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Abstract. In the article, we describe the basic properties, general and
specific properties of CM degree 4 fields, as well as illustrating their
connection to the study of genus 2 curves with CM.

1. Background

The study of complex multiplication is closely related to the study of
curves over finite fields and their Jacobian. Basically speaking, for the case
of non-supersingular elliptic curves over finite fields, the endomorphism ring
is ring-isomorphic to an order in an imaginary quadratic extension K of Q.
The structure of imaginary extensions of Q has been thoroughly studied,
and the rings of integers are simply generated by {1,

√
D} if D ≡ 1 mod 4,

or by {1,
√

D
4 } if D ≡ 0 mod 4, where D is the discriminant of the field

K. The theory of complex multiplication can be carried from elliptic curves
to the (Jacobians) of genus 2 (hyperelliptic) curves. More explicitly, the
Jacobian of any non-supersingular genus 2 (and hence, hyperelliptic) curve
defined over a finite field has CM by an order in a degree 4, or quartic
extension over Q, where the extension field K has to be totally imaginary.

Description of the endomorphism ring of the Jacobian of a genus 2 curve
over a finite field largely depends on the field K for which the curve has CM
by. Many articles in the area of the study of genus two curves lead to the
study of many properties of the field K. Hence the main goal of this article
is, based on the knowledge of the author in the study of the genus 2 curves
over finite fields, to give a survey of various, general or specific, properties
of degree 4 CM fields.

Definition 1.1. A finite extension K of Q is said to be a CM field if it is
totally complex.

Thus, all embeddings ofK intoC are complex embeddings, and the degree
of K is then d = r + 2x = 2s, an even number. This shows that any CM
field is of even degree over Q. As a finite extension of Q, a characteristic
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zero perfect field, K can be generated by one element, say, K = Q(α). It
then follows that β = α + ᾱ is a real number, as it is fixed by complex
conjugation. Similarly, γ = αᾱ is also a real number. Thus K0 := Q(β, γ)
is a real extension of Q, over which K is a degree two extension, as α and
ᾱ satisfy the polynomial X2 − βX + γ = 0. Note that Q(β) is not always a
co-degree two extension, as an example, consider K = Q(

√
−2,

√
3). Since

α = 1 +
√
−2 +

√
−6 is a generator for this extension, the corresponding

β = 2 is not a generator for the totally real field, as a simple argument can
show that

√
3 ∈ K, as a real number, but not in Q.

From now on we suppose K is a degree 4 CM field. Then there are
4 embeddings of K into C, all of which are complex. For all discussions
below, we fix an embedding of K and identify K with its image, and thus,
this specific embedding, out of all the four embeddings, is denoted by id ,
the identity. We also denote the complex conjugation as ρ : K → C, as a
ring homomorphism. Since K is a degree 2 extension over its real subfield
K0, ρ is an isomorphism of K. Denote any of the two embeddings of K,
other than the identity or ρ, the complex conjugation, by σ, then the other
embedding is σρ, as ρ preserves K. Hence the set of all embeddings of K
is {id , σ, ρ, σρ}. Under the equivalent relation σ1 ∼ σ2 if σ1 = σ2ρ, the
equivalence class is called a CM type of K.

In the above discussion, we did not make the assumption that K is Galois
over Q. If K is Galois over Q, the all embeddings form an order 4 group,
which is either isomorphic to Z/4 or Z/2 × Z/2, thus K is either cyclic
or biquadratic. If K is cyclic, then K0 is the only subfield of K. If K is
biquadratic, then K has three degree 2 subfields, one of which is K0.

If K is not Galois, i.e., K is not normal, then let L be the normal clo-
sure of K. If immediately follows that [L : K] = 2. We could give the
following outline for a field-theoretic proof. Since K is a CM field, ρ is an
automorphism of K. Thus the only possible embeddings that are not au-
tomorphisms of K, are σ and σρ. Since L is the normal closure of K, in
this case, L is K.σ(K). Since the normal closure of K is contained in the
splitting field of f(X), where K ≈ Q[X]/(f(X)), and exactly two roots of
f(X) is in K and exactly two other roots is contained in σ(K), thus the nor-
mal closure L ⊆ K.σ(K). The other direction of inclusion is clear. Hence
Gal(L/Q) is of order 8, hence could only be isomorphic to the Dihedral
group D8 = ⟨α, β|α2 = 1, β4 = 1, αβα = β3⟩, as it cannot be abelian.

The field Kr is the subfield of the normal closure of K, generated over Q,
by all elements of the form

∏
i σi(x) for all x ∈ K, where σi runs through

all embeddings from a CM type. The element
∏

i σi(x) is sometimes called
the type norm of x, note that the complex norm of the type norm (depends
on the type) is the square root of the norm of x in K/Q. This field, which
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consists of all type norms, is called the reflex field of K with respect to the
type. This is the one of the two non-Galois sub-extensions over L that has
degree 4 over Q and is not conjugate to K.

2. Jacobians of Genus 2 Curves

Suppose C is non-singular a genus 2 curve over Fp, the prime field of
characteristic p, if p - 30, then C can be written as the Weierstrass form of
genus 2 curves

C : ϵy2 = x5 + a3x
3 + a2x

2 + a1x+ a0.

The Jacobian of C, say, JC , consists of all the equivalence classes of a
degree zero divisor on C modulo principal divisors. JC can be realized as
an algebraic variety that is a quotient of a Kummer surface, more precisely,
the algebraic structure, addition and scalar multiplication of divisor classes,
equips JC a structure of dimension 2 abelian variety, that is, a variety with
an abelian group structure. Any group homomorphism as well as a rational
map is called an isogeny between two Jacobians. From JC to itself, an
isogeny is called an endomorphism of JC . Note that all endomorphism form
a ring structure with 1, i.e., the zero endomorphism as the zero element,
and the identity map as the identity.

The p-torsion of JC plays an important rule in the classification of genus 2
curves. Since the order of the p-torsion of JC is pr, where r could be 0, 1, or 2,
we may classify the curves in the following way, similar as for elliptic curves.
If r = 0, C or JC is called supersingular. If r = 2, C is ordinary. However,
there is an intermediate case that does not appear for elliptic curves, i.e.,
r = 1. It has been shown that if r = 1 or 2, i.e., JC is not supersingular,
there exists an injective ring homomorphism from the endomorphism ring
to some degree 4 CM field K, sending the endomorphism ring to the image,
as a lattice in K. Thus the endomorphism ring is isomorphic to an order of
K, as a finite-index sub-ring of OK .

The endomorphism ring contains a special element, which is special be-
cause C is defined over a finite field Fq, where q = ps is a power of a prime
number p. The Frobenius map gives an endomorphism of JC , thus is con-
tained in the endomorphism ring. Another related map, the image of the
Frobenius under the Rosati involution, is also an endomorphism of JC . Thus
Z[π + π̄] is contained in the endomorphism ring as a sub-ring, which is also
an order of K. Note that π · π̄ = q. A number whose norm equals the
power of a prime number corresponds to an isogeny class of genus 2 curves
up to conjugation. As in the example, if ππ̄ = q, then we say that π is a
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Weil q-number . Hence the CM fields related to the study of genus 2 curves
contain some Weil q-numbers.

As an example, we shall consider the following field, the first one listed
by van Wamelen [vW1], K = Q(ζ5). In Q(ζ5), every element, obviously,
can be written as x = a + bζ5 + cζ25 + dζ35 . Here we may fix the choice
of ζ5 to be exp(2πi5 ), by convention. However, there is another interesting
representation of the same number, as

4x = A+B
√
5 + C

√
−5− 2

√
5 +D

√
5− 2

√
5.

More explicitly, this could be shown as following.

Proposition 2.1. Every algebraic integer in K = Q(ζ5) can be written

as 1
4(A + B

√
5 + C

√
−5− 2

√
5 + D

√
5− 2

√
5), where A,B,C,D are all

integers.

Proof. Without loss of generality we may fix ζ5 = exp
(
2πi
5

)
= cos

(
2πi
5

)
+

i sin
(
2πi
5

)
. It is easy to compute ζ25 = cos

(
4πi
5

)
+ i sin

(
4πi
5

)
, and ζ35 = ζ5,

ζ45 = ζ5. In order to explicitly compute cos
(
2πi
5

)
, we start with cos

(
πi
5

)
.

Note that cos
(
2πi
5

)
= sin

(
πi
10

)
, which leads to the following equation in

cos
(
πi
5

)
. (

2 cos2
(
πi

5

)
− 1

)2

=
1− cos

(
πi
5

)
2

.

Explicit computation shows that both cos(2π5 ) + i sin(2π5 ) and cos(4π5 ) +

i sin(4π5 ) are of the form above, and it does not need to verify the other two
numbers as they are the complex conjugates of the ones displayed. �

Note that in this case, if the Frobenius 4π = A+B
√
5+C

√
−5− 2

√
5+

D
√

5− 2
√
5 for some A,B,C,D ∈ Z, then

16ππ̄ =

(
A+B

√
5 + C

√
−5− 2

√
5 +D

√
5− 2

√
5

)
(
A+B

√
5− C

√
−5− 2

√
5−D

√
5− 2

√
5

)
=

(
A+B

√
5
)2

−
(
C

√
−5− 2

√
5 +D

√
5− 2

√
5

)2

= A2 + 2AB
√
5 + 5B2 + (5 + 2

√
5)C2 + 2

√
5CD + (5− 2

√
5)D2

= (A2 + 5B2 + 5C2 + 5D2) + (2AB + 2C2 + 2CD −D2)
√
5.
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Basically if α is any algebraic integer in K, then αᾱ is an algebraic integer
in K0 = Q(

√
5). However, we want xx̄ to be an integer, thus AB + C2 +

2CD−D2 = 0, and A2+5B2+5C2+5D2 is 16 times an odd prime number.
It is not hard to observe that it is necessary that p ≡ 1 mod 5.

On the other hand, the curve y2 = x5 − 1
4 has CM by K = Q(ζ5). To

see this, we simply observe that the map by sending any point (x, y) on the
curve to (ζ5x, y), which remains on the curve, give rise to an endomorphism
of the Jacobian. Moreover, the fifth power of this endomorphism corresponds
to the fifth power of the map (x, y) 7→ (ζ5x, y) on the curve, which is the
identity map. This shows that the endomorphism ring of JC contains a fifth
root of unity. However, if p is not congruent to 1 modulo 5(10), there is
no non-trivial root of unity in Fp, and thus the map (x, y) 7→ (ζ5x, y) can
only induce the identity endomorphism on the Jacobian. However, if p ≡ 1
mod 5, i.e., p ≡ 1 mod 10, there is a non-trivial root of unity ζ5 in F∗

p,
and hence the endomorphism ring contains a non-trivial root of unity, thus
contains the unit group U5, and thus Z[ζ5]. This shows that, from another
approach, that in order that the curve is not supersingular, p has to be
congruent to 1 modulo 5.

Note that the field Q(ζ5), as a degree 4 CM field, is very special (actually
unique); this plays an important rule in the study of genus 2 curves. As an

analogy, the two imaginary quadratic extension Q

(√
1−

√
3

2

)
and Q(

√
−1),

play the similar roles for elliptic curves over finite fields. There exists other
cyclotomic fields of degree 4, i.e., Q(ζ8) and Q(ζ12). However, these are
fields that corresponds to dimension 2 abelian varieties that are isogenous
to the product of two elliptic curves, i.e., reducible Jacobians, over which
computations are equivalent as being performed over, respectively, the two
elliptic curves. Hence this kind of degree 4 CM fields does not play as
important role as Q(ζ5).

We also have the following fact, regarding the case where B = 1 or −1 in
the representation.

Lemma 2.2. Let π = 1
4

(
a+ b

√
5 + c

√
−5− 2

√
5 + d

√
−5 + 2

√
5
)

be a

Weil q-number with a, b, c, d ∈ Z, and suppose cd ̸= 0. Then (1) Z[π, π̄] ∩
OK0 = Z[π + π̄]; and (2) the index of Z[π, π̄] ∩ OK0 in OK0 is B2.

Proof. To prove the first statement, it suffices to show that Z[π, π̄]∩OK0 =
Z[π + π̄, ππ̄]. The inclusion ”⊇” is clear. For the other inclusion, for any
element α in Z[π, π̄] ∩ OK0 , α = f(π, π̄) for some f a polynomial with
coefficient in Z of two variables. The condition that α ∈ OK0 ensures that
f is a symmetric polynomial, and therefore is a polynomial in π+ π̄ and ππ̄,



6 WENHAN WANG

which finishes the proof of the first statement. By computation, π + π̄ =
1
2(a+ b

√
5) and ππ̄ = q, therefore Z[π, π̄] ∩ OK0 = Z[π + π̄]. �

Proposition 2.3. For a given Weil p-number in K corresponding to a genus
2 Jacobian, then the following statements are equivalent.

(i) B = ±1;
(ii) Z[π, π̄] ⊇ OK0;

(iii)
√
5+1
2 defines an endomorphism in the ring generated by the Frobe-

nius and its complex conjugate.

Proof. (i) ⇒ (ii). Suppose B = 1 without loss of generality. Then both

A,B are odd integers. Note that π+ π̄ = A
2 + 1

2

√
5, which differs from

√
5+1
2

by an integer. Hence Z[π, π̄] ⊇ Z[π + π̄] ⊇ OK0 .

(ii) ⇒ (iii). Since End(J) ⊇ Z[π, π̄], hence
√
5+1
2 defines an endomorphism

of J .
(iii) ⇒ (i). Suppose that

√
5+1
2 defines an endomorphism in the subring

Z[π + π̄]. Note that for each element x
2 + y

2

√
5 ∈ Z[π + π̄], one has B | y.

Applying this statement to
√
5+1
2 one gets B | 1, hence B = ±1. �

This case B = 1 or −1 is special because it implies that the real subring
of the endomorphism ring is the same as the largest possible ring of integers
in the real sub-field of K, in our case, it is K0 = Q(

√
5). Note that if a

prime number l divides the discriminant of the ring Z[π + π̄], then it also
divides Z[π, π̄], and thus, divides the discriminant π. Thus the gap between
the endomorphism ring being the ring of integer in K is reflected as some
prime numbers that could divide the number B.

In the application of hyperelliptic curves to cryptography, a curve might
be more secure in the sense that it is somehow difficult, or time consuming,
to construct isogenies to another curve, which thus might be able to attack
within shorter time. Intuitively, these curves are somehow isolated from
others, by the difficulty to construct such isogeny. In this case, it is crucial
to have large prime conductor gaps, and avoid any small factors of B.

If π is a Weil q-number in K = Q(
√
5), then it is simple to check that ζ5π,

ζ25π, ζ
3
5π, ζ

4
5π are also Weil q-numbers. We have the following propositions

regarding their discriminant.

Lemma 2.4.

disc(π5) =

4∏
i=0

disc(ζi5π)

Proof. Note that by definition, the discriminant of π5 is the product of (π5
i −

π5
j )

5, where π5
i and π5

j runs through all the Galois conjugates of π5. Since
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each component factors as (πi−πj)(πi−ζ5πj)(πi−ζ25πj)(πi−ζ35πj)(πi−ζ45πj),
it is then obvious that this equation relating two products holds. �

We shall give another few examples of such degree 4 fields that are normal
extensions over Q, and in the next section, we shall discuss the property of
non-normal extensions.

Another example that is similar to K = Q(
√

−2 +
√
2). The minimal

polynomial of a =
√

−2 +
√
2 is X4+4X2+2. Computation in Sage shows

that {1, a, a2, a3} forms an integral basis for K, and computation also gives

that a2 = −2 +
√
2, and a3 = Since {1,

√
2,
√

−2 +
√
2,
√

−2−
√
2} forms

an integral basis for OK , it can be shown that any algebraic integer in OK

can be written as A+B
√
2+C

√
−2−

√
2+D

√
−2 +

√
2. In which case if

the Frobenius map

π = A+B
√
2 + C

√
−2−

√
2 +D

√
−2 +

√
2,

then the complex norm of π is

ππ̄ =

(
A+B

√
2 + C

√
−2−

√
2 +D

√
−2 +

√
2

)
(
A+B

√
2− C

√
−2−

√
2−D

√
−2 +

√
2

)
= (A+B

√
2)2 +

(
C

√
2 +

√
2 +D

√
2−

√
2

)2

= (A2 + 2B2 + 2C2 + 2D2) + 2(AB − C2 + 2CD +D2)
√
2.

Thus, if ππ̄ = p, it is necessary that p = A2 + 2B2 + 2C2 + 2D2, and
AB − C2 + 2CD +D2 = 0. Note that in this case, in order that we have a
non-supersingular curve, A needs to be congruent to 1 modulo 16.

3. Non-Normal Extensions

As mentioned before, as an introduction to CM types, the non-normal
quartic CM fields, say, K, has a normal closure that has degree 8 over Q,
with a Galois group isomorphic to D8, or in some literature or convention,
D4. Anyways, it is isomorphic to the symmetric group of a square in the
plane. Basic finite group theory tells us that the center of the order 8 dihe-
dral group is isomorphic to Z/2, and there are 4 other non-normal subgroups
of order 2, forming 2 pairs, each consists 2 conjugate subgroups. We shall
display an explicit example to assist the perception of these corresponding
fields. The following example is from [MG1].
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Example 3.1. Let K = Q[X]/(X4 + 34X + 217), which is not Galois over
Q. Note that explicitly, in the root form, the four roots, up to a fixed

embedding of K into C, are α1 =
√

−17− 6
√
2, α2 = −

√
−17− 6

√
2,

β1 =
√

−17 + 6
√
2, and β2 = −

√
−17 + 6

√
2. Note that α1 and α2, β1 and

β2, respectively are complex conjugate of each other. This field K, however,
is not normal. To see that K is not Galois, note that the product of α1 and
β1, gives −

√
217, which is a real number, however, is not in K0, the real

subfield of K0. If we fix a root, say, α1, then the other two embeddings not
intoK map α1 to β1 and β2 respectively. Denote the map that maps α1 to β1
as σ, and ρ the complex multiplication. In this case, there are two choices
of non-conjugate CM types, i.e., Φ1 = {id , σ}, and Φ2{id , σρ}. For both
types, all elements of the form

∏
i ϕi(x) generates the corresponding reflex

field of K. As I reviewed the article [MG1], it turns out in the procedure,
it can be shown that for quartic CM fields, the reflex can also be generated
by the sum

∑
i ϕi(x), where the sum ranges over all x ∈ K.

It might be worthy to mention this fact in the section which discusses non-
normal extensions, where the reflex plays a role, as for the normal extensions,
the reflex is the field itself.

If in general, we are considering an irreducible polynomial of the form
X4 + aX2 + b, where X2 + aX + b is also irreducible over Q, with integer
coefficients a, b ∈ Z, and moreover, if we assume that both roots of X2 +
aX+b, say r and s, are totally negative real roots, then the fieldQ[X]/(X4+
aX2+ b) is a quartic CM field, say, K, with real subfield K0 = Q[X]/(X2+
aX + b) = Q(r) = Q(s). In addition, the four roots of X4 + aX2 + b are
obviously

√
r,−

√
r,
√
s,−

√
s, respectively. Using the same argument for the

above example, it follows that any one of the reflex contains Q(
√
r
√
s) =

Q(
√
rs) as a subfield, i.e., Q(

√
b), if b is not a square, is Kr

0 .

Also note that X4 + aX2 + b factors as

X4 + aX2 + b = (X4 + 2
√
bX2 + b)− (2

√
b− a)X2

= (X2 +
√
b)2 − [(2

√
b− a)X]2

= (X2 +

√
2
√
b− aX +

√
b)(X2 −

√
2
√
b− aX +

√
b).

Similarly, another way of factorization is

X4 + aX2 + b = (X4 − 2
√
bX2 + b)− (−2

√
b− a)X2

= (X2 −
√
b)2 − [(−2

√
b− a)X]2

= (X2 −
√

−2
√
b− aX −

√
b)(X2 −

√
−2

√
b− aX −

√
b).
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The above two factorization are valid since X2 + aX + b has two real roots
and hence |a| > 2

√
b.

Therefore the reflex field of K is one of the following two fields,

Kr
1 = Q(

√
−17 + 6

√
2 +

√
−17− 6

√
2,
√
217),

and

Kr
2 = Q(

√
−17 + 6

√
2−

√
−17− 6

√
2,
√
217).

We may take any of them as an example, say, Kr
1 , we shall show that the

reflex of Kr
1 is either K = Q(

√
−17− 6

√
2) or K ′ = Q(

√
−17 + 6

√
2).

Note that there are four embeddings of Kr
1 , the identity id , the complex

conjugation, the map that takes√
−17 + 6

√
2 +

√
−17− 6

√
2 7→

√
−17 + 6

√
2−

√
−17− 6

√
2,

the map that takes√
−17 + 6

√
2 +

√
−17− 6

√
2 7→ −

√
−17 + 6

√
2 +

√
−17− 6

√
2.

The sum of the identity map and the third map that takes√
−17 + 6

√
2 +

√
−17− 6

√
2 7→

√
−17 + 6

√
2−

√
−17− 6

√
2

maps √
−17 + 6

√
2 +

√
−17− 6

√
2 7→ 2

√
−17 + 6

√
2.

Thus it is clear that the reflex relation is reflexive.

The above example is a good illustration to understand the term reflex
field in the study of CM fields, as degree 4 CM fields are the simplest possible
fields that could be non-normal, and the structure is easier to understand.
The above detailed illustration was not given by the author of [MG1], but I
thought it might be worthy to write things in detail down.

Note that the definition of reflex field is different literately from the defi-
nition of reflex field in Lang’s book or Shimura’s book [Sh1], where the reflex
is defined to be

Kr = Q(TrΦ(x) : x ∈ K)

where Φ is a CM type of K/Q and Trϕ is the trace of Φ, i.e., the sum of
all embeddings in Φ. Note that in the case of [K : Q] = 4, each CM type
contains 2 embeddings that are not mutually complex conjugate of each
other. Let Φ = {ϕ1, ϕ2}, then we want to show that the authors’ definition
is the equivalent to Lang’s or Shimura’s, that is,

Q(ϕ1(x) + ϕ2(x) : x ∈ K) = Q(ϕ1(x)ϕ2(x) : x ∈ K)
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for a fixed embedding of K into L and a CM type {ϕ1, ϕ2}. For any x ∈ K,
note that

ϕ1(x) + ϕ2(x) = (1 + ϕ1(x))(1 + ϕ2(x))− 1− ϕ1(x)ϕ2(x),

which proves that Q(ϕ1(x) + ϕ2(x) : x ∈ K) ⊆ Q(ϕ1(x)ϕ2(x) : x ∈ K). For
the other direction, note that

2ϕ1(x)ϕ2(x) = (ϕ1(x) + ϕ2(x))
2 − (ϕ1(x))

2 − (ϕ2(x))
2,

and that (ϕ1(x))
2 and (ϕ2(x))

2 are two conjugate (not complex conjugate)
real quadratic numbers in K0, therefore there sum is in Q. In particular, use
the notation above, consider x =

√
r, then w.l.o.g. suppose ϕ1(

√
r) =

√
r

and ϕ2(
√
r) =

√
s. Then one verifies that 2ϕ1(

√
r)ϕ2(

√
r) = (ϕ1(

√
r) +

ϕ2(
√
r))2 − a. This shows inclusion in the opposite direction. Therefore

these two definitions are equivalent.

It remains as an interesting topic, to analyze the behavior of the Weil p-
numbers and their discriminants in a non-normal field. In the case where we
have a normal field, and if it is cyclic, most of the work is done by making
use of the character modulo some number l, by viewing the field K as a
sub-extension of an order l cyclotomic field. Whereas in the case of non-
normal extension, we need to go up to its normal closure, which contains
two pairs of conjugate sub-fields, with non-commutative structures. Genus
2 curves with p-rank 1 do not show much difference as ordinary curves in
the application of discrete log cryptography, though it is largely different in
embedding pairs cryptography.
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