed, it

adds the polyomino to a

new set. If an integer is

passed is given, it creates

a set of polyominoes with

n pieces. If a list of lists is

passed, it adds the

polyomino to the list.

Input: A polyomino, an integer, a list of

lists, list of integers, a polyomino set that

has already been created, a list of lists of

lists of integers, or a polyomino and no

second input.

Output: Adds the polyomino to a set

regardless of polyomino size or color.

def

__getitem__(self,n)

Returns the polyomino

that is in position n of the

et

Input: 1 polyomino and a non-negative

integer referring to the position of the

polyomino.

Output: Returns the polyomino at position

n.

def

__add__(self,other)

Returns a new polyomino

set that includes both

polyomino sets passed

Input: 2 PolyominoSets

Output: Returns a new polyomino

set that includes both polyomino sets

passed

def

__sub__(self,other)

Subtracts the pieces of the

2nd polyomino set from the

1st polyomino set

regardless of color.

Input: 2 PolyominoSets

Output: Returns a new polyomino set that

consists of the 1st polyomino set pieces

excluding the pieces of the 2nd polyomino

set regardless of color.

def __mul__(self,n) Returns a new polyomino

set that contains n-copies

Input: A PolyominoSet , an integer

Output: Returns a new polyomino set that

7 | P a g e

of the passed polyomino

set.

contains n-copies of the passed polyomino

set.

def __len__(self) Returns the number of

polyominoes in the

polyomino set

Input: A PolyominoSet

Output: Returns the number of

polyominoes the polyomino set

def __repr__(self) Prints out the polyomino

set as a nested list which

is the form that the

__init__() of the

polyomino set requires

Input: A PolyominoSet

Output: Prints out the the polyomino set as

a nested list which is the form that the

__int__() of the polyomino set requires

def __str__(self) Prints out the string

representation of the

polyomino set

Input: A PolyominoSet

Output: Returns the string representation

of the polyomino set using the different

shaded box characters

def Print(self) Prints the polyomino set

ensuring that the output is

not truncated and with no

line wrapping

Input: A PolyominoSet

Output: Prints out the string of the

polyomino as HTML

def strSettings(self,

*args , **kwds)

Allows the user to change

the settings for the

printing of the

polyominoes

Input: A PolyominoSet, any setting for the

strings. The choices of the settings you

can set include: peiceSeperator which is

the breaker between the pieces when

printing out, printNumbs which is whether

or not print the polyominoes as numbers,

printSquares which is whether or not to

print the polyominoes as squares.

Output: None

def __copy__(self) Returns a copy of the

polyomino set

Input: A PolyominoSet

Output: Returns a copy of the polyomino

set

def maxHeight(self) Returns the number

indicating the height of

the tallest polyomino in

the polyomino set

Input: A PolyominoSet

Output: Returns the number indicating the

height of the tallest polyomino in the

polyomino set

def maxWidth(self) Returns the number

indicating the width of the

widest polyomino in the

polyomino set

Input: A PolyominoSet

Output: Returns the number indicating the

width of the widest polyomino in the

polyomino set

def

genSet(self,n,filters=[]

,fixed=false,p=[[1]])

Clears the initial set and

generates a new set based

on the filter settings

passed as a list of strings.

Input: A PolyominoSet, an integer

representing the number of pieces, filter

settings, boolean representing whether or

not polyominoes that are rotationally

different should be included, and the

initial polyomino that the set is build off

of.

Output: Clears the initial set and generates

8 | P a g e

a new set based on the parameters

passed.

def

addSet(self,n,filters=[]

,fixed=false,p=[[1]])

Adds the polyomino set

passed to the given set.

Input: A PolyominoSet, an integer

representing the number of pieces, filter

settings, and a Boolean representing

whether or not polyominoes that are

rotationally different should be included,

and the initial polyomino that the set is

build off of.

Output: Adds the generated polyomino set

to the existing set.

def

genSet2(self,n,filters,fi

xed,p)

Works as a helper

function to genSet() and

addSet().

Input: A PolyominoSet, an integer

representing the number of squares in each

piece, filter settings, and a boolean

representing whether or not polyominoes

that are rotationally different should be

included, and the initial polyomino that

the set is build off of.

Output: Generates the polyomino set with

the given parameters.

def

addPiece(self,p,fixed=

false,duplicates=true)

Adds the passed

polyomino piece to the

passed polyomino set.

Input: A PolyominoSet, initial polyomino

that the set is build off of, a boolean

representing whether or not polyominoes

that are rotationally different should be

included, and a boolean representing

whether or not duplicates should be

included.

Output:

def makeTall(self) Makes all the

polyominoes in the set as

thin and tall as they could

be via rotation

Input: A PolyominoSet

Output: Returns the polyomino set with all

the pieces that are wider than they are tall

and rotates them

def makeWide(self) Makes all the

polyominoes in the set as

wide and short as they

could be via rotation

Input:

Output: Returns the PolyominoSet with all

the pieces that are taller than they are wide

and rotates them

def setColor(self,n) Returns the polyomino set

with all the polyomino

pieces set to the color

represented by n

Input: A PolyominoSet, a non-negative

integer

Output: Returns the PolyominoSet with

all the polyomino pieces set to the color

represented by n

def clearSet(self) Returns an empty

polyomino set

Input: A PolyominoSet

Output: Clears the polyomino set

def

movePiece(self,index,

newIndex)

Given the polyomino set,

it moves a polyomino

piece from position

Input: A PolyominoSet, an index integer ,

and a new index integer

Output: Given the polyomino set, it

9 | P a g e

“index” to “newindex”

and shifts the rest of the

polyomino set

accordingly.

moves a polyomino piece from position

“index” to “newindex” and shifts the rest

of the polyomino set accordingly.

def

sort(self,criteria="widt

h", ascending=true,

descending=false)

Returns the sorted

polyomino set by the

criteria given and either in

ascending or descending

order.

Input: A PolyominoSet, sorting criteria,

with an option of setting ascending and

descending options.

Output: Returns the sorted PolyominoSet

by the criteria given and either in

ascending or descending order. If no

criteria are given, then it sorts by width. If

order is not given then it sorts in

ascending manner.

def draw(self, size =

35, borderWidth =

None, padding = 20,

innerBorder = false,

outerBorder = true,

cellID = None,

boxBorder = 2,

boxMaxWidth = 900)

Draws the PolyominoSet

in JavaScript with and

HTML canvas

Input: A PolyominoSet, eight integers

representing size in pixels of the height

and width of each square, border width,

and padding (white space surrounding

piece), boolean representing innerBorder

and outerBorder, box border thickness,

cell ID, and box max width. If no

borderWidth is given it is automatically

set to size * .09.

Output: Draws the polyomino set in

JavaScript with an HTML canvas

PolyominoGrid Class

def__init__(self,

grid=None, h = 0, w=

0)

Creates a PolyominoGrid Input: an existing grid, a polyomino, the

height and width as integers.

Output: A PolyominoGrid

def __len__ (self) The number of

polyominoes currently on

the grid

Input: A PolyominoGrid

Output: Returns the number of

polyominoes on the grid

def __eq__ (self,

other)

Checks if two

PolyominoGrids are

equivalent ignoring color

Input: Two PolyominoGrids

Output: Returns true if the 2

PolyominoGrids are the same height and

width regardless of color. Returns false

otherwise

def __ne__(self, other) Checks if the two

PolyominoGrids are not

equal ignoring color

Input: Two PolyominoGrids

Output: If the widths of the 2

PolyominoGrids are not equal then it will

return true. Otherwise it will return false

def__hash__(self) Sets all the numbers in the

grid that are not equal to

zero to one and hashes as

2D list

Input: A PolyominoGrid

Output: Integer representing the hash of

the polyomino grid

def __str__(self) Prints out the string

representation of the

Input: A PolyominoGrid

Output: Returns the string representation

10 | P a g e

PolyominoGrid of the PolyominoGrid using various

squares as colors.

def __repr__(self) Prints out the polyomino

grid as a nested

list which is the form that

the __init__() of the

PolyominoGrid requires

Input: A PolyominoGrid

Output: Prints out the PolyominoGrid as a

nested list which is the form that the

__int__() of the PolyominoGrid requires

def __copy__(self) Creates a copy of the

given polyomino grid that

can be altered without

affecting the original

polyomino grid

Input: A PolyominoGrid

Output: Returns a copy of the polyomino

that can be altered without affecting the

original PolyominoGrid

def __getitem__(self,

n)

Returns the row element

of the polyomino grid at

row n

Input: A PolyominoGrid and integer

referring to the row

Output: Returns the row element of the

polyomino grid at row n as a list while

maintaining the color. If the height and

width position is too big then it returns an

index error.

def binaryStr(self) Replaces all the non-

empty places in the grid

with ones

Input: A PolyominoGrid

Output: The current PolyominoGrid with

all the non-empty places replaced with

one

def

_isConnected(self,h,w)

Returns true if there is an

adjacent square that is not

blank.

Input: A PolyominoGrid, height position,

width position

Output: Returns true if there is an adjacent

square that is not blank. Otherwise returns

false. If the height and width position is

too big then it returns an index error. If it

is 1x1 polyomino then it will return false.

def openSpaces(self,

expand = true)

Returns the not filled

positions (height, width)

of the PolyominoGrid and

the adjacent pieces.

Input: A PolyominoGrid, a boolean

Output: Returns a list of height and width

pairs that are not filled and adjacent to an

existing square in the given

PolyominoGrid. If expand is true it also

returns the pairs that are surrounding the

piece otherwise it does not.

def

insertColumns(self,

numOfColumns =1,

index=None)

Inserts columns to the

given PolyominoGrid

Input: A PolyominoGrid, integer for

number of columns and an index where to

insert the columns.

Output: Adds the given column to the

specified index. If no index is given it

adds the column to the far right. The

columns inserted are always of zeroes.

def insertRows(self,

numOfRows =1,

Inserts rows to the given

PolyominoGrid

Input: A PolyominoGrid, integer for

number of rows and an index where to

11 | P a g e

index=None) insert the rows.

Output: Adds the given row to the

specified index. If no index is given it

adds the row to the far right. The rows

inserted are always of zeroes.

def

removeColumns(self,

numOfColumns=1,

index=None)

Removes columns from

the given PolyominoGrid

Input: A PolyominoGrid, integer for

number of rows and an index where to

remove the columns.

Output: Removes the column at the

specified index and moves the rest of the

columns to the left.

def removeRows(self,

numOfRows =1,

index=None)

Removes rows from the

given PolyominoGrid

Input: A PolyominoGrid, integer for

number of rows and an index where to

remove the rows.

Output: Removes the row at the specified

index and moves the rest of the rows up.

def

isSymmetricR(self)

Returns true if the

PolyominoGrid is

rotationally symmetric

Input: A PolyominoGrid

Output: Returns true if the PolyominoGrid

is rotationally symmetric after 2 rotations

def draw(self,

other=None, size=35,

borderWidth=None,

padding=20,

innerBorder=false,

outerBorder=true,

cellID=None,

boxBorder=2)

Draws the grid as an

HTML canvas using

JavaScript. If the „other‟

parameter is specified,

Input: A PolyominoGrid, a second

PolyominoGrid, seven integers

representing size in pixels of the height

and width of each square, border width,

and padding (white space surrounding

piece), boolean representing innerBorder

and outerBorder, cellID, and box border

thickness. If no borderWidth is given it is

automatically set to size * .09.

Output: Draws the grid in JavaScript with

an HTML canvas

