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1. Conjugacy classes in Mn(Z)

For both intrinsic interest and many applications, it is useful to have a criterion for when
two matrices are conjugate. There is a single condition for matrices over a field K: A,B ∈
Mn(K) are conjugate by some U ∈ GLn(K) if and only if they have the same rational
canonical form [1]. The simplest case of this is:

Theorem 1.1. Let A,B ∈ Mn(K) have irreducible characteristic polynomials fA, fB ∈ K[x].
Then A and B are conjugate if and only if fA(x) = fB(x).

Proof. Suppose A = UBU−1 for some U ∈ GLn(K). Then

fA(x) = det(xIn − A) = det(U(xIn −B)U−1) = det(xIn −B) = fB(x).

On the other hand, suppose fA(x) = fB(x) = f(x). Fix a nonzero ~v ∈ Kn, and consider
the set of vectors SA = {~v, A~v,A2~v, . . . , An−1~v}. These must be linearly independent. If not,
there is a nonzero polynomial g ∈ K[x] with deg(g) < n and g(A)~v = 0. This implies that
some eigenvalue of A, say λ ∈ K, is a root of g(x). This is a contradiction, since λ is also a
root of f(x) (which is irreducible over K and has degree n). Therefore SA is a basis for Kn,
and with respect to this basis, A is the companion matrix of f(x)

Similarly, SB = {~v,B~v,B2~v, . . . , Bn−1~v} is a basis for Kn, and the action of B on this
basis is the also the companion matrix of f(x). Let U be the matrix that changes basis from
SA to SB; then A = UBU−1. �

Here the fact that K is a field is important. If we try to apply this theorem to Mn(Z), in
general U or U−1 will not have integer entries. For example,

A =

(
0 −13
1 0

)
and B =

(
−1 −7
2 1

)
both have characteristic polynomial x2 + 13. This is irreducible over Q, so A and B are
conjugate over Q, and both have rational canonical form(

0 −13
1 0

)
= A = UBU−1 where U =

(
2 1
0 1

)
/∈ GL2(Z).

If we try to find a U ∈ GL2(Z) such that UBU−1 = A, we get

U =

(
a b
c d

)
⇒

(
a b
c d

)(
0 −13
1 0

)
(±1)

(
d −b
−c a

)
=

(
−1 −7
2 1

)
Looking at the lower left entry, we get d2 + 13c2 = ±2, which has no integer solutions. We
therefore have at least two conjugacy classes of matrices with this characteristic polynomial,
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and the natural question is whether there are more. It turns out that these are the only
two, and in general we can count the conjugacy classes by working in the number field Q(λ),
where λ is a root of f(x) [2].

Theorem 1.2. (Latimer-MacDuffee) Let f ∈ Z[x] be monic and irreducible, with degree
n, and let f(λ) = 0. Then there is a bijection between the conjugacy classes of matrices
A ∈ Mn(Z) with characteristic polynomial f and the ideal classes in the order Z[λ] of Q[λ].

Proof. Following [3], we construct the bijection as follows. Given a matrix A, let ~ω be an
eigenvector with eigenvalue λ. We can freely scale ~ω, so let some nonzero ωi be 1. Then
A~ω = λ~ω is a system of linear equations in the remaining ωi, with coefficients in Z[λ].
Therefore ωi ∈ Q(λ) for all i. Let I be the Z-module spanned by the ωi. Now since
A ∈ Mn(Z),

λωi =
n∑
j=1

Aijωj ∈ I,

so I is a fractional ideal of Z[λ]. Choosing to rescale ~ω gives a fractional ideal in the same
class as I. Furthermore, if U ∈ GLn(Z), then

(UAU−1)(U~ω) = λ(U~ω),

and the entries of U~ω are simply another basis for I. Hence this procedure gives a well-defined
map from matrix conjugacy classes to ideal classes.

To show that the map is surjective, let I be a fractional ideal of Z[λ]. Since λ has degree
n over Z, I must have dimension n as a Z-module. Let {ω1, . . . , ωn} be a Z-basis for I, and
let A be the matrix that represents multiplication by λ in this basis. Then A has integer
entries, and A~ω = λ~ω, so the characteristic polynomial of A is f(x).

To show that it is injective, suppose that A,B ∈ Mn(Z), A~ω = λ~ω, B~ψ = λ~ψ, and that
I = 〈ω1, . . . , ωn〉Z is in the same ideal class as J = 〈ψ1, . . . , ψn〉Z, i.e. αI = βJ for some
nonzero α, β ∈ Z[λ]. Then let U ∈ GLn(Z) be the matrix that changes basis from βJ to αI,

so that α~ω = U(β ~ψ). Now,

A(Uβ ~ψ) = A(α~ω) = λ(α~ω) = λ(Uβ ~ψ) = βU(B~ψ)

β(AU)~ψ = β(UB)~ψ ⇒ (AU − UB)~ψ = ~0

Noting that the entries of ~ψ are linearly independent over Z, we conclude that
AU − UB = 0, so A = UBU−1. �

Returning to the example above, let f(x) = x2 + 13 and λ =
√
−13. Then Z[λ] is the ring

of integers of the number field Q(λ). We can compute the class group, which has order 2; the
ideal classes are represented by (1) and (2, 1 +λ). Therefore there are two conjugacy classes
in Mn(Z) with characteristic polynomial x2 + 13, and we can write down representatives for
them by multiplying λ by a basis for each ideal:

{1, λ} λ−→ {λ,−13} −→
(

0 −13
1 0

)
{2, 1 + λ} λ−→ {−1(2) + 2(1 + λ),−7(2) + 1(1 + λ)} −→

(
−1 −7
2 1

)
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This approach makes it easy to compute which conjugacy class a given matrix satisfying
x2 + 13 falls into. For example,(

3 11
−2 −3

)
has eigenvector

(
−3− λ

2

)
−→ (2,−3− λ) = (2, 1 + λ)

And, in fact, (
3 11
−2 −3

)
= U

(
−1 −7
2 1

)
U−1 for U =

(
1 2
0 −1

)
∈ GL2(Z)

2. Implementation for λ =
√
d

The accompanying Sage code demonstrates this for integer matrices with characteristic
polynomial x2 − d, with d nonsquare. Such matrices are traceless, with determinant −d, so
they have the form (

a b
−(a2 + d)/b −a

)
The eigenvectors have nonzero entries, since(

a b
−(a2 + d)/b −a

)(
x
0

)
=
√
d

(
x
0

)
⇒ ax =

√
dx, a ∈ Z⇒⇐

(and similarly y 6= 0). We can therefore scale arbitrarily to fix one entry. A convenient
choice is (

a b
−(a2 + d)/b −a

)(
b√
d− a

)
=

(
b
√
d

d− a
√
d

)
,

so the matrix corresponds to the ideal (b,
√
d− a) ⊂ Z[

√
d].

In most cases this ideal has to be computed carefully, since in general Z[λ] is not the full
ring of integers of Q(λ). In the case of quadratic fields, we know that the ring of integers

is Z[
√
d] for d ≡ 2, 3 (mod 4), and Z[1+

√
d

2
] for d ≡ 1 (mod 4). Note, however, that I is an

ideal of Z[1+
√
d

2
] if and only if 2I is an ideal of Z[

√
d], and that I and 2I are in the same

ideal class. Therefore we can work in the full ring of integers in all cases, using existing
tools to calculate with its ideals. We compute the fractional ideals corresponding to the two
matrices, and check whether one divided by the other gives a principal ideal, i.e. whether
they are in the same class. If they are, then we compute (largely by brute force) the matrix
that changes basis between the original two.
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