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Abstract. We introduce function fields, defining the class group and building

up to a statement of the Riemann-Roch Theorem, which we then use to prove
the finiteness of the class number for global function fields, modulo a few

technical points (for which we provide references).
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1. Introduction

Consider the rings Z and F [t], where F is a field and F [t] is the polynomial ring
in one variable over F . These rings have many properties in common; for example,
both are Euclidean domains. If, in addition, F is finite, then both have finite unit
group, and every proper quotient of either is finite.

In algebraic number theory, one studies algebraic number fields, that is, finite
extensions of Q = FracZ. Similarly, one can ask questions about finite extensions
of F (t) = FracF [t]; given the similarities between the base rings Z and F [t], one
might expect to get analogous results in many situations.

The first definition we will work with is the following:

Definition. A function field is a field extension K/F with the property that some
x ∈ K is transcendental over F and K/F (x) is a finite extension.

It turns out that the closest analogue to the algebraic number fields is the class of
global function fields:

Definition. A global function field is a function field K/F where F is finite and
algebraically closed in K. The field F is called the constant field of K.

It is easy to see that if K/F is a global function field, then F is in fact determined
by K, namely as the algebraic closure in K of the prime field of K. (Hence, calling
F the constant field of K makes sense.)

We will restrict attention to global function fields in Section 3; in the meantime,
everything we do will work in an arbitrary function field.

1.1. Primes. Throughout this subsection, K/F will be a fixed but arbitrary func-
tion field.

We begin by recalling a standard definition from algebra:

Definition. A discrete valuation ring is a PID with precisely one nonzero maximal
ideal (and hence precisely one maximal ideal).

We will, at times, use the abbreviation DVR for discrete valuation ring.

Definition. A prime in K/F is a discrete valuation ring R containing F as a
subring such that FracR = K.

It is worth mentioning that there are many equivalent definitions of DVR, and
many equivalent definitions of a prime in K/F . The definition of prime used above
is that in [2]. If R is a prime in K/F with maximal ideal P , we will sometimes call
P a prime in K/F (à la [2]); we will be fairly consistent with using R and S for
DVRs, and P and Q for maximal ideals in this situation.

We now compile some results about DVRs and primes, which will be of use later.

Lemma 1. Suppose R is a DVR with maximal ideal P .

(1) P consists precisely of the nonunits of R.
(2) Conversely, any ring A with an ideal I consisting precisely of the nonunits

in A has a unique maximal ideal (namely, I).
(3) The only nonzero prime ideal in R is P.
(4) If P is generated by t ∈ R, then every element of R has a unique expression

of the form tnu where n ≥ 0 and u ∈ R∗.



FUNCTION FIELDS AND THE CLASS NUMBER 3

Proof. The proofs of (1) and (2) are trivial, and (3) follows easily from (4) and the
fact that R is a PID. Item (4) is standard but less trivial; see, for example, theorem
1.1.6 in [5] (such t is sometimes called a local uniformizing parameter). �

Lemma 2. If R is a prime in K/F with maximal ideal P generated by t ∈ R, then
every nonzero element of K has a unique expression of the form tnu where n ∈ Z
and u is a unit in R. Moreover, the number n does not depend on the choice of
generator t.

Proof. Uniqueness is clear: if tnu = tmv, then in K we may write tn−m = vu−1.
Note that t is not a unit in R (as P = Rt is proper) but vu−1 is. It follows that
n = m, and thence that u = v.

To see that n is independent of t, suppose r is another generator of P and x ∈ K∗

has been written in the form x = tnu. As P = Rt = Rr, it follows that there exists
a unit v ∈ R with t = rv, and thus x = tnu = (rv)nu = rnvnu, where vnu is a unit
in R.

Existence follows immediately from item (4) of the previous lemma, and the fact
that K = FracR. �

It follows that if R is a prime in K/F and P = Rt is the maximal ideal in R,
then we have a well-defined map

ordP : K∗ → Z : tnu 7→ n.

The previous lemma shows that this map is independent of the choice of generator
t. Note that this map also determines P and R, namely

P = {x ∈ K∗ : ordP (x) > 0}

and

R = {x ∈ K∗ : ordP (x) ≥ 0}.

For future use, we note the following:

Lemma 3. If R is a prime in K/F with maximal ideal P , then the map ordP :
K∗ → Z satisfies the following properties:

(1) ordP (xy) = ordP (x) + ordP (x) for all x, y ∈ K∗

(2) ordP (x) = 0 for all x ∈ F ∗

(3) ordP (x−1) = −ordP (x) for all x ∈ K∗

(4) ordP (x + y) ≥ min{ordP (x), ordP (y)} if x, y, x + y ∈ K∗

Proof. Proving these is an easy exercise. �

Next, we show that primes in K/F cannot properly contain one another.

Lemma 4. If R is a prime in K/F and r ∈ R is nonzero and algebraic over F
then r ∈ R∗. In particular, R contains elements which are transcendental over F .

Proof. Suppose r ∈ R is nonzero and algebraic over F . Then we may write p(r) = 0
for some irreducible p ∈ F [x]. Write

p(x) = anxn + · · ·+ a1x + a0.

As p is irreducible, we have a0 6= 0. Thus, dividing through by a0, we have a
relation of the form

bnrn + · · ·+ b1r + 1 = 0,

<Unknown User>
Note
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which shows that
r−1 = −(bnrn−1 + · · ·+ b1),

which lies in R as r does (and R contains F ). �

Proposition 1. If R, S are primes in K/F and R ⊆ S then R = S.

Proof. Choose any nonzero y ∈ S; we must show that y ∈ R. Assume to the
contrary that y /∈ R. Let P be the maximal ideal in R; as observed above, we have

R = {x ∈ K∗ : ordP (x) ≥ 0}.

It follows that ordP (y) < 0, and so ordP (y−1) = −ordP (y) > 0. Thus, y−1 ∈ P , so
in particular y−1 ∈ R. As R ⊆ S, we also have y−1 ∈ S, so y is a unit in S.

Let Q denote the maximal ideal in S. By standard ring theory, the set Q ∩ R
is a prime ideal in R, being the preimage of the prime ideal Q under the inclusion
R ↪→ S. Note that we have an injective ring homomorphism

R/(R ∩ Q) ↪→ S/Q : r + R ∩ Q 7→ r + Q

which preserves F (i.e., it sends f ∈ R/(R ∩ Q) to f ∈ S/Q for all f ∈ F ).
By Proposition 2 below, S/Q is finite, hence algebraic, over F . By Lemma 4, R
contains an element which is transcendental over F . It follows that R ∩ Q cannot
be zero (for by the previous two sentences, R does not embed into S/Q via a map
preserving F ). As the only nonzero prime ideal in R is P , we have R ∩ Q = P .

We observed above that y is a unit in S, so y−1 /∈ Q. On the other hand, we
also observed above that y−1 ∈ P . The equality R∩Q = P is now a contradiction.
We conclude that y ∈ R, so R = S. �

Definition. Recall that if R is a prime in K/F then F is a subring of R by
definition. It follows that if P is the maximal ideal in R, then R/P is a K-vector
space. We define the degree of P to be the dimension of R/P as a K-vector space,
and denote it by deg P .

Proposition 2. If R is a prime in K/F with maximal ideal P , then deg P < ∞.

Proof. By definition, there exists x ∈ K, transcendental over F , such that K/F (x)
is finite. By Lemma 4, there is an element y ∈ P which is transcendental over F .

We claim that K/F (y) is finite. First, it is clear that F (y) is algebraic over F (x)
(as K is algebraic over F (x)), so there is a nonzero polynomial g ∈ F [X, Y ] in two
variables such that g(x, y) = 0. Since y is transcendental over F , we cannot have
g ∈ F [Y ]. It follows immediately that x is algebraic over F (y). Obviously K is
finite over F (x, y) (as it is finite over F (x)), and we have just shown that F (x, y)
is finite over F (y) (as x is algebraic over F (y)), so K is finite over F (y).

Now, we claim that deg P ≤ |K : F (y)|. Suppose r1, . . . , rn ∈ R are chosen
so that r1 + P, . . . , rn + P ∈ R/P are F -linearly independent. We claim that
r1, . . . , rn ∈ K are F (y)-linearly independent. If not, there exist rational functions
q1, . . . , qn of y with coefficients in F such that

r1q1 + · · ·+ rnqn = 0.

Clearing denominators and cancelling any common factors of y, this gives us a
relation

r1p1 + · · ·+ rnpn = 0

where the pi are polynomials in y with coefficients in F , and not every pi is divisible
by y.
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Note that mod P , each pi lies in F , as y ∈ P . Moreover, any pi not divisible
by y does not lie in P : the monomials cyk (k > 0, c ∈ F ) lie in P (as y ∈ P and
F ⊆ R), but the constant term of any such pi is a nonzero element of F , and as F is
a field contained in R and P consists precisely of the nonunits of R, it follows that
F ∩ P = {0}. Thus, pi /∈ P . It follows that reducing mod P gives us a nontrivial
F -linear relation

r1p1 + · · ·+ rnpn = 0

amongst the ri, which is a contradiction. We conclude that r1, . . . , rn are F (y)-
linearly independent over K, so the assertion deg P ≤ |K : F (y)| follows. �

1.2. The Rational Function Field. In this subsection, we illustrate the defi-
nitions made above in the special case of the function field F (x)/F (where x is
transcendental over F ), called the rational function field. These considerations will
also be used in Section 3, when we consider how primes behave with respect to
extensions of function fields.

Our goal here is to classify primes in F (x)/F , and determine the degree of (most
of) them. We first describe a family of primes in F (x)/F , naturally indexed by the
monic irreducible polynomials in F [x] (or, equivalently, the nonzero prime ideals in
F [x]). We then show that these primes, and one additional exceptional prime, are
the only primes in F (x)/F .

Let p ∈ F [x] be a given monic irreducible polynomial. Define

Op = {
f

g
: f, g ∈ F [x], p - g} ⊆ F (x)

and

Pp = {
f

g
∈ Op : p | f}.

It is immediate that Op is a ring, and it is easy to see that Pp is an ideal consisting
precisely of the nonunits of Op (note also that Pp is the principal ideal generated
by p

1
).

Thus, in order to show that Op is a DVR (with maximal ideal Pp), we need only

show that Op is a PID. Suppose I = ({ fα

gα
}α) is an ideal in Op, where the generators

are normalized so that no gα is divisible by p. By unique factorization in F [x], we

can multiply each fα

gα
by a unit uα (in Op) such that uα

fα

gα
= pnα

1
where pnα is the

largest power of p dividing fα. It follows that I = (pm

1
) where m = infα nα, so Op

is a DVR.
As Op contains f

1
for all f ∈ F [x], and Op ⊆ F (x), it is clear that FracOp =

F (x). We conclude that Op is a prime in F (x)/F . Note that if p and q are distinct
monic irreducible polynomials in F [x], then Op 6= Oq (for example, 1

q
∈ Op \ Oq).

Also, we can explicitly describe the ord maps ordPp
(or ordp for short), specifically

ordp(p
n f

g
) = n (p - f, g)

As for the exceptional prime, we define

O∞ = {
f

g
: f, g ∈ F [x], deg f ≤ deg g}

and

P∞ = {
f

g
∈ O∞ : deg f < deg g}.

<Unknown User>
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It is not hard to see that O∞ is a ring, and that P∞ is an ideal in O∞ consisting
precisely of the nonunits. Also, observe that P∞ is generated by 1

x
: if f

g
∈ P∞, so

that deg f < deg g, then we may write f

g
= 1

x

xf

g
where deg xf ≤ deg g.

Now, we claim that O∞ is a PID, so that it is in fact a DVR with maximal ideal
P∞. Observe that if f

g
is any nonzero element of O∞, then

f

g
·

g

fxdeg g−deg f
= xdeg f−deg g ,

where g

fxdeg g−deg f is a unit in O∞ (to obtain its inverse, interchange the numerator

and denominator). It follows that any nonzero ideal I in O∞ is generated by xm

where m = sup f
g
∈I deg f−deg g, so O∞ is a DVR. It is also the case that FracO∞ =

F (x), as O∞ ⊆ F (x) and 1
f
∈ O∞ for all nonzero f ∈ F [x]. It particular, O∞ is a

prime in F (x). Note also that O∞ 6= Op for any monic irreducible p in F [x]; e.g.,
x ∈ Op \ O∞. Also, our discussion above shows that the ord function ordP∞

(or
ord∞ for short) is given by

ord∞(
f

g
) = deg g − deg f.

Proposition 3. The primes in F (x)/F are precisely O∞ and Op for monic irre-
ducible p ∈ F [x].

Proof. We need only show that if R is a given prime in F (x)/F then R is either
O∞ or Op for some p. We proceed via two cases. First, suppose x ∈ R. In this
case, F [x] ⊆ R. If we let P be the maximal ideal in R, then we have an injection

F [x]/(P ∩ F [x]) ↪→ R/P : f + P ∩ F [x] 7→ f + P.

As proven in Proposition 2, R/P is finite, hence, algebraic, over F . As x is not
algebraic over F , the above injection implies that P ∩ F [x] is nonzero. As P is
prime, so too is P ∩ F [x], so we may write P ∩ F [x] = (p) for some (uniquely
determined) monic irreducible p in F [x]. Thus, if g ∈ F [x] is not divisible by p,
then g /∈ P . Our previous remarks about ord functions imply that ordP (g) ≤ 0,
so ordP (g−1) = −ordP (g) ≥ 0, and thus g−1 ∈ R. Since F [x] ⊆ R was observed

above, it follows immediately that any f

g
∈ F (x) with p - g lies in R. By definition,

R contains Op, and so by Proposition 1, we have R = Op.
Now, suppose instead that x /∈ R. Thus, ordP (x) < 0, so ordP (x−1) = −ordP (x) >

0, so x−1 ∈ P (where, as above, P denotes the maximal ideal in R). It follows that
R contains F [x−1], and that P ∩ F [x−1] is a prime ideal in F [x−1] containing x−1.
As x−1 is irreducible in F [x−1], we must have that P ∩F [x−1] is the ideal generated
by x−1. Thus, as R contains F [x−1] and P consists precisely of the nonunits in

R, we have 1
g
∈ R for any g ∈ F [x−1] with x−1 - g. Thus, we have f

g
∈ R for all

f, g ∈ F [x−1] with x−1 - g. Now, recall that

O∞ = {
u

v
: u, v ∈ F [x], deg u ≤ deg v}.

Given such u
v
∈ O∞, set f = ux−deg v and g = vx− deg v, so that f, g ∈ F [x−1], x−1 -

g, and u
v

= f

g
. It follows that u

v
∈ R, so O∞ ⊆ R. By Proposition 1, we have

O∞ = R. �



FUNCTION FIELDS AND THE CLASS NUMBER 7

Finally, we claim that deg Pp = deg p for monic irreducible p ∈ F [x]. Set n =

deg p. We claim that 1
1
, . . . , xn−1

1
is an F -basis for Op/Pp. First, observe that any

f

g
∈ Op is equivalent (mod Pp) to some h

1
∈ Op. To see this, note that as p is

irreducible and p - g we have (g, p) = 1 so ag + bp = 1 for some a, b ∈ F [x]. Then
1
g
− a

1
= 1−ag

g
= bp

g
which is equivalent to 0 mod Pp. Therefore, 1

g
is equivalent to

a
1
, so f

g
is equivalent to af

1
.

Next, we have a relation of the form xn

1
≡ −

Pn−1
i=0 cix

i

1
(mod Pp), where the ci

are the coefficients of p. Thus, every element of Op/Pp has a representative of the
form u

1
where u = 0 or deg u < deg p. Moreover, it is easy to see that if u and

v are distinct and satisfy u = 0 or deg u < deg p and v = 0 or deg v < deg p,
then u

1
6≡ v

1
(mod Pp), for the difference u−v

1
is nonzero and cannot lie in Pp as

deg u−v < deg p. Thus, every element of Op/Pp has a unique representative of the

above form, and it follows immediately that 1
1
, . . . , xn−1

1
is an F -basis for Op/Pp,

so deg Pp = n = deg p.

1.3. Divisors. We now return to the case of a general function field.

Definition. The group of divisors DK of a function field K/F is the free abelian
group on the primes in K/F . Thus a divisor in K/F is of the form

∑
P aP P where

the sum is taken over all primes P in K/F and the aP are integers, only finitely
many of which are nonzero.

Recall that the group of fractional ideals in a Dedekind domain is a free abelian
group on the prime ideals, so the above definition of DK is at least superficially
similar to what we proved for fractional ideals. (Of course, we haven’t said much in
the way of why primes in K/F as we defined them are the appropriate analogues
of prime ideals in a Dedekind domain.)

Definition. The degree of a divisor
∑

P aP P ∈ DK is defined to be the integer∑
P aP deg P . This clearly gives us a group homomorphism deg : DK → Z sending

a divisor to its degree.

Definition. A divisor D =
∑

P aP P ∈ DK is called effective if aP ≥ 0 for all P .
We write this as D ≥ 0.

Definition. If K/F is a function field and a ∈ K∗, define the principal divisor of
a to be the divisor (a) =

∑
P ordP (a)P .

It is important to note that principal divisors are well-defined as divisors of K/F .
By considering how the ord functions behave with respect to taking inverses, and
recalling that a ∈ K∗ satisfies ordP (a) > 0 iff a ∈ P , it is easy to see that principal
divisors are well-defined if and only if each nonzero element of K lies in only finitely
many primes P in K/F . (In this case, prime refers to the maximal ideal, not the
DVR.) If a ∈ K is transcendental over F , then it is easy to see that there are only
finitely many primes in F (a)/F containing a (using our classification above), and
so by the theorem on extensions of primes in Section 3, there are only finitely many
primes in K/F containing a. For the general case, see page 47 of [2].

We will also need the following fact: if (a) is a principal divisor, then deg(a) = 0.
The proof is contained in the same proposition on page 47 of [2].

Definition. If K/F is a function field, the set of all principal divisors in DK is
denoted by PK. It is easy to see that if a, b ∈ K∗ then (ab) = (a) + (b) (as
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ordP (ab) = ordP (a) + ordP (b) for all P ) and (c) = 0 for any c ∈ F ∗ (as any prime
R contains c, and its maximal ideal P does not). It follows that (x−1) = −(x), and
so PK is in fact a subgroup of DK . We define ClK = DK/PK to be the class group
of K/F . Elements of ClK are called divisor classes. As principal divisors have
degree zero, we have a well-defined induced map deg : ClK → Z sending D + PK

to deg D. Denote by CloK the kernel of this map deg. We set hK = |CloK |, called
the class number of K/F .

Definition. If D is a divisor in K/F , define L(D) = {x ∈ K∗ : (x)+D ≥ 0}∪{0}.
Properties of the ord maps compiled above immediately imply that L(D) is an
F -vector space. We let l(D) denote the dimension of L(D) as an F -vector space.

Lemma 5. If D is a divisor in K/F , then l(D) < ∞.

Proof. This result follows easily from a few simple lemmas, but since we will not
need the details of the proof, we direct the reader to page 19 of [5]. �

2. The Riemann-Roch Theorem

We can now state the Riemann-Roch Theorem:

Theorem 1 (The Riemann-Roch Theorem). If K/F is a function field then there
exists an integer g ≥ 0 and a divisor class C ∈ ClK such that for all C ∈ C and all
A ∈ DK we have

l(A) = deg(A) − g + 1 + l(C − A).

Moreover, the integer g and the divisor class C are uniquely determined by K/F ,
and are called the genus and canonical class, respectively.

For a proof, see Chapter 6 of [2].
A useful corollary is the following:

Corollary 1 (Riemann’s Inequality). For A ∈ DK we have l(A) ≥ deg A − g + 1.

Proof. l(C − A) ≥ 0. �

3. Finiteness of the Class Number

We now consider a global function field K/F . The goal is to show that the class
number, hK, is finite. Fix x ∈ K, transcendental over F , with K/F (x) finite.

Definition. If R is a prime in F (x)/F with maximal ideal P and S is a prime
in K/F with maximal ideal Q, we say that Q lies over P if Q ∩ F (x) = P and
S ∩ F (x) = R.

Remark. The conditions in the above definition are somewhat redundant, and the
notion of one prime lying over another can be generalized to cases other than the
extension K/F of F (x)/F , but the above will suffice for our purposes.

Lemma 6 (Strict Triangle Inequality). If P is a prime in K/F and x, y ∈ K∗

satisfy ordP (x) 6= ordP (y) then ordP (x + y) = min{ordP (x), ordP (y)}.

Proof. Given x and y as above, take ordP (x) < ordP (y) without loss of generality.
Note that ordP (−y) = ordP (y) by previously compiled properties of ord functions
(as −1 ∈ F ∗). In particular, x + y 6= 0.
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Now, if ordP (x + y) 6= min{ordP (x), ordP (y)}, then ordP (x + y) > ordP (x). We
then have

ordP (x) = ordP ((x + y) − y) ≥ min{ordP (x + y), ordP (−y)} > ordP (x),

which is a contradiction. Thus, ordP (x + y) = min{ordP (x), ordP (y)}. �

Proposition 4.

(1) Each prime in K/F lies over a prime in F (x)/F .
(2) Each prime in F (x)/F has at least one but only finitely many primes lying

over it in K/F .
(3) If Q lies over P , then deg Q ≥ deg P .

Proof. We first prove (1). Let S be a prime in K/F with maximal ideal Q, and let
R = S∩F (x) and P = Q∩F (x). As Q consists precisely of the nonunits in S and as
F (x) is a field, it is clear that P consists precisely of the nonunits in R. Moreover,
as FracS = K and K contains F (x), we have FracR = Frac (S ∩ F (x)) = F (x).
Thus, to show that R is a prime in P , we need only show that R is a PID and
P is a nonzero ideal in R. Note that R = {y ∈ F (x)∗ : ordQ(y) ≥ 0} ∪ {0} and
P = {y ∈ F (x)∗ : ordQ(y) > 0} ∪ {0}.

We first show that P is nonzero. Clearly it suffices to show that there is some
element y ∈ F (x)∗ with ordQ(y) > 0. Suppose to the contrary that ordQ(y) = 0
for all y ∈ F (x)∗. Choose any t ∈ K with ordQ(t) > 0. Since K is finite (hence
algebraic) over F (x), we may choose c0, . . . , cn−1 ∈ F (x), with c0 6= 0, such that

tn + cn−1t
n−1 + · · ·+ c0 = 0.

For any i such that ci is nonzero, we have

ordQ(cit
n−i) = ordQ(ci) + ordQ(tn−i) = 0 + (n − i)ordQ(t).

An easy application of the Strict Triangle Inequality now shows that ordQ(tn +
cn−1t

n−1 + · · ·+ c0) exists and is positive, which is impossible, as ordQ(0) is unde-
fined. We conclude that some y ∈ F (x)∗ has ordQ(y) 6= 0.

It is easy to see that P is an ideal: if p ∈ P and r ∈ R are nonzero then
ordQ(pr) = ordQ(p) + ordQ(r) ≥ ordQ(p) > 0, so pr ∈ P . Similarly, if p, r ∈ P and
p 6= −r then ordQ(p + r) ≥ min{ordQ(p), ordQ(r)} > 0, so p + r ∈ P .

Finally, we must show that R is a PID. We proceed as follows. Let I = ({iα}α)
be a proper, nonzero ideal in R, where the iα are nonzero generators; choose n to
be the smallest positive integer with ordQ(i) = n for some i ∈ I. Let t be a local
uniformizing parameter for Q, so i = tnu for some unit u in K. We claim that
every element of I is a multiple of tnu by an element of R. It suffices to show that
for each α there exists cα ∈ R with iα = cαi. As ordQ(iα) ≥ n, we have iα = tmv
for some m ≥ n and some unit v in K. As i and iα both lie in F (x), so too does
cα ≡ iαi−1

α = tm−nvu−1. Moreover, as m ≥ n we clearly have ordQ(cα) ≥ 0, so
cα ∈ R. It follows that I is generated by i, so R is a PID.

The proof of (2) seems to involve some concepts we haven’t introduced here; see
for example page 71 of [5].

Finally, we prove (3). Let S be the prime with maximal ideal Q, and R the
prime with maximal ideal P . By definition, we have an equality

R/P = (S ∩ F (x))/(Q∩ F (x)).
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On the other hand, by standard ring theory we have an injective ring-homomorphism

(S ∩ F (x))/(Q∩ F (x)) ↪→ S/Q : s + Q ∩ F (x) 7→ s + Q,

and it is easy to see that this map is F -linear. Therefore, R/P embeds into S/Q
as F -vector spaces, so dimF R/P ≤ dimF S/Q, i.e., deg P ≤ deg Q. �

Lemma 7. For each n ≥ 0, there are finitely many effective divisors in K/F of
degree n.

Proof. By the definition of effective divisor, it suffices to show that there are finitely
many primes in K/F of degree at most n. By our classification of primes in F (x)/F ,
the number of primes of degree at most n in F (x)/F is bounded by the number
of monic irreducible polynomials of degree at most n in F [x], plus 1. As F is
finite, there are finitely many monic irreducible polynomials of degree at most n in
F [x], and thus there are finitely many primes of degree at most n in F (x)/F . By
Proposition 4, there are finitely many primes of degree at most n in K/F . �

We can now prove the following

Theorem 2. The class number hK is finite.

Proof. Fix a divisor D in K/F of degree at least g, the genus of K/F . (For example,
D = gP for any prime P will work.) Given a divisor A ∈ DK of degree 0, we have
deg(D + A) = deg D + deg A = deg D ≥ g. By Riemann’s inequality, l(D + A) is
at least 1, so there is a nonzero h ∈ L(D + A). Set B = (h) + D + A, so by the
definition of h we have B ≥ 0. Recall that deg(h) = 0, so deg B = deg D. Also, we
have B − D = (h) + A, so A ≡ B − D mod PK . It follows that hK is bounded by
the number of effective degree deg D divisors in K/F , which we showed above was
finite. �
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