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Chapter 1

Congruent Number problem

Definition 1 Congruent Numbers: A positive rational number r € Q is called a “Congruent num-
ber” if it its the area of some right triangle with rational sides.

Suppose r € Q is a congruent number and X, pe—=& e esponding sides of the right triangle,
then we can choose a s € Q such that s%r is a ger. And sr is a congruent number,
corresponding to the right triangle with sides 4 Ifr= 22—3 where u and v are square
free and p, ¢, u and v are pairwise relatively pritre—rmremremoosals = q?”.) Henceforth, we assume that
n is squarefree.

The question of determining whether a given rational number is a congruent number is called The
Congruent number problem.

If X,Y,Z are the sides of a right triangle and furthermore, if X,Y, Z are pairwise coprime, then the
general solutions can be given as X = m? —n? | Y = 2mn and Z = m? + n? where m,n are integers
that are relatively prime. So theoretically it is possible to list down all pythagoreann triples and
consequently list all congruent numbers. Note however, that this does not give us an algorithm to
determi congruent or not. The following figure shows that the naive

appora Q Q ples is not a great algorithm.

¢ = 243077092075274283595010477962
1651568956424015360248091355

a= 10946706347066226
75738545443585

2008

b= 605908363548680
21806187942363

1.1 1 is not a congruent number

Let us suppose that X,Y, Z correspond to rational sides of a right triangle such that % = 1. Then

by multiplying by a suitable rational number a, we get a triangle with sides x,y, z (and they are a
primitive triple) such that gle——a2 Qashare exists m,n integers that are relatively prime such that

r=m? —n? and y = 2mn.
(m? — n?)mn = a®

are coprimé€ and smce the right hand side of the above equation is a square, it would
and m? — n? are all squares i.e. m = u?, n = v? and m? — n? = d*> which means that
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ud — ot = @2
Lemma 2 Fermat’s infinite descent There are no solutions to the equation x* = y* + u?.

PROOF: Without loss of generality, assume that x,y and u have no common factor. Also we claim
that we can assume u is odd. Suppose there exists such a solution, then we can form a pythagorean
triple (u,y?, %) because (22)? = (y?)2 4+ u?. Since they form a primitive pythagorean triple, there
exists integers m, n that are relatively prime such that u = 2mn (we assume u is even), y = m? — n?
and x = m? +n?. Here z,y are both odd and hence (zy)? = m* — n* which is an equation of the form
above and zy is odd.

Thus we assume that u is odd. Assume that among all solutions for the equation above, u is the
smallest positive integer. Since (22)? = (y?)? + u?, we proceed similarly finding two relatively prime
integers p, ¢ such that y? = 2pq and u = p? — ¢ and 2% = p? + ¢%. Since p, ¢ are coprime, we can set
g = 2a® and p = b?. Also 22 = p® + ¢? form a pythagorean triple. So we can write p = r2 — s, ¢ = 2rs
and z = r? + 52

Since 2a? = 2rs we have that r = ¢ and s = d2. These along with p = b? imply that > = ¢* — d*.
Here b is smaller than u contradicting the minimality of uw. Thus we get the following result.

Theorem 3 1 is not a congruent number.

2, 3,4 have been proved not to be congruent numbers but 5,6, 7 are Q
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Chapter 2

Certain Elliptic Curves

Consider

y? = 1% —n’x.

Call this curve E,. Given a right triangle with rational sides X,Y, Z and area n, we obtain a point
(z,y) in the zy-plane having rational coordinates and lying on this curve by setting

x=(Z/2)? Q
y=(X*-Y*)Z/8

But given a rational point lying on such a curve, does not necessarily come from a right triangle

with area n and having rational sides.

3

Theorem 4 Let (x,y) be a point with rational coordinates on the curve y?> = x® — nx. Suppose that

x satisfies the three conditions
1. it is the square of a rational number
2. its denominator is even
3. its numerator has no common factor with n.

Then there exists a right triangle with rational sides and area n, which correspondes to x

PROOF: Let u =/x € Q*. Set v = %, so that v2 = 22 — n?. Let t be the denominator of u, i.e. the
smallest positive integer such that tu € Z. By assumption ¢ is even. Notice that the denominators
of v? and z? are the same. This denominator is t*. Thus, t?v,t*n,t>x form a primitive pythagorean
triple, with t?n even. There exists integers a, b such that t>n = 2ab, t>v = a? — b and t?z = a® + b°.
Then the right triangle with sides 27“, %b and 2u has the desired area n.

If P = (z,y) is a point on the elliptic curve not of order 2, then with the additional law on the

points on elliptic curves, we get that then the x-coordinate of 2P is

($2 + n2)2
(2y)?
This point satisfies all the conditions of theorem 4
e [t is clearly the square of a rational number.

e [f the numerator had a common factor with n say d, then d divides x and consequently divides
y? also. But n was assumed to be squarefree. So the numerator does not have a common factor
with n.
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o We write x = % where x1, z9o are integers with no common factors. Thus the x-coordinate of 2P

turns out to be
(2% + n’x3)?
4(x1)(z2)(x1 + nxg)(z1 — nwe)

. We divide it into three cases. Case 7): If the numerator is odd, then we are done because the
denominator is even because of the 4 present. Case ii: If the numerator is even, then z1,z2 and
n, are odd, Consequently the numerator is a multiple of 4 and not 8. The denominator however
is a multiple of atleast 16, and so the denominator is even.

Hence by theorem 4, it is sufficient to find a point not of order 2 to say that n is congruent.



Chapter 3

Using the Mordell Weil theorem

Theorem 5 Let ¢ =p/ and pt2n. Suppose that ¢ = 3(mod4). Then there are g+ 1 Fy-points on the
2

elliptic curve y?> = x3 — n’z
PRrOOF: There are 4 points of order 2 - (0,0), (n,0), (—n,0) and the point at infinity. Now we count
all pairs (z,y) where o # 0,n, —n. Since f(x) = 23 — n?z is an odd function of x, and since —1 is not
a square in [, it follows that gulu.ane af the two elements f(x) and f(—x) can be a square in Fy.
Also, exactly one of them will ] D because the group of squares in Fy form a subgroup
of index 2. Therefore we only I {z, —x} form a square. Whichover of them forms a
square we obtain two points in (z,1/f(x)) or else (—x, 1/ f(—x)). These give ¢ — 3
points. We had 4 points of order 2. So we all in total ¢ + 1 points in I,

We state the Mordel Weil Theorem and Dirichlets theorem on primes in arithmetic
progression.

Theorem 6 (Mordell Weil Theorem) The group E(Q) of Q-points of an elliptic curve defined over
Q is finitely generated abelian group.

Theorem 7 (Dirichlets theorem on primes in an arithmetic progression) For any two positive
coprime integers a and d, there are infinitely many primes of the form a 4+ nd, where n € N. In other
words, there are infinitely many primes which are congruent to a modulo d.

Using the above two theorems we prove the following theorem.

Theorem 8

’En(Q)Tor‘ =4
Before proving this theorem, consider the elliptic curves modulo a prime. If E is an elliptic curve
over Q and if p n, we can view the same elliptic c Loy given a point
P =(z,y,2) in H Q ce the point modulo P = (T, 7, over pint E(F,).
Lemma 9 Giverrmopormes—Tr=— (21,y1,21) and Py = (x2,y2, 22) on E,(Q). P =

Py if and only if p divides y1z2 — Y221, T2z — T122 and T1Ys — Toy1.

First assume p divides y120 — Y221, 221 — 122 and x1y2 — xoy1. Consider the two cases

1. p divides x1. Then p divides x2z7 and xoy; and therefore divides xo because it cannot divide
x1,9y1 and z1. Suppose that p { y; (an analogous argument will apply if p { z;). Then P, =
(0, 7172, 7122) = (0, 7172, ¥221) = P1.

2. p does not divide x;. Then P = (Z172, T1y2, T122) = (T122, T2y1, T221) = Pi.
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Conversely, suppose that P, = P,. Without loss of generality, suppose that p { x1. Then since P; = P,
we have that p { T3. Hence (Z172,T1Y2,Z122) = P1 = Py = (T2@1, Toy1, T221). Since the two are the
same, these two points are equal if and only if the two second and third coordinates are equal, i.e. if p
divides z1y2 — 2y and z129 — x2z1. Finally we must show that p divides y129 — y221. If both y; and
z1 are divisible by p then this is trivial. Otherwise repeat the same argument replacing x;.

Let us suppose that there are more than 4 torsion points. Then torsion subgroup contains either an
element of odd order or 8 or 16 elements. In either case, there exists a subgroup S = {P}, Py, ..., Py} C
E,(Q)tors, where m = #S is either 8 or else an odd number.

Let us write each point in S as P; = (z;,¥;, 2;). For each pair of points P;, P;, consider the ”cross-
product” vector (y;z; — yjzi, T2 — Tizj, yj — ;y;). Let ngj be the greatest common divisor of the
coordinates of this cross product. According to the lemma, the points P; and P; have the same image
in E,(Fp) if and only if p divides n;;. Thus if p is a prime of good reduction and greater than all of
the n;j, then it follows that all images are distinct and that the map from E,(Q) to E,(F,) gives an
injection of S into E,(IF}).

But now for all but finitely many p (which are les Q imum of the n;;’s) the number m

must divide #E,,(Fp). Then for all but finitely manyprrrres=—eemsreetit to 3 modulo 4,we have p = —1
modulo m. This contradicts Dirichlet’s theorem on primes in an arithmetic progression. If m = 8§,
this means thata there are only finitely many primes of the form 8k + 3. If 3 t m, then there are only
finitely many primes of the form 4mk + 3 and if 3 divides m, there are only finitely many primes of
the form 12k + 7. This concludes the proof of theorem 8.

This proves the following.

Theorem 10 n is a congruent number if and only if E,(Q) is an elliptic curve of non-zero rank r.

Now we state the Tunnell’s theorem that assumes a weak form of BSD. Making this assumption,
Tunnell’s theorem provides us an algorithm to determine whether a given number is congruent or not.

Theorem 11 Weak form of BSD
L(E,1) # 0 if and only if the Mordel-Weil group E(Q) is finite.

Theorem 12 Tunnell’s theorem Let n be an odd squarefree natural number. Consider the conditions

e n is congruent.

e the number of triples of integers (x,vy, 2) satisfying 222 +y*+ 822 = n is equal to twice the number
of triples satisfying 222 + y? + 3222 = n.

If we assume 7A Q h-Swinnerton-Dyer” conjecture, then the two statements are equiv-
alent.
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Chapter 4

Elliptic Curves using Weistrass
Functions

We define the Weistrass function gp(zp= boddintmdmr s fOllOWS:

The Weistrass function is a meromorphic function on t}

Te L5t

p. It is doubly periodic and
hence can be considered as a meromorphic function on an even function and has a

pole of order 2 at the lattice points. Since p(z) is even, it =———Ais an odd function. Here are
some basic results (stated without proof, which can be proved using complex analysis) about lattice

functions and in general p(z) .

Lattice functions have to be meromorphic (if they are not constant). Let f be a lattice function.
It turns out that if {m;} denotes the order of various zeroes of f and if {n;} denotes the order
of various poles of f, then > m; =) n;.

By considering the function p(z) — u where u € C we deduce that p(z) takes on every possible
value.

©(z) generates all the even functions on the lattice. Hence there is a polynomial equation in @(z)
that equals @ (2)2.

If f(z) is an elliptic function for a lattice L, then so are the two even functions W and

%' This means that there exists rational functions g(X) and h(X) such that f(z) =

9(p(2)) + ¢'(2)h(p(2)).

Make the following definition for constants G. Gp(L) =: Y. 17*

I€LI#0
Then (p(z), ¢'(z)) satisfy the following equation 32 = 4z3 — 60G4x — 140Gg, where y = ¢'(2)
and x = p(z).

9

There is a complex analytic map from C/L to the "projectization” of the elliptic curve y? =

423 — 60G4x — 140G as follows.
Ifz#0
2 — (9(2), 9 (2),1)
0—(0,1,0)
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Chapter 5

Zeta-function on E),

Determing the rank of an elliptic curve can be quite difficult. We look for progress by studying the
zeta functions on the Elliptic curves.
Given a sequence N, ,r =1,2,3,..., we define the corresponding “Zeta-function by ”

oo TT.
=:exp Z NTT
r=1

For an elliptic curve E over Fy, we can define IV, = no. of points on E in Fyr
It turns out that the congruence-zeta function of any elliptic curve E defined over I, has the form

—2a 2
Z(B/Fy;T) = (i - fp)fl*_qjﬂ

Now taking the logarithmic derivative on both sides, and comparing coefficients, we get

«

here a and < are roots of 1 — 2ap + qT?. Q
« turns out to be an algebraic integer and can be given in terms of Gauss and Jacobi sy

are defined later).

5.0.1 Gauss and Jacobi sums Q

Here, we simply state the definition of Gauss antsreweomrser—=hd some basic relations between them.
Let ¢ : F; — C* be a nontrivial additive character (a nontrivial homomorphism from the additive
group. of ﬁmte field to the multiplicative group of complex numbers) defined by ¥(z) = ¢7"(*) where

(=e 5 and T'r is the trace from F, to [F,. Since the trace is a nontrivial additive map and its image
is in Z/pZ, we get a proper non tr1v1a1 addltlve chargcter

Now let x : F; — C* be any multiplicative character lorphism from the multiplicative
group of the finite field to the multiplicative group D hbers). The trivial character is
defined to be that character that sends every elemen x(0) = 0 for every character on
the multiplicative group of the finite field. We define the Gauss sum (depending on the variable y) as

follows
90) =Y x(@)¥(x).

z€lFy

We define the Jacobi sum (depending on two variable multiplicative characters) by the formula

T(x1,x2) = Y xa(@)x2(1 — ).
z€lF,

We denote the trivial character as y¢riv. X2 denotes the character that sends Q multi-
plicative group 1. If ¢ = 1 modulo 4, then we call x4 the charg o that

¢ D |
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sends the generator of this multiplicative group to i. Here are some basic relations (x, x1, x2 denote
non trivial characters and ¥ denotes the complex conjugate or the inverse character of x.)

1. g(Xtrw) =1; J(Xtmv’Xtrw) =4q— 2 J(Xtrw)X) =1 ;
T x2) = IO x1) § TG X) = —x(—1)

2. 900)-900) = x(=1)a 5 [0l =v/a

3. J(x1,x2) = 9(x1)9(x2)/9(x1x2) if x2 # X1.
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