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1 Definitions

Let L be a number field and RL be the ring of integers of L. Then given
any prime ideal (p) in Z, we get a unique primary decomposition (p)RL =
βe1
1 · · · βer

r .
Note that the ideals βk are precisely the prime ideals that lie over (p), i.e.

the prime ideals such that βk ∩RL = (p).
The special properties were just that Z was a Dedekind domain and Q is

its fraction field, L a finite extension of Q and RL the integral closure of Z
in L.

Let D be any Dedekind domain with fraction field K. Let L/K be a
finite separable field extension and R the integral closure of D in L. Then
by Proposition 8.1 of [4], R is again a Dedekind domain, and so given any
prime p ⊂ D, the ideal pR has a primary decomposition βe1

1 · · · βer
r . The

situation is the same as above when D = Z and K = Q. As a note, all field
extensions will be assumed finite and separable unless otherwise stated for
ease of exposition.

The number ek is called the ramification index of the prime βk.

A prime p is called NT ramified if some ramification index ek > 1.

We’ll shortly get rid of the “NT” which is just placeholding for “Number
Theoretic” definition. We say that the field extension L/K is unramified if
all prime ideals of R (the integral closure of RK in L) are unramified in L.

Now we’ll work towards a geometric definition of ramification. Let X, Y
be two curves, meaning complete (proper over k), nonsingular (all local rings
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are regular), one-dimensional integral scheme (variety) over an algebraically
closed field k. Let f : X → Y be a finite morphism. Let P ∈ X be any
point on the curve and consider Q = f(P ). Then f is unramified at P
if the induced map on stalks OY,Q → OX,P gives mQOX,P = mP and the
extension of residue fields k(Q)→ k(P ) is separable. We could rewrite that
first condition to say that OP/mQOP = k(P ). The map f is unramified if
it is unramified at every point, and is called AG1 ramified at P if it is not
unramified at P . The map itself is AG1 ramified if it is ramified at some
point.

That definition isn’t very geometric, so let’s define another notion of ram-
ified. Since f was assumed finite it does not map everything to a point and
hence is a dominant map, thus f ∗ : K(Y ) ↪→ K(X) the pullback embeds the
function fields. But both are finitely generated extension fields of transcen-
dence degree 1 of k, and hence K(X)/K(Y ) is a finite algebraic extension.
Define the degree of f to be d = [K(X) : K(Y )]. Degree roughly can be
thought of as the map f being d to 1.

Let t ∈ OQ be a local parameter, i.e. a generator for the maximal ideal
mQ. Then f#(t) ∈ OP . Now we define the ramification index at P to be
eP = νP (f#(t)), where νP is the valuation associated to the DVR OP . If
eP > 1, then we say that f is AG2 ramified at P . Lastly, we’ll say f is AG3
ramified if the length of the stalk of the sheaf of relative differentials (ΩX/Y )P
is non-zero as an OP -module.

Theorem 1.1 Let X = Spec(R) and Y = Spec(D). If f : X → Y is the
map induced by D ↪→ R, then all four notions of ramification coincide.

Proof We’ll start with NT ramfied iff AG1 ramified. This can be seen all at
once when you realize that primes in R are points on Spec(R) and primes
in D are points on Spec(D). Let p be a prime ideal in R, i.e. a point of
Spec(R). Then p maps to q if and only if f(p) = p ∩ D = q. So f is AG1
unramified at p if and only if pRp = mp is generated by q. By definition
of the map as just contracting a prime ideal, p is one of the primes βk in
qR = βe1

1 · · · βer
r . Thus ek = 1 if and only if pek = p and hence if and only if

q generates mp. So AG1 unramified if and only if NT unramified.

We’ll now do AG2 if and only AG3 unramified. Let t be a local parameter
at q and u a local parameter at p. Then dt generates ΩY,q and du generates
ΩX,p. Denote the unique element g ∈ Op such that f ∗dt = gdu by dt/du.

Now if we take stalks of the exact sequence (*) 0 → f ∗ΩY → ΩX →
ΩX/Y → 0 we get that

(
ΩX/Y

)
p
' ΩX,p/f

∗ΩY,q. Thus the length of that
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module is exactly νp(dt/du). So if f has ramification index ep at p, then by
definition t = auep where a is a unit. So dt = aepu

ep−1du+uepda and hence if
char(k) 6 |ep, we have νp(dt/du) = e−1 and otherwise we have νp(dt/du) ≥ e.
In either case, νp(dt/du) which is the length of the module in question is
positive if and only if ep > 1, so we have AG2 if and only if AG3.

Lastly we’ll do NT if and only if AG2 unramified. This is from the defini-
tions, since the valuation on the DVR Rp is just the power of p that appears
in the factorization (one should be careful about generators, but everything
is principal and so works nicely as was made explicit in the previous part of
the proof).

An immediate corollary is that if f : X → Y is a finite map of curves
of degree d, then yet another equivalent definition of being ramified at q is
that f is k to 1 at q where k < d (since we are only dealing with reduced
and irreducible 1-dimensional objects, this statement is about honest closed
points and we make the convention that it is unramified at the generic point).

Now that we have the equivalences of all these definitions, we can freely
shift between them to find the easiest proofs. For instance, a nice corollary
that is usually proved using purely number theoretic methods (see [4] 8.4) is:

Corollary 1.2 If L/K is a finite separable field extension, then only finitely
many primes are ramified.

Proof Let X = Spec(RL) and Y = Spec(RK). Consider f : X → Y and
suppose the map has degree d. The set of points at which f is d to 1 is
well-known to be an open condition (see [5] II.5.7). Since the curves have the
Zariski topology which is the cofinite topology, this says that the set of points
at which f is ramified is finite. Thus this fact is true for purely topological
and geometric reasons.

1.1 Examples

To get better acquainted with the above notions, we’ll look at some examples.

1) The geometric notion of ramified is clearly very reliant on what the
map is. In other words, even a finite map of a curve to itself can be ramified.
Consider the square map (say over k = k and char(k) 6= 2) of the affine line
f : A1 → A1 induced by x 7→ x2: k[x] → k[x] (we’ve relaxed the condition
of completeness here). Then given any maximal prime ideal, i.e. (x − p) in
the codomain, then both (x − √p) and (x +

√
p) map to it. Thus f is 2-1
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everywhere except at 0, where it is 1-1. So f is ramified at one point, namely
(the closed point) 0 or the ideal (x).

Since this is about as simple of an example as one could hope for and the
condition AG1 is a little abstract, let’s look at that definition in this case. As
above let’s let P = (x−√p) and Q = (x−p). Then OP is the subring of k(x)
such that the denominator of the rational function “doesn’t vanish at

√
p”

or after reducing, it contains no factor of the form x−√p. We get a similar
result for OQ. The maximal ideals mP and mQ are the ideals that consist of
the functions that vanish at

√
p and p respectively. So mP is principal and

generated by (x−√p) in OP and mQ is generated by (x− p) in OQ.
Now what is meant by mQOP is that we are considering OP as an OQ-

module, so multiplication is the action of mQ on OP . But the action is just
looking at the image of it under the map and then multiplying in the ring.
So f#(mQ) = (x2 − p) = (x − √p)(x +

√
p) as ideals generated by OP . If

p 6= 0, then this is clearly contained in (x − √p). But given anything in
(x−√p), we can make it in (x−√p)(x +

√
p) by multiplying and dividing

by (x +
√
p) which is allowed in OP . So mQOP = mP . But if we examine

the zero point, then the left side is (x2) by the same argument, which is not
(x), since the trick of dividing isn’t allowed anymore as x vanishes at 0.

2) Let K = Q and L = Q(
√

7). Then we check which which primes
ramify. To be clear about this definition when just given a field extension,
we always mean which primes in the rings of integers RK = Z ramify in
RL = Z[

√
7]. The discriminant of L is 22 · 7, so we’d expect 2 and 7 to

ramify. Let’s check:
The first case is (2)RL = (2 +

√
7)2, so it has ramification index 2 and

hence is ramified.
The second is (7)RL = (

√
7)2, which also has ramification index 2, so is

ramified.
The map we are looking at is Spec(Z[

√
7]) → Spec(Z). It is 2-1 every-

where except at 2 and 7, in which only the single prime listed above maps
to each one (we didn’t check this, but it is a theorem that only the primes
which divide the discriminant are ramified).

3) Our definitions also still make sense if we don’t work with separable
fields. A really intriguing example is the Frobenius map. Suppose π : X →
Spec(k) is a curve defined over an algebraically closed field of characteristic p.
Define Xp to be the curve with structure given by X → Spec(k)→ Spec(k)
where Spec(k)→ Spec(k) is the p-th power map.

Define F : Xp → X as the map induced by X → X the identity on

4

<Unknown User>
Note
too many which

<Unknown User>
Note
p italics

<Unknown User>
Note
typo



topological spaces, and the p-th power map on local rings. The definition
of Xp makes this k-linear. What this means is that if t ∈ Op is a local
parameter, then f#(t) = tp. But char(k) = p, so d(tp) = ptp−1dt = 0. Hence
f ∗ΩXp → ΩX is the zero map, which means ΩXp/X ' ΩX . Thus the sheaf
of relative differentials doesn’t vanish on any stalks and the map is ramified
everywhere.

Note that this example is very important, because if f : X → Y is a finite
map of curves in which K(X) is purely inseparable over K(Y ), then f is just
a composition of k-linear Frobenius morphisms.

2 The Riemann-Hurwitz Formula

Now we’ll develop the major calculating tool of this paper. First we need
a nice way to keep track of which points are ramified, so we use a divisor.
Suppose f : X → Y is a map of curves, then we define the ramification divisor

to be R =
∑
P∈X

length(ΩX/Y )P ·P . By our last definition of ramification, this

sum is finite and the coefficient on P is just (eP − 1), so it keeps track of the
ramified points and the corresponding ramification indices.

Proposition 2.1 Let KX and KY be the canonical divisors of X and Y
respectively. Then KX ∼ f ∗KY +R.

Proof Consider R to be a closed subscheme of X in the natural way. Then
OR ' ΩX/Y . Now just tensor the exact sequence (*) with Ω−1X to get 0 →
f ∗ΩY ⊗Ω−1X → OX → OR → 0. Tensoring was exact since Ω−1X is locally free
and hence flat.

But this says that f ∗ΩY ⊗Ω−1X is the kernel of the restriction map OX →
OR which is just the definition of the ideal sheaf of R. But this is a nice
effective divisor, so the ideal sheaf is L(−R). If we take the associated
divisors, then f ∗ΩY ⊗ Ω−1X becomes f ∗KY − KX and L(−R) becomes −R.
So we get KX ∼ f ∗KY +R.

Recall that the degree of a divisor, D =
∑
nP · P , is defined to be

degD =
∑
nP . We get as a Corollary the Riemann-Hurwitz Formula:

Corollary 2.2 Suppose f : X → Y is a map of curves and n = deg f . Then
2g(X)− 2 = n(2g(Y )− 2) + degR.
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Proof This is just applying the degree of the canonical divisor being 2g −
2, f ∗ multiplies the degree by n, and taking degrees of both sides of the
Proposition.

The next section of the paper will examine some consequences that follow
easily now that we have this formula.

2.1 Applications of the Formula

Define an elliptic curve C, to be a genus 1 curve (recall the standing assump-
tions on “curve”) with a marked point.

Theorem 2.3 All elliptic curves arise as a double cover of (degree 2 map
to) P1 ramified at exactly 4 distinct points, each with ramification index 2.

Proof Let C be an elliptic curve, and P0 the marked point. Now 2P0 is
a divisor on C, so we can consider the complete linear system |2P0|. By
Riemann-Roch dim |2P0| = 2 deg(P0) − g = 2 − 1 = 1. Since deg(2P0) = 2,
it is greater than or equal to twice the genus and hence is base point free
(again by Riemann-Roch). This means that the linear system determines a
degree 2 map from C to P1.

But the mere existence of a map, say f : C → P1 is basically all we need
to conclude the rest by Riemann-Hurwitz. By definition C has genus 1, and
P1 has genus 0, so Riemann-Hurwitz tells us that 2−2 = 2(2(0)−2)+degR,
or degR = 4. Thus the degree of the ramification divisor is 4.

If a, b, c, d are the points of ramification (in k ∪{∞}), then one can write
C as y2 = (x− a)(x− b)(x− c)(x− d) as a projective plane curve. If any of
these points are equal to eachother, then the curve will be singular at that
point, so they are all distinct. Thus they all have ramification index 2 or else
the degree of R wouldn’t be 4.

An immediate corollary is that we can put an elliptic curve in the form
y2 = x(x−1)(x−λ) where λ ∈ k\{0, 1}. Since P0 is a point of ramification, we
may as well assume d = P0. Then we just apply the Möbius transformation
a 7→ 0, b 7→ 1, and d 7→ ∞. This uniquely determines where c maps, and is
just the cross-ratio of (a, b, d, c).

3 Étale Maps

So far we’ve been focusing on curves, but this is just because we converted the
notion of ramification of primes from RK in RL, which were one-dimensional
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rings. We will now rephrase the definition to higher dimensional schemes.
We seem to have two options. Since all of our maps of curves f : X → Y
were dominant and had X reduced and Y Dedekind, it happened that all
of the maps were automatically flat. We’ll say a map of arbitrary schemes
f : X → Y is unramified if it satisfies AG1, which always makes sense, since
it is about the stalks of the structure sheaves. We’ll call a map étale if it is
both flat and unramified.

By the exact same proof in Section 1, we could equivalently define a map
to be étale if it is flat and ΩX/Y = 0.

Theorem 3.1 If f : X → Y is a map of non-singular varieties, then f is
étale if and only if for every y ∈ Y and any x such that f(x) = y, there
are affine open neighborhoods V = Spec(C) and U = Spec(A) of x and y
respectively such that there exists P, b ∈ A[t] polynomials with P monic such
that C ' A[t, u]/(P, bu− 1) and P ′ is a unit in C.

Proof Étale is a local condition, so if f is locally of the form above, then
since it is étale on these affine opens which form a cover, it is étale. One
can see that maps of the form above are étale just because one can explicitly
calculate that the sheaf of relative differentials vanish. ΩC/A is just the A-
module generated by dt and du modulo the relations that the differentials of
P and bu− 1 vanish, but P ′ is a unit, so everything vanishes.

For the other direction, suppose f is étale. Since we have chosen to work
with non-singular varieties, locally everything can be given with equations,
so reversing the previous argument gives this.

More details are given in [3]. There are many, many more equivalent
definitions for étale such as smooth of relative dimension 0 which are outside
the scope of this paper. Basically, all the definitions are just trying to give
an algebraic notion of locally being a covering space. We’ll only prove one
more equivalent definition that sort of gives this idea.

Theorem 3.2 Let f : X → Y is a finite type map of Noetherian schemes
and let y ∈ Y and x ∈ X such that f(x) = y and k(x) = k(y). Then f is

étale at x if and only if the induced map on formal completions Ôy → Ôx is
an isomorphism.

Proof Define A = Oy and B = Ox. Suppose f is étale at x. Then B =
A + mx, so by the unramified condition mx = myB = my + m2

x. Since we
can just keep repeating this, we get for all n that mx = my + mn

x. Thus
A/mn

y → B/mn
x is surjective with kernel (mn

x ∩ A)/mn
y .
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Now since A → B is flat and it is a homomorphism of local rings it is
actually faithfully flat. Thus mn

x ∩ A = (mn
yB) ∩ A = mn

y . So we get an

isomorphism A/mn
y → B/mn

x for all n and hence an isomorphism Â → B̂,
which is what we sought.

Now suppose we have an isomorphism Â → B̂. Then since B is an A-
algebra, and B̂ is a faithfully flat B-module that is flat as an A-module (via
that iso), we have that B is a flat A-module and hence X → Y is flat. Also,

there are canonical isomorphisms A/myA ' Â/myÂ ' B̂/myB̂ ' B/myB,
but A/myA ' k(y) = k(x), so the map is unramified at x.

3.1 Examples

1) Let’s naively try to construct an étale map over Spec(k). Then the
natural choice would be to take a monic polynomial p ∈ k[X] and try
X = Spec (k[X]/(p)) → Spec(k). But a point x in X corresponds to an
irreducible factor q(X) of p(X). So our map is étale at x if and only if q(X)
has no multiple roots in k and is a simple factor.

2) All the examples given in the Section 1.1 were flat, so those maps are
all étale at points where they are unramified.

3) Let f : X → P1 be a finite étale covering, and we’ll assume that X
is connected. Then X is proper over k, so X is a curve. But now by the
Riemann-Hurwitz formula we see that if the genus of X is not 0, then f will
have points of ramification. Thus X ' P1. This means that any finite étale
map to P1 is just a union of copies of P1’s. If we take infinitely many copies
this gives us a non-finite étale map, since finite was not an assumed part of
the definition.

4) By our definition of unramified we needed to also stipulate flat to get
our definition of étale, so we should look at examples where we have one but
not the other. If we let C be the nodal cubic curve, then we can resolve the
singularity by normalization C̃ → C. But normalization is flat if and only
if the original variety was normal. But this is locally an isomorphism and
hence unramified everywhere.

For a flat, but ramified map just take z 7→ zn the n-th power map P1 → P1

where char(k) does not divide n. This is flat, but it is ramified by Riemann-
Hurwitz.

5) We’ll do a very common construction in algebraic geometry for the last
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example. It is called a cyclic covering of degree n. Let L be an invertible sheaf
on Y be such that there is a non-zero global section, say f ∈ H0 (Y,L⊗n).

Now choose a trivializing affine open cover {Ui}i∈I for the sheaf. So we

have explicit choices of isomorphism φi : L−1
∣∣∣
Ui

∼→ OUi
. Note that for the

open sets that have non-empty intersection φi ◦ φ−1j is an automorphism
OUij

→ OUij
, so it can be expressed as multiplication by some element gij ∈

H0(Ui ∩ Uj,O×Y ).
Thus we can write our original section using the φi isomorphisms as fol-

lows, write f = {fi} where fi ∈ H0(Ui,OY ). Then on the overlaps we know
that fi = g−1ij fj. Now define the flat rank n sheaf F = OY

⊕
L−1

⊕
· · ·
⊕
L−(n−1).

We use f to give this an OY -algebra structure that is generated by L−1
in the natural way. For instance, multiplying something in the L−a with
something in the L−b will give you an element in L−(a+b), so we need only
worry about what happens if a + b = m > n. But we just get it into L−l
where l is between 0 and n such that m = nk + l. Any element in L−m
can be “wrapped around” by multiplying by fn as many times as needed to
decrease the power to l.

All of this is just a complicated way of saying that we are extracting
n-th roots of f . Our affine cover looks like Ui = Spec(Ai), and this algebra
structure is just the one induced locally from Ai[xi]/(x

n
i − fi).

With this algebra structure we can take the relative Spec, and we get a
finite map π : X = Spec(F)→ Y . From our local analysis, we see that this
map is étale except on the ramification locus f = 0. Thus we get a large
class of étale n-fold covers of schemes if we for instance take f to be such
that fn = 1.
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