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The purpose of this paper is to present a substantial portion of the proof
of Mordell’s theorem, which states that the group E(Q) of rational points on
an elliptic curve E over Q is finitely generated. Though the argument gen-
eralizes straightforwardly to number fields, and much less straightforwardly
to abelian varieties (at which point it is known as the Mordell-Weil theo-
rem), I will consider only, roughly speaking one half of the rational case.
All the material is drawn, rather directly, from Husemöller’s Elliptic Curves,
Lang’s Elliptic Curves: Diophantine Analysis, and Silverman’s Arithmetic of
Elliptic Curves.

1 Background and Basic Results

An elliptic curve is a nonsingular curve of genus one with a specified point O.
Any elliptic curve can be written as the solution set to the equation y2 = f(x),
where f(x) is some cubic of the form f(x) = x3 + ax + b. (Husemöller, p.
28). We are typically interested in elliptic curves wherein a, b ∈ Q or some
number field. In this paper we will restrict attention to Q. A natural object
of interest is then the set of rational points (x, y) ∈ Q2 such that y2 = f(x).
This is referred to as E(Q).

Several theorems are most easily proven in the context of projective space
P 2(Q) A point p in projective n-space can be represented as 0 6= (p0, . . . , pn),
under the equivalence relation (p0, . . . , pn) λ(p0, . . . , pn) for nonzero λ. It
is clear that by appropriate choice of λ, any point can be written with all
the pi integers, and with a gcd of 1. (Call this reduced integer form.) In
projective space, the equation of an elliptic curve is homogenized to Y 2Z =
X3 + aXZ2 + bZ3.

As Jacobi first realized, an abelian group structure can be put on E(Q)
using a geometric addition procedure: for two rational points P and Q on
the curve, take the line through P and Q and consider the third point of
intersection, P ∗ Q. Then take the line through O and P ∗ Q, and call the
third point of intersection of this line with the curve P +Q. Then this yields
an abelian group law. All properties are easy to prove except associativity.
See either reference for a proof.

Mordell’s theorem, proven in 1922, states that E(Q) is a finitely generated
abelian group. In the case of curves over Q, much is now known about the
torsion subgroup; indeed, Mazur1 completely classified the possible torsion

1Mazur, Rational Isogenies of Prime Degree, Invent. Math. 44, 2 (June 1978), p. 129

1

wstein
Sticky Note
speaking, one  (insert comma)

wstein
Sticky Note
E(Q) is that set along with the point O.

wstein
Sticky Note
Missing period.

wstein
Sticky Note
tilde or equals sign or something?



subgroups. Substantially less is known about the rank of the free part, and
its study is one of the major themes in modern algebraic number theory.

I wanted to learn and present Mordell’s theorem, because it is a founda-
tional theorem of the field whose proof is somewhat accessible, yet slightly
too complicated to be frequently taught. This paper will present half of
its proof. I close this section with unproved statements of two background
results that will prove useful.

Theorem 1 Let (x, y) be a rational point on an elliptic curve y2 = x3+ax+b,

and let n(x, y) be multiplication by n in E(Q). Then n(x, y) =
(
ϕn(x)
ψ2
n(x)

, . . .
)

,

where φn(x) ∈ Z[x] of degree n2, and ψ2
n(x) ∈ Z[x] of degree n2−1.

This is proven in chapter 2 of Lang, using a complex analytic development
of elliptic curves which – unfortunately – would take us far afield. For a more
elementary treatment when n = 2, see Silverman and Tate, Rational Points
on Elliptic Curves, chapter 1.

Next, we state part of the addition formula for a curve. Suppose (x1, y1), (x2, y2)
are distinct points. Then the ordinate of their sum will be

x3 = −x1 − x2 +
1

4

(
y1 − y2
x1 − x2

)2

. (1)

Again, see Lang or Silverman, e.g., for a proof.

2 An outline of the proof

We begin with a definition.

Definition Let G be an abelian group. A height on G is a function h : G→
[0,∞] satisfying the following axioms:

a) For fixed g ∈ G, there is a constant cg such that h(g+x) ≤ 2h(x) + cg.

b) There is an integer m ≥ 2 and a constant c1 such that h(mg) ≥
m2h(g)− c.

c) |h−1([0, c])| <∞ for any c > 0.

The proof of Mordell’s theorem will ultimately follow from the following
important result.
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Theorem 2 Let G be an abelian group. Suppose that G/mG is finite for
some m, and there exists a height function h : G→ [0,∞] on G. Then G is
finitely generated.

Proof Let g1, . . . , gr be representatives of the cosets of mG in G. Let p ∈ G
and write p = mq1 + gn1 . Induct, writing qi = mqi+1 + gin+1 . We have, from
the axioms,

−c1 +m2h(qn+1) ≤ h(mqn+1) ≤ 2h(qn) + k,

where k = max1≤i≤r cgi . Taking κ = c1 + k, we have

h(qn+1) ≤
2

m2
h(qn) +

κ

m2

≤ 2n

m2n
+ κ

(
n∑
j=1

2j

m2j

)
.

Therefore, for n large enough, we always get h(qn) bounded – say by 1. There
are finitely many elements with height less than 1, so any element can be
written as a sum of the r pi and at most one additional element from the
finite set h−1(1). Therefore, G is finitely generated.

The proof of Mordell now proceeds in two steps: first, show that E(Q)/2E(Q)
is finite, and then show that there is a height function. The first step will
not be covered in this paper; there are various ways to prove it – for two of
them, see Lang – including the construction of certain of homomorphisms
on E(Q) and the study of their properties. We will provide a proof of the
existence of a height function.

3 Construction of the Height Function

We first create a height function on P n(Q), projective n-space. Define
H(p) = maxi |pi|, where || is the normal Euclidean absolute value, and define
h(p) = logH(p).

Theorem 3 There is only a finite number of points of bounded height and
bounded degree in P n(Q).

Proof This is completely obvious from the definition.
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Definition Let f0, . . . , fm be homogenous polynomials in n+1 variables and
of degree d (i.e., fi(tX0, . . . , tXn) = tdfi(X0, . . . , Xn)), and assume there is no
common nontrivial zero. The map f : P n → Pm defined by f = (f0, . . . , fm)
is a morphism of degree d. It is well-defined because it is never zero by
hypothesis.

Lemma 1 Let ϕ be a homogenous polynomial of degree d, in n+1 variables.
Then there is a positive constant c(ϕ) such that for y ∈ P n(Q), represented
as above by integers y0, . . . , yn, |ϕ(y)| ≤ c(ϕ)H(y)d.

Proof Write ϕ(y) =
∑
aimi(y), where each mi is a monomial. Then

|ϕ(y)| ≤
∑
i

|ai||mi(y)| ≤ (
∑
i

|ai|)(max
i
|yi|)d ≡ c(ϕ)H(y)d.

We next state a major theorem of Hilbert:

Theorem 4 (Hilbert’s Nullstellensatz) Let o ⊆ K[x1, . . . , xn] be an ideal,
and V (o) =

{
x ∈ K : p(x) = 0∀p ∈ o

}
. Suppose f ∈ K[x1, . . . , xn], and

f(x) = 0 for all x ∈ V (o). Then for some n ∈ N, fn ∈ V (o).

The proof of this theorem is relatively brief, but would take us somewhat
far afield, and so will not be given here. A proof can be found in Lang’s
Algebra, Rev. 3rd Ed., at p. 378 ff.

Corollary 5 Let f = (f0, . . . , fm) : P n(Q)→ Pm(Q) be a morphism. Then
there exists an integer s > 0, an integer b, and homogenous polynomials
gij ∈ Z[X0, . . . , Xn] of degree s such that bXs+d

i =
∑

j gijfj.

Proof From the definition of morphism, the polynomials fj have only zero
as a common root. Hence, if o is the ideal generated by f0, . . . , fm, then
V (o) = {0}. Since Xd shares this root, the Nullstellensatz implies that
Xd+m is in the ideal o for some m, i.e., there exist gij ∈ Q[X0, . . . , Xn] such
that Xd+m

i =
∑

j gijfj. By clearing the denominator of the gij (multiplying
by d) and considering m as it ranges over i, we thus establish the result,
except for homogeneity. If gij contains terms that are not degree-s, then
clearly the terms are not (taken as a whole) necessary to the identity, but
must rather cancel with other such terms; and we may therefore assume that
they are degree s.
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The following theorem is pivotal in proving Mordell:

Theorem 6 Let h be the height on P n(Q) as defined above. Then for any
Q-morphism f : P n(Q)→ P n(Q), hf − dh is bounded over Pm(Q).

Proof Let x be a point in P n expressed in Z-reduced form. Using lemma 1,
we have H(f(x)) = maxi |fi(y)| ≤ H(y)d ·maxi c(fi) ≡ CH(y)d.

Now corollary 5 implies that

|b||xi|s+d ≤ max
i,j

c(gij) max {|x0|s, . . . , |xn|s}
∑
j

|fj(x)|

(where we are using the homogeneity of the gij).

= max
ij

c(gij) ·H(x)2 · (m+ 1) ·max
j
|fj(x)|

We then have maxj |fj(x)| = |b|H(f(x)), where b is as in the prior corollary
(recall that H acts on points represented by integer coefficients). Hence

|b|H(x)2+d ≤ max
i,j

c(gij · (m+ 1)H(x)2|b|H(f(x)),

whence
cH(x)d ≤ H(f(x),

for some c. Thus cH(x)d ≤ H(f(x)) ≤ CH(x)d, and

c ≤ H(f(x))

H(x)d
.

Taking logarithms gives the result.

Recall from section one that if (x, y) is a point on an elliptic curve, then
multiplication by n yields an x-coordinate given by f

g
, where f is a polynomial

of degree n2, and g is of degree n2 − 1. Consider the homogenizations of f
and g, of degree n2, calling them F and G: in this case, (G,F ) will form a
morphism on projective 1-space. This enables us finally to construct heights
on elliptic curves.

Definition Let E be an elliptic curve, and (by abuse of notation) x : E →
P 1 be given by x(x, y) = (1, x), i.e., if P = (x, y), x(P ) = (1, x). Define
hE : E → [0,∞] by

hE(P ) = h(x(P )).
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Theorem 7 Let hE be as above. Then for n ∈ Z+, h(nP ) − n2h(P ) is
bounded over E.

Proof As in the above discussion, let n : P 1 → P 1 = (G,F ). By theorem 6,
hn− n2h is bounded over P 1; and hE(nP ) = h(n ◦ x(P )). This suffices.

Theorem 8 As defined above, hE is a height function.

Proof Property (a) follows from equation (1) (recalling that h is the log of
H). Property (b) follows from theorem 7. Property (c) follows from theorem
3.

Assuming the absent result that E/2E is finitely generated, this proves
Mordell’s theorem, by theorem 2.

6

wstein
Sticky Note
It should be "Theorem 6", i.e., capitalize.  Same remarks elsewhere.

wstein
Sticky Note
E(Q)/2E(Q)    (you are missing Q).


