
Computing the Matrix of Frobenius for E[3]

Simon Spicer
0939537

Math 581B/D Project
Spring 2010, University of Washington

December 13, 2010

Abstract

In the world of elliptic curves, computing the trace of Frobenius is an important step in
determining the size of a curve E over a finite field, as well as helping determine the modular
curve attached to E. In this project we develop an algorithm in Sage for explicitly computing
the matrix representing the action of Frobenius on the `-torsion of an elliptic curve E over the
rationals for the case of ` = 3.

This algorithm is parameterized by the choice of basis of E[3], the 3-torsion elements over
E, as well as the choice reduction of E to the finite field case. We develop a practical way of
choosing such parameters, so that all computations can be carried out in feasible time.

1

wstein
Sticky Note
choice *of* reduction

1 Problem Outline and Motivation

For the course of this project we fix the following:

• E(Q), an elliptic curve over the rationals;

• p, a prime of good reduction for E;

• `, a small prime 6= 2;

• K = Q(E[`]), the number field obtained by adjoining all the coordinates of the `-torsion
elements in E(Q).

Note that K is a Galois extension of Q, and E(K) contains E[`] = {P ∈ E(Q) : `P = O}.

We wish to make sense of the mod-` Galois representation ρ` : Gal(K/Q) → GL2(F`). This
project specifically considers the element Frobp ∈ Gal(K/Q), the Frobenius element with respect
to p; we wish to compute the 2× 2 matrix of its image ρ`(Frobp) ∈ GL2(F`).

Why is this important? Recall the constant ap, which determines the size of the finite group
E(Fp) as well as the pth Fourier coefficient of the modular form attached to E.

Theorem 1.1. ap ≡ tr(ρ`(Frobp)) (mod `).

Thus computing the trace of the matrix of Frobp in GL2(F`) allows us to find the value of
ap modulo `. Doing this for a number of small ` gives us sufficient information to reconstruct
ap in its entirety via the Chinese Remainder Theorem, and hence determine the size of E(Fp).
This is in fact the tactic used by Schoof’s Algorithm to determine the cardinality of groups of ellip-
tic curves over finite fields, an algorithm that is integral to the success of elliptic curve cryptography.

However, Schoof’s Algorithm uses a number of shortcuts to obtain tr(ρ`(Frobp)) without com-
puting the matrix ρ`(Frobp) directly. In this project we provide an algorithm in Sage for computing
ρ`(Frobp) in its entirety in a meaningful way.

2

wstein
Comment on Text
delete "(Q)". That makes no sense. You *just* want E. E(Q) is the group of points, not the curve. We could have E(Q)={0} for many interesting curves.

wstein
Sticky Note
perhaps remark that we'll mainly take ell=3 starting in section X, but for sectins 1-2 (say), we stick with general ell.

wstein
Sticky Note
I think you should say a little more, e.g., a_p is by definition p+1-#E(F_p).

wstein
Sticky Note
perhaps a sentence about "meaningful" (i.e., with respect to a consistent choice of basis).

2 Specifying Morphisms

Recall that E[`] ≈ Z/`Z × Z/`Z ' (F`)
2. To determine the image of Frobenius in GL2(F`), we

must nail down the representation

ρ` : Gal(K/Q)→ GL2(F`),

where ρ` is defined as the action of Gal(K/Q) on the `-torsion subgroup E[`], interpreted as a
two-dimensional F`-vector space.

However, specifying ρ` in its entirety constitutes doing more work than is necessary, since we
are only interested in the image of the Frobenius element. Thus we will consider the restricted map

ρ`|〈Frobp〉 : 〈Frobp〉 → GL2(F`).

For ease of notation let φ` = ρ`|〈Frobp〉.

Theorem 2.1. For prime p lying above p in K, φ` factors over the Galois group of OK/(p) over
Fp, where the map 〈Frobp〉 → Gal(OK

(p) /Fp) is just the canonical map induced by reducing elements
in K modulo p.

Recall that for p a prime lying over p in K, then OK/(p) ' Fpm for some m ∈ N. Furthermore,
we know from the properties of the Frobenius endomorphism that Frobenius acting on fields of
characteristic p is just the map x 7→ xp. Hence we can compute ρ`(Frobp) by computing the action
of the map (x, y)→ (xp, yp) in the reduced `-torsion group Ē[`] ⊂ E(OK/(p)).

This raises two issues: to compute φ`(Frobp) we must specify the prime p lying above p with
which we factor in order to get to the finite field (OK/(p)). There might be many primes lying over
p, and we will get a different presentation of the finite field Fpm – and hence potentially a different
matrix of Frobenius in GL2(Fl) – for each p.

Secondly, the final matrix depends the non-canonical isomorphism E[`] ≈ (F`)
2 i.e. on a choice

of basis {P,Q} ⊂ E[`]. Again, different choices of basis will result in different matrices of Frobenius.

Therefore the representation φ` : 〈Frobp〉 → GL2(F`) is parameterized by the choice of p lying
over p, and the choice of basis {P,Q} ⊂ E[`].

3

wstein
Sticky Note
over --> through

wstein
Sticky Note
no parens around \mathfrak{p}.

wstein
Comment on Text
it's just the *definition*.

wstein
Sticky Note
depends *on* the

wstein
Sticky Note
"i.e." --> ", i.e., "

3 The Näıve Approach

Here is an algorithm for computing the matrix φ`(Frobp) that can be implemented quite easily in
Sage. Given elliptic curve E, a prime p of good reduction over E, and a small odd prime `:

1. Precomputation:

• Compute all elements in E[`] ⊂ E(Q).

• Construct K = Q(E[`]), which is de facto Galois.

• Factor the ideal (p) over K.

2. Specifying choices:

• Choose a basis {P,Q} ⊂ E[`].

• choose a prime p lying over p.

3. Computing the Frobenius matrix with respect to these choices:

• Compute finite field OK/(p).

• Compute the reductions P ,Q via the quotient map α 7→ α, where α is the generator of
K, and α that of OK/(p).

• Compute Frobp(P) and Frobp(Q) via (x, y)→ (xp, yp).

• Express the above as linear combinations of P and Q,
i.e. Frob`(P) = a · P + b ·Q and Frob`(Q) = c · P + d ·Q for some a, b, c, d ∈ F3.

• The matrix representing the action of Frobenius is then

(
a b
c d

)
.

However, this approach isn’t practical: we are stymied at the outset. Even for ` = 3, K =
Q(E[`]) is an extension over Q of degree dividing 48. Thus in most cases performing operations
like factoring (p) in K takes an inordinate amount of time. We will need to be a bit more clever
than this in order compute Frobenius matrices in practical amounts of time.

4

wstein
Comment on Text
fix typesetting!

wstein
Sticky Note
Instead of factoring, it would be better to use "factoring polynomials over K to find E[ell] explicitly" as your example hard problem. The reason is that factoring primes *is* easy if done sufficiently cleverly. However, finding E[ell] explicitly isn't, as far as I can tell (which surprised me, to be honest).

4 A Better Idea

From hereon we consider the specific case ` = 3, for which the following method works.

4.1 A Choice of Basis

We have mentioned that Q(E[3]) is typically a degree 48 extension over Q. However, observe that
Q(xE[3]), the field obtained by adjoining just the x-coordinates of the points in E[3] to Q, is an
extension of degree at most 24. This is because the 3-division polynomial for E is always of degree
4; hence adjoining all the roots of this polynomial to Q results in a Galois extension of degree
dividing 24.

Suppose then that instead of finding a basis for E[3] via computing Q(E[3]), we instead compute
xP and xQ, the x-coordinates of two points in E[3], which lie in the smaller extension Q(xE[3]).
Halving the degree of the extension means this will take much less time.

Do (xP, xQ) define a unique choice of basis for E[3]? The answer is no: Because the Weier-
strass equation for E is quadratic in y, each x-value satisfying said equation is associated with two
y-values. For example, if (α, β) is a point on the curve defined by y2 = x3 + ax + b, then so is
(α,−β)). Thus given xP and xQ, the choices of {P,Q}, (−P,−Q), (−P,Q) and (P,−Q) will all be
bases of E[3].

How do we differentiate between these choices?

4.2 The Issue of Sign

Suppose we have picked a basis {P,Q} ≡ ((1
0) , (0

1)) for E[3], and we now compute the action of
Frobenius =

(
a b
c d

)
with respect to this basis. What would the matrix of Frobenius look like if we

had instead picked the basis to be {−P,−Q}? Take a moment to convince yourself that the matrix
would be the same. This is because Frobenius acting on E[3] is a linear function:

Frobp(P) = aP + bQ⇒ Frobp(−P) = −Frobp(P) = −(aP + bQ) = a(−P) + b(−Q).

The result is that our choice of {P,Q} or {−P,−Q} for a basis of E[3] won’t affect the output
matrix. Similarly, a choice of {−P,Q} would yield the same matrix as {P,−Q}.

However, it is not necessarily the case that {P,Q} and {P,−Q} will produce the same Frobenius
matrix, so we still need some way of differentiating our choice of basis up to the sign of one of the
basis elements. This can be done using the Weil pairing mentioned in the introduction.

5

wstein
Sticky Note
"hereon" -- not a word

wstein
Sticky Note
in practice. It probably works for *any* ell -- just maybe not in practice.

wstein
Sticky Note
weird notation. How about Q(x(E[3]))?

wstein
Sticky Note
{P,Q} |--> (P,Q)

wstein
Sticky Note
that have exactly the same (xP,xQ)

wstein
Sticky Note
You should have a few sentences explaining where this algorithm comes from (or where anything in your paper comes from). E.g. references. In this case, you and I just made it up, and don't know if it is in the literature or not.

4.3 The Weil Pairing

Let E be an elliptic curve defined over field K, and let ` 6= 2 be a prime 6= the characteristic of K.
Let Z` be the multiplicative group of `th roots of unity in K(E[`]).
The Weil Pairing is a bilinear form that operates on pairs of elements in E[`] and outputs a `th
root of unity in K(E[`]).
That is, 〈·, ·〉 : E[`]→ Z`, and for P,Q ∈ E[`] and m ∈ F`,

〈mP,Q〉 = 〈P,mQ〉 = 〈P,Q〉m.

We won’t go into the details of how the Weil pairing is computed in this project, as its details
are not relevant here. What matters it that computing 〈P,Q〉 is quick, and it enables us to differ-
entiate between choices of possible bases given the x-coordinate pair {xP, xQ}:

Suppose we have picked a basis {P,Q} for E[`]. Then by bilinearity

〈P,Q〉 = 〈−P,−Q〉 = 〈−P,Q〉−1 = 〈P,−Q〉−1.

Furthermore, one can show that if {P,Q} is a basis for E[`], then 〈P,Q〉 6= 1.
Hence with the Weil pairing we can differentiate between choosing the bases {P,Q} or {P,−Q} for
E[`].

In our case ` = 3, so Z3 = (1, ζ3, (ζ3)
2) for primitive 3rd root of unity ζ3; so for basis {P,Q} we

either have the Weil pairing 〈P,Q〉 = ζ3 or 〈P,Q〉 = (ζ3)
2.

Putting this all together, we see that, given the x-coordinates of a basis xP and xQ, specifying
a primitive 3rd root of unity ζ3 ∈ K(E[3]) such that 〈P,Q〉 = ζ3 completely determines the matrix
of Frobenius with respect to that basis.

Note that ζ3 is an element of K(E[3]), which is what we’re avoiding trying to compute; so the
above is not at the outset very useful to us. However, we are saved by the following lemma, for
which we provide a proof:

Lemma 4.1. Let ζ` be a primitive `th root of unity over field F . Then F (xE[`]), the field obtained
by adjoining all the x-coordinates of E[`] to F , contains F (ζ`).

Proof. We prove lemma for the case we are interested in: F = Q and ` = 3.

Let E be an elliptic curve given by the equation y2 = x3 + ax+ b.
Let L = Q(E[`]), K = Q(xE[`]), and K ′ = Q(ζ`).
It can be shown that the K ′ (L i.e. the `th cyclotomic field is a nontrivial subfield of L (if this
were not the case, then the Weil Pairing could not be defined).

If K = L or, then we are done. So suppose K (L.
Since K contains the x-values of the 3-division points on E but not the y-values, and since all
points on E obey y2 = x3 + ax+ b, it follows that L is at most a multi-quadratic extension of K,
obtained by adjoining to K the square roots of the elements α3

i + aαi + b, where αi is a root of the
3-division polynomial. We can thus express L as L = K({βi}), where β2i ∈ K for each i, where i

6

wstein
Sticky Note
the

wstein
Sticky Note
a --> an since "ell" starts with "e" which is a vowel.

wstein
Sticky Note
so give ref to silverman...

wstein
Sticky Note
this has to be an ordered pair, so (not {. same comment many times below too.

wstein
Sticky Note
Z_ell is the wrong notation! Use mu_ell

wstein
Sticky Note
the critical thing you're using is surjectivity of Weil onto mu_ell, which you didn't state.

wstein
Sticky Note
it's E[ell] x E[ell] --> mu_ell

wstein
Sticky Note
so for *the*

wstein
Sticky Note
This is FALSE. There are curves for which Q(E[3]) = Q(zeta_3). I.e., for which K' is not properly contained in L, but K' = L.

sage: E = EllipticCurve('14a')
sage: F = E.change_ring(CyclotomicField(3))
sage: F.torsion_subgroup()
Torsion Subgroup isomorphic to Z/3 + Z/6

What is true, and can be proved, is that K' is contained in L.

wstein
Sticky Note
or what?

wstein
Sticky Note
all of

wstein
Sticky Note
obey --> satisfy

wstein
Sticky Note
you state it in general. is it true in general?! we don't know it is, do we, so why state it in general.

ranges from 1 to at most 4, and this basis is choses to be minimal.

Suppose that K ∩K ′ 6= Q. Then K 3 a + bζ3 for some a, b ∈ Q. But then K 3 ζ3, since K is
closed under addition and multiplication by rationals. Hence K contains the field generated by ζ3,
namely K ′.

So suppose that K ∩K ′ = Q. Then the compositum KK ′ strictly contains K and K ′.
Hence ζ3 = a0 +

∑
i aiβi for some ai integral elements in K, and at least one of the ai is not zero

(otherwise we would have ζ3 ∈ K).
But ζ23 + ζ + 1 = 0, so (a0 +

∑
i aiβi)

2 + (a0 +
∑

i aiβi) + 1 = 0.
After some rearrangement we get the following
(1 + a+ a20 +

∑
i a

2
iβ

2
i) + (2a0 + 1)

∑
i aibi +

∑
i

∑
j 6=i aiajβiβj = 0.

Linear independence then implies that a0 = −1
2 ;

This is a contradiction, since the ai are all integral elements of K/Q.
Thus KK ′ cannot strictly contain K. So we cannot have the case K ∩K ′ = Q.

Hence K contains Q(ζ3).

Back to our algorithm. Explicitly, we can specify a primitive 3rd root of unity in Q(xE[3])
by factoring the 3rd cyclotomic polynomial x2 + x+ 1 in Q(xE[3]) and choosing one of the roots.
Furthermore, by the above lemma we see that choosing such a root in Q(xE[3])is equivalent to
specifying a primitive 3rd root of unity in Q(E[3]).

7

wstein
Sticky Note
since K' is a quadratic extension of Q, the hypo immediately implies that K' is contained in K. Your argument though for this obvious doesn't even make sense...

wstein
Sticky Note
what are these b_i? I don't remember you defining them anywhere.

They must be beta_i.

wstein
Sticky Note
one of the a_i **for i >= 1** is nonzero

wstein
Sticky Note
You didn't assume the beta_i are integral when defining them. Even if you did, you don't know that the ring of integers of L is generated as an O_K module by the beta_i. E.g., this is like with Q(sqrt(D)) where the ring of ints might be generated by (1+sqrt(D))/2.

So, I think this proof has some issues as written.

wstein
Sticky Note
So, as mentioned above, I think your argument has gaps. That said, I'm pretty convinced this claim is right, at least for ell=3. However, *I* don't know a proof either. You could either try to fill the gaps, or replace the lemma by a "hypothesis" (or conjecture) for the algorithm.

4.4 The Choice of Quotient Map

If we ditch computing Q(E[3]) in favour of the smaller exension K = Q(xE[3]), can we still specify
a quotient map K → Fpm in a meaningful way? Yes; all the above theory about reducing Q(xE[3])
modulo p still holds. However, p is now a prime lying above p in K, not Q(E[3]).

Thus we could do as follows:

• Compute K = Q(xE[3]);

• Factor (p) over K and choose p lying above p;

• Reduce OK modulo p to obtain the finite field Fpm for some m.

However, we can introduce a shortcut which will save on computation time. By the primitive
element theorem, K = K(α) for some algebraic number α. Let f be the defining polynomial of α,
i.e. f(x) ∈ Z[x] irreducible and f(α) = 0.

Theorem 4.2. OK/(p) ≈ Fp[x]/(g), where g is one of the irreducible factors of f , the reduction
of f modulo p.

Thus specifying a prime p above p is equivalent to specifying an irreducible factor g of the re-
duced polynomial f ∈ Fp[x]. Furthermore, obtaining the latter is easier than obtaining the former,
as factoring polynomials over Fp is much faster than factoring ideals over a degree 24 number field.

Hence in our algorithm, instead of specifying a prime above p, we can instead specify a factor
of f .

8

wstein
Sticky Note
only defined on O_K.

Actually, you want a map E(K) --> E(F_p^m), which is defined.

wstein
Sticky Note
wrong Q's here.

wstein
Sticky Note
This theorem has hypothesis, which you are ignoring! It is only true away from primes that divide the index of Z[alpha] in the maximal order. Look it up and be careful.

wstein
Sticky Note
that is a silly statement, because the standard algorithm for factoring an ideal is to factor the polynomial... !

4.5 The Algorithm

Using this neat trick involving Weil pairings, we can reduce the problem of computing the matrix
of Frobenius to one involving an extension of degree no more than 24 over Q.
Computing in a degree 24 extensions over Q in Sage turns out to be completely feasible on a per-
sonal computer, allowing us to give the workable algorithm below.

Given elliptic curve E and a prime p of good reduction over E:

1. Precomputation:

• Compute x(E[3]), the set of x-coordinates of all elements in E[3].

• Construct K = Q(xE[3]). K is then a Galois extension of degree dividing 24 over Q.

• Compute f , the defining polynomial of K.

• Factor x2 + x+ 1, the 3rd cyclotomic polynomial over K.

• Compute f , the reduction of f modulo p, and factor f over Fp.

2. Specifying choices:

• Pick xP, xQ ∈ x(E[3]), representing the x-coordinates of our basis.

• Pick ζ, one of the roots of x2 + x+ 1 in K.

• Pick g, one of the factors of f . This corresponds to picking a prime p lying over p in K.

3. Computing the Frobenius matrix with respect to these choices:

• If m is the degree of g, define k = Fpm , where Flm is constructed to have modulus g.
Then k is exactly the field OK/(p), where p corresponds to g.

• Compute xP , xQ and ζ, the reductions of xP, xQ and ζ in k respectively.

• The reduced elements of E[3] all lie within E(k′), where k′ is at most a quadratic
extension of k; so compute k′ if necessary. There are two (3-torsion) elements in E(k′)
with x-coordinate equal to xP ; choose P to be one of them. Similarly, obtain one such
Q.

• Compute the Weil pairing < P,Q >. This is either equal to ζ or (ζ)−1.

• If < P,Q >= ζ, move on to the next step. If < P,Q >= ζ
−1

, set Q = −Q.
We will now have < P,Q >= ζ.

• Compute Frobp(P) and Frobp(Q) via (x, y)→ (xp, yp).

• Express the above as linear combinations of P and Q,
i.e. Frob`(P) = a · P + b ·Q and Frob`(Q) = c · P + d ·Q for some a, b, c, d ∈ F3.

• The matrix representing the action of Frobenius is then

(
a b
c d

)
.

9

5 Implementation

Below is the Sage code for some helper functions that we will need:

Computes the action of Frobenius for elements of an elliptic curve over a finite field

def frobenius(P):

"""

If P = (x,y) is defined over field of characteristic P,

returns the point (x^p, y^p).

EXAMPLES ::

sage: F = EllipticCurve(GF(3001^3, ’a’), [-5,9]); F

Elliptic Curve defined by y^2 = x^3 + 2996*x + 9 over Finite Field in a

of size 3001^3

sage: P = F.an_element (); P

(1637*a^2 + 1297*a + 1392 : 1394*a^2 + 2454*a + 1142 : 1)

sage: frobenius(P)

(1187*a^2 + 1221*a + 792 : 2582*a^2 + 611*a + 2726 : 1)

"""

if P.is_zero ():

return P

E = P.curve ()

x, y = P.xy()

return E(x.frobenius(),y.frobenius ())

Double discrete log

def ddl(R, r, basis):

"""

For R in E[r] with basis (P, Q), returns (a,b), where R = a*P + b*Q.

EXAMPLES ::

sage: F = EllipticCurve(GF(10009^2 , ’a’), [3 ,7]); F

Elliptic Curve defined by y^2 = x^3 + 3*x + 7 over Finite Field in a of

size 10009^2

sage: F(0). division_points (3)

[(0 : 1 : 0), (1760 : 4880*a + 249 : 1), (1760 : 5129*a + 9760 : 1),

(448 : 2911*a + 4187 : 1), (448 : 7098*a + 5822 : 1), (8614 : 342*a +

9325 : 1), (8614 : 9667*a + 684 : 1), (9196 : 4314*a + 1381 : 1), (9196

: 5695*a + 8628 : 1)]

sage: P = F(0). division_points (3)[1]

sage: Q = F(0). division_points (3)[3]

sage: ddl(P + 2*Q, 3, (P,Q))

(1,2)

sage: ddl(2*P, 3, (P,Q))

(2,0)

"""

P, Q = basis [0], basis [1]

a, b = 0, 0

while R != 0:

R = R - P

a += 1

if a == r:

R = R - Q

a = 0

b += 1

if b == r: raise ValueError("Basis not basis.")

return (a, b)

10

Compute Frobenius matrix with given two -element basis

def frob_matrix(r, basis):

"""

If basis = (P,Q) for E[r], returns the matrix [[a,c],[b,d]],

where frobenius(P) = a*P + b*Q, and frobenius(Q) = c*P + d*Q

EXAMPLES ::

sage: F = EllipticCurve(GF(10009^2 , ’a’), [3 ,7]); F

Elliptic Curve defined by y^2 = x^3 + 3*x + 7 over Finite Field in a of

size 10009^2

sage: P = F(0). division_points (3)[1]

sage: Q = F(0). division_points (3)[3]

sage: frob_matrix (3, (P,Q))

[2 0]

[0 2]

"""

row1 = ddl(frobenius(basis [0]), r, basis)

row2 = ddl(frobenius(basis [1]), r, basis)

return matrix(Integers(r),[row1 , row2]). transpose ()

And the code for the matrix of frobenius function:

Compute the matrix of Frobenius

def matrix_of_Frobenius(E, p, x_root_choices , zeta_choice , gbar_choice):

"""

Returns the matrix representing the action of Frobenius w.r.t p on E[3],

given the choices specified by x_root_choices , zeta_choice and gbar_choice.

INPUT:

- ‘‘E‘‘ - The elliptic curve for which the Frobenius matrix is being computed

- ‘‘p‘‘ - A prime of good reduction for E whose Frobenius element we are considering

- ‘‘x_root_choices ‘‘ - A tuple (a1 , a2) of a pair of integers between 0 and 3

representing our choice of the two x-values of the r-division polynomial

which constitute the x-values of our basis

- ‘‘zeta_choice ‘‘ - An integer either 0 or 1, representing which of the two

primitive third roots of unity we are choosing

- ‘‘gbar_choice ‘‘ - An integer between 0 and some divisor of 24 representing our

choice of irreducible divisor of the defining polynomial of QQ(xE[r]) reduced

modulo p

OUTPUT:

- An invertible 2x2 matrix over the finite field GF(3).

The returned matrix will always have the same trace in GF(3), regardless of the

values specified in x_root_choices , zeta_choice and gbar_choice.

EXAMPLES ::

sage: E = EllipticCurve ([-5 ,9]); E

Elliptic Curve defined by y^2 = x^3 - 5*x + 9 over Rational Field

sage: p = 3001

sage: x_root_choices = (0,1)

sage: zeta_choice = 0

sage: gbar_choice = 0

sage: matrix_of_Frobenius(E, p, x_root_choices , zeta_choice , gbar_choice)

[1 2]

11

[1 0]

sage: zeta_choice = 1; gbar_choice = 4

sage: matrix_of_Frobenius(E, p, x_root_choices , zeta_choice , gbar_choice)

[2 0]

[1 2]

sage: x_root_choices = (3,1)

sage: matrix_of_Frobenius(E, p, x_root_choices , zeta_choice , gbar_choice)

[2 0]

[2 2]

sage: zeta_choice = 2

sage: matrix_of_Frobenius(E, r, x_root_choices , zeta_choice , gbar_choice)

Traceback (most recent call last)

...

IndexError: list index out of range

sage: zeta_choice = 1; x_root_choices = (2,4)

sage: matrix_of_Frobenius(E, r, x_root_choices , zeta_choice , gbar_choice)

Traceback (most recent call last)

...

IndexError: list index out of range

sage: x_root_choices = (3 ,1); gbar_choice = 13

sage: matrix_of_Frobenius(E, r, x_root_choices , zeta_choice , gbar_choice)

Traceback (most recent call last)

...

IndexError: list index out of range

"""

Compute the 3-division polynomial for E and make it monic , so that we can construct

a Number field with it

h = E.division_polynomial (3)

h = sage.schemes.elliptic_curves.heegner.make_monic(h)[0]

Construct K, the number field containing all the roots of h

factor_list = []

for j in h.factor ():

factor_list.append(j[0])

variables = [’a1’,’a2’,’a3’,’a4’]

variables = variables [:len(factor_list)]

K = NumberFieldTower(factor_list ,variables)

K.<a> = K.galois_closure ()

Compute the x-values of our basis corresponding to the values in x_root_choices

root_list = K[x](E.division_polynomial (3)). roots()

xP = root_list[x_root_choices [0]][0]

xQ = root_list[x_root_choices [1]][0]

Compute the primitive 3rd root of unity correspoding to the value specified

in zeta_choice

z = K[x](x^2 + x + 1)

zeta = z.roots ()[zeta_choice][0]

Compute the irreducible factor of f reduced modulo p, corresponding to the

value specified in gbar_choice

f = K.defining_polynomial ()

fbar = GF(p)[x](f)

gbar = fbar.factor ()[gbar_choice][0]

Construct the finite field k = GF(p)[x]/(gbar), and reduce xP, xQ and zeta into

this field

k.<abar > = GF(p^(gbar.degree ()), modulus=gbar)

F = E.change_ring(k)

xPbar = k(xP.polynomial ())

xQbar = k(xQ.polynomial ())

zetabar = k(zeta.polynomial ())

12

Construct E over k

F = E.change_ring(k)

Look for points in F corresponding to xPbar and xQbar. If none exist in E(k),

construct a quadratic extension k’ of k for which corresponding points in

E(k’) do exist. Pick two respective points arbitrarily.

try:

Pbar = F.lift_x(xPbar)

Qbar = F.lift_x(xQbar)

except ValueError:

No points exist. The following is a hack to construct a quadratic extension

of k such that the finite field is of the right type

R = GF(p)[x]

hbar = R(x^2)

lbar = gbar(hbar)

while not lbar.is_irreducible ():

hbar = hbar + R(x)

lbar = gbar(hbar)

k.<abar > = GF(p^(lbar.degree ()), modulus=lbar)

Coerce xPbar , xQbar and zetabar into the new k and try lift again

xPbar = k(xPbar.polynomial ()(hbar))

xQbar = k(xQbar.polynomial ()(hbar))

zetabar = k(zetabar.polynomial ()(hbar))

F = E.change_ring(k)

Pbar = F.lift_x(xPbar)

Qbar = F.lift_x(xQbar)

The Weil Pairing: if <Pbar , Qbar > != zetabar , we have chosen the wrong Qbar;

So instead set Qbar to -Qbar

if -(Pbar._miller_(Qbar ,r)/Qbar._miller_(Pbar ,3)) != zetabar: Qbar = -Qbar

Finally , return the matrix of Frobenius acting on the basis (Pbar , Qbar)

return frob_matrix (3, (Pbar , Qbar))

13

References

[1] W. Stein, Algebraic Number Theory: a Computational Approach,
Published free online at
http://wstein.org/books/ant/

[2] D. Husemöller, Elliptic Curves,
Graduate Texts in Mathematics
Springer, New York, 2004.

[3] H Cohen & G Frey, Handbook of Elliptic Curve Cryptography,
Discrete Mathematics and its Applications
Chapman & Hall/CRC, Boca Raton, 2006.

14

