Final Project

Stephen McKeown
Math 581b
Professor Stein, Instructor

December 13, 2010

The purpose of this paper is to present a substantial portion of the proof of Mordell's theorem, which states that the group $E(\mathbb{Q})$ of rational points on an elliptic curve E over \mathbb{Q} is finitely generated. Though the argument generalizes straightforwardly to number fields, and much less straightforwardly to abelian varieties (at which point it is known as the Mordell-Weil theorem), I will consider only, roughly speakind $\overline{\bar{\sim}}$ e half of the rational case. All the material is drawn, rather directly, from Husemöller's Elliptic Curves, Lang's Elliptic Curves: Diophantine Analysis, and Silverman's Arithmetic of Elliptic Curves.

1 Background and Basic Results

An elliptic curve is a nonsingular curve of genus one with a specified point O . Any elliptic curve can be written as the solution set to the equation $y^{2}=f(x)$, where $f(x)$ is some cubic of the form $f(x)=x^{3}+a x+b$. (Husemöller, p. $28)$. We are typically interested in elliptic curves wherein $a, b \in \mathbb{Q}$ or some number field. In this paper we will restrict attention to \mathbb{Q}. A natural object of interest is then the set of tional points $(x, y) \in \mathbb{Q}^{2}$ such that $y^{2}=f(x)$. This is referred to as $E(\mathbb{Q})$.
$\mathrm{Se} \equiv 1$ theorems are most easily proven in the context of projective space $P^{2}(\mathbb{Q})^{\text {A }}$ point p in projective n-space can presented as $0 \neq\left(p_{0}, \ldots, p_{n}\right)$, under the equivalence relation $\left(p_{0}, \ldots, p_{n}\right) \vee \overline{=}\left(p_{0}, \ldots, p_{n}\right)$ for nonzero λ. It is clear that by appropriate choice of λ, any point can be written with all the p_{i} integers, and with a gcd of 1 . (Call this reduced integer form.) In projective space, the equation of an elliptic curve is homogenized to $Y^{2} Z=$ $X^{3}+a X Z^{2}+b Z^{3}$.

As Jacobi first realized, an abelian group structure can be put on $E(\mathbb{Q})$ using a geometric addition procedure: for two rational points P and Q on the curve, take the line through P and Q and consider the third point of intersection, $P * Q$. Then take the line through O and $P * Q$, and call the third point of intersection of this line with the curve $P+Q$. Then this yields an abelian group law. All properties are easy to prove except associativity. See either reference for a proof.

Mordell's theorem, proven in 1922 , states that $E(\mathbb{Q})$ is a finitely generated abelian group. In the case of curves over \mathbb{Q}, much is now known about the torsion subgroup; indeed, Mazur ${ }^{1}$ completely classified the possible torsion

[^0]subgroups. Substantially less is known about the rank of the free part, and its study is one of the major themes in modern algebraic number theory.

I wanted to learn and present Mordell's theorem, because it is a foundational theorem of the field whose proof is somewhat accessible, yet slightly too complicated to be frequently taught. This paper will present half of its proof. I close this section with unproved statements of two background results that will prove useful.

Theorem 1 Let (x, y) be a rational point on an elliptic curve $y^{2}=x^{3}+a x+b$, and let $n(x, y)$ be multiplication by n in $E(\mathbb{Q})$. Then $n(x, y)=\left(\frac{\varphi_{n}(x)}{\psi_{n}^{2}(x)}, \ldots\right)$, where $\phi_{n}(x) \in \mathbb{Z}[x]$ of degree n^{2}, and $\psi_{n}^{2}(x) \in \mathbb{Z}[x]$ of degree n^{2-1}.

This is proven in chapter 2 of Lang, using a complex analytic development of elliptic curves which - unfortunately - would take us far afield. For a more elementary treatment when $n=2$, see Silverman and Tate, Rational Points on Elliptic Curves, chapter 1.

Next, we state part of the addition formula for a curve. Suppose $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are distinct points. Then the ordinate of their sum will be

$$
\begin{equation*}
x_{3}=-x_{1}-x_{2}+\frac{1}{4}\left(\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right)^{2} . \tag{1}
\end{equation*}
$$

Again, see Lang or Silverman, e.g., for a proof.

2 An outline of the proof

We begin with a definition.
Definition Let G be an abelian group. A height on G is a function $h: G \rightarrow$ $[0, \infty]$ satisfying the following axioms:
a) For fixed $g \in G$, there is a constant c_{g} such that $h(g+x) \leq 2 h(x)+c_{g}$.
b) There is an integer $m \geq 2$ and a constant c_{1} such that $h(m g) \geq$ $m^{2} h(g)-c$.
c) $\left|h^{-1}([0, c])\right|<\infty$ for any $c>0$.

The proof of Mordell's theorem will ultimately follow from the following important result.

Theorem 2 Let G be an abelian group. Suppose that $G / m G$ is finite for some m, and there exists a height function $h: G \rightarrow[0, \infty]$ on G. Then G is finitely generated.

Proof Let g_{1}, \ldots, g_{r} be representatives of the cosets of $m G$ in G. Let $p \in G$ and write $p=m q_{1}+g_{n_{1}}$. Induct, writing $q_{i}=m q_{i+1}+g_{i_{n+1}}$. We have, from the axioms,

$$
-c_{1}+m^{2} h\left(q_{n+1}\right) \leq h\left(m q_{n+1}\right) \leq 2 h\left(q_{n}\right)+k
$$

where $k=\max _{1 \leq i \leq r} c_{g_{i}}$. Taking $\kappa=c_{1}+k$, we have

$$
\begin{aligned}
h\left(q_{n+1}\right) & \leq \frac{2}{m^{2}} h\left(q_{n}\right)+\frac{\kappa}{m^{2}} \\
& \leq \frac{2^{n}}{m^{2 n}}+\kappa\left(\sum_{j=1}^{n} \frac{2^{j}}{m^{2 j}}\right) .
\end{aligned}
$$

Therefore, for n large enough, we always get $h\left(q_{n}\right)$ bounded - say by 1 . There are finitely many elements with height less than 1 , so any element can be written as a sum of the $r p_{i}$ and at most one additional element from the finite set h^{-}Therefore, G is finitely generated.

The proof of Mordell now proceeds in two steps: first, show that $E(\mathbb{Q}) / 2 E(\mathbb{Q})$ is finite, and then show that there is a height function. The first step will not be covered in this paper; there are various ways to prove it - for two of them, see Lang - including the construction of certain ef-homomorphisms on $E(\mathbb{Q})$ and the study of their properties. We will provide a proof of the existence of a height function.

3 Construction of the Height Function

We first create a height function on $P^{n}(\mathbb{Q})$, projective n-space. Define $H(p)=\max _{i}\left|p_{i}\right|$, $\overline{\overline{=}} \|$ is the normal Euclidean absolute value, and define
$h(p)=\log H(p)$.

Theorem 3 There $\sqrt{\overline{=}}$ hly a finite number of points of bounded height and

Proof This is completely obvious from the definition.

Definition Let f_{0}, \ldots, f_{m} be homogenous polynomials in $n+1$ variables and of degree d (i.e., $\left.f_{i}\left(t X_{0}, \ldots, t X_{n}\right)=t^{d} f_{i}\left(X_{0}, \ldots, X_{n}\right)\right)$, and assume there is no common nontrivial zero. The map $f: P^{n} \rightarrow P^{m}$ defined by $f=\left(f_{0}, \ldots, f_{m}\right)$ is a morphism of degree d. It is well-defined because it is never zero by hypothesis.

Lemma 1 Let φ be a homogenous polynomial of degree d, in $n+1$ variables. Then there is a positive constant $c(\varphi)$ such that for $y \in P^{n}(\mathbb{Q})$, represented as above by integers $y_{0}, \ldots, y_{n},|\varphi(y)| \leq c(\varphi) H(y)^{d}$.

Proof Write $\varphi(y)=\sum a_{i} m_{i}(y)$, where each m_{i} is a monomial. Then

$$
\left.|\varphi(y)| \leq \sum_{i}\left|a_{i}\right|\left|m_{i}(y)\right| \leq\left(\sum_{i}\left|a_{i}\right|\right)\left(\max _{i}\left|y_{i}\right|\right)^{d} \xlongequal[\overline{\overline{(C}} \varphi]{ }\right) H(y)^{d} .
$$

We next state a major theorem of Hilbert:
Theorem 4 (Hilbert's Nullstellensatz) Let $\mathfrak{o} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and $V(\mathfrak{o})=\{x \in \bar{K}: p(x)=0 \forall p \in \mathfrak{o}\}$. Suppose $f \in K\left[x_{1}, \ldots, x_{n}\right]$, and $f(x)=0$ for all $x \in V(\mathfrak{o})$. Then for some $n \in \mathbb{N}, f^{n} \in V(\mathfrak{o})$.

The proof of this theorem is relatively brief, but would take us somewhat far afield, and so will not be given here. A proof can be found in Lang's Algebra, Rev. 3rd Ed., at p. 378 ff .

Corollary 5 Let $f=\left(f_{0}, \ldots, f_{m}\right): P^{n}(\mathbb{Q}) \rightarrow P^{m}(\mathbb{Q})$ be a morphism. Then there exists an integer $s>0$, an integer b, and homogenous polynomials $g_{i j} \in \mathbb{Z}\left[X_{0}, \ldots, X_{n}\right]$ of degree s such that $b X_{i}^{s+d}=\sum_{j} g_{i j} f_{j}$.

Proof From the definition of morphism, the polynomials f_{j} have only zero as a common root. Hence, if \mathfrak{o} is the ideal generated by f_{0}, \ldots, f_{m}, then $V(\mathfrak{o})=\{0\}$. Since X^{d} shares this root, the Nullstellensatz implies that X^{d+m} is in the ideal \mathfrak{o} for some m, i.e., there exist $g_{i j} \in \mathbb{Q}\left[X_{0}, \ldots, X_{n}\right]$ such that $X_{i}^{d+m}=\sum_{j} g_{i j} f_{j}$. By clearing the denominator of the $g_{i j}$ (multiplying by d) and considering m as it ranges over i, we thus establish the result, except for homogeneity. If $g_{i j}$ contains terms that are not degree- s, then clearly the terms are not (taken as a whole) necessary to the identity, but must rather cancel with other such terms; and we may therefore assume that they are degree s.

The following theorem is pivotal in proving Mordell:
Theorem 6 Let h be the height on $P^{n}(\mathbb{Q})$ as defined above. Then for any \mathbb{Q}-morphism $f: P^{n}(\mathbb{Q}) \rightarrow P^{n}(\mathbb{Q}), h f-d h$ is bounded over $P(\overline{\overline{\text { 可 }}) \text {. }}$

Proof Let x be a point in P^{n} expressed in \mathbb{Z}-reduced form. Using lemma 1, we have $H(f(x))=\max _{i}\left|f_{i}(y)\right| \leq H(y)^{d} \cdot \max _{i} c\left(f_{i}\right) \equiv C H(y)^{d}$.

Now corollary 5 implies that

$$
|b|\left|x_{i}\right|^{s+d} \leq \max _{i, j} c\left(g_{i j}\right) \max \left\{\left|x_{0}\right|^{s}, \ldots,\left|x_{n}\right|^{s}\right\} \sum_{j}\left|f_{j}(x)\right|
$$

(where we are using the homogeneity of the $g_{i j}$).

$$
=\max _{i j} c\left(g_{i j}\right) \cdot H(x)^{2} \cdot(m+1) \cdot \max _{j}\left|f_{j}(x)\right|
$$

We then have $\max _{j}\left|f_{j}(x)\right|=|b| H(f(x))$, where b is as in the prior corollary (recall that H acts on points represented by integer coefficients). Hence

$$
|b| H(x)^{2+d} \leq \max _{i, j} c\left(g_{i j} \cdot(m+1) H(x)^{2}|b| H(f(x)),\right.
$$

whence

$$
c H(x)^{d} \leq H(f(x),
$$

for some c. Thus $c H(x)^{d} \leq H(f(x)) \leq C H(x)^{d}$, and

$$
c \leq \frac{H(f(x))}{H(x)^{d}}
$$

Taking logarithms gives the result.
Recall from section one that if (x, y) is a point on an elliptic curve, then multiplication by n yields an x-coordinate given by $\frac{f}{g}$, where f is a polynomial of degree n^{2}, and g is of degree $n^{2}-1$. Consider the homogenizations of f and g, of degree n^{2}, calling them F and G : in this case, (G, F) will form a morphism on projective 1 -space. This enables us finally to construct heights on elliptic curves.

Definition Let E be an elliptic curve, and (by abuse of notation) $x: E \rightarrow$ P^{1} be given by $x(x, y)=(1, x)$, i.e., if $P=(x, y), x(P)=(1, x)$. Define $h_{E}: E \rightarrow[0, \infty]$ by

$$
h_{E}(P)=h(x(P)) .
$$

Theorem 7 Let h_{E} be as above. Then for $n \in \mathbb{Z}^{+}, h(n P)-n^{2} h(P)$ is bounded over E.

Proof As in the above discussion, let $n: P^{1} \rightarrow P^{1}=(G, F)$. By t $\overline{\overline{=} \text { erom } 6, ~}$ $h n-n^{2} h$ is bounded over P^{1}; and $h_{E}(n P)=h(n \circ x(P))$. This suffices.

Theorem 8 As defined above, h_{E} is a height function.
Proof Property (a) follows from equation (1) (recalling that h is the \log of H). Property (b) follows from theorem 7. Property (c) follows from theorem 3.

Assuming the absent result that $E \xlongequal[\overline{\overline{2}}]{ }$ is finitely generated, this proves Mordell's theorem, by theorem 2.

[^0]: ${ }^{1}$ Mazur, Rational Isogenies of Prime Degree, Invent. Math. 44, 2 (June 1978), p. 129

