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Chapter 1

Congruent Number problem

Definition 1 Congruent Numbers: A positive rational number r ∈ Q is called a “Congruent num-
ber” if it its the area of some right triangle with rational sides.

Suppose r ∈ Q is a congruent number and X,Y, Z are the corresponding sides of the right triangle,
then we can choose a s ∈ Q such that s2r is a squaree free integer. And s2r is a congruent number,

corresponding to the right triangle with sides sX, sY and sZ. (If r = p2u
q2v

where u and v are square

free and p, q, u and v are pairwise relatively prime, then choose s = qv
p .) Henceforth, we assume that

n is squarefree.
The question of determining whether a given rational number is a congruent number is called The
Congruent number problem.
If X,Y, Z are the sides of a right triangle and furthermore, if X,Y, Z are pairwise coprime, then the
general solutions can be given as X = m2 − n2 , Y = 2mn and Z = m2 + n2 where m,n are integers
that are relatively prime. So theoretically it is possible to list down all pythagoreann triples and
consequently list all congruent numbers. Note however, that this does not give us an algorithm to
determine whether a GIVEN number is congruent or not. The following figure shows that the naive
apporach to list down all pythagorean triples is not a great algorithm.

1.1 1 is not a congruent number

Let us suppose that X,Y, Z correspond to rational sides of a right triangle such that XY
2 = 1. Then

by multiplying by a suitable rational number a, we get a triangle with sides x, y, z (and they are a
primitive triple) such that xy

2 = a2. So there exists m,n integers that are relatively prime such that
x = m2 − n2 and y = 2mn. so

xy = (m2 − n2)mn = a2

. Since m and n are coprime and since the right hand side of the above equation is a square, it would
imply that m,n and m2 − n2 are all squares i.e. m = u2, n = v2 and m2 − n2 = d2 which means that
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u4 − v4 = d2

Lemma 2 Fermat’s infinite descent There are no solutions to the equation x4 = y4 + u2.

Proof: Without loss of generality, assume that x, y and u have no common factor. Also we claim
that we can assume u is odd. Suppose there exists such a solution, then we can form a pythagorean
triple (u, y2, x2) because (x2)2 = (y2)2 + u2. Since they form a primitive pythagorean triple, there
exists integers m,n that are relatively prime such that u = 2mn (we assume u is even), y = m2 − n2
and x = m2 + n2. Here x, y are both odd and hence (xy)2 = m4− n4 which is an equation of the form
above and xy is odd.
Thus we assume that u is odd. Assume that among all solutions for the equation above, u is the
smallest positive integer. Since (x2)2 = (y2)2 + u2, we proceed similarly finding two relatively prime
integers p, q such that y2 = 2pq and u = p2 − q2 and x2 = p2 + q2. Since p, q are coprime, we can set
q = 2a2 and p = b2. Also x2 = p2 + q2 form a pythagorean triple. So we can write p = r2− s2, q = 2rs
and x = r2 + s2.
Since 2a2 = 2rs we have that r = c2 and s = d2. These along with p = b2 imply that b2 = c4 − d4.
Here b is smaller than u contradicting the minimality of u. Thus we get the following result.

Theorem 3 1 is not a congruent number.

2, 3, 4 have been proved not to be congruent numbers but 5, 6, 7 are.
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Chapter 2

Certain Elliptic Curves

Consider
y2 = x3 − n2x.

Call this curve En. Given a right triangle with rational sides X,Y, Z and area n, we obtain a point
(x, y) in the xy-plane having rational coordinates and lying on this curve by setting

x = (Z/2)2

y = (X2 − Y 2)Z/8

But given a rational point lying on such a curve, does not necessarily come from a right triangle
with area n and having rational sides.

Theorem 4 Let (x, y) be a point with rational coordinates on the curve y2 = x3 − n2x. Suppose that
x satisfies the three conditions

1. it is the square of a rational number

2. its denominator is even

3. its numerator has no common factor with n.

Then there exists a right triangle with rational sides and area n, which correspondes to x

Proof: Let u =
√
x ∈ Q+. Set v = y

u , so that v2 = x2 − n2. Let t be the denominator of u, i.e. the
smallest positive integer such that tu ∈ Z. By assumption t is even. Notice that the denominators
of v2 and x2 are the same. This denominator is t4. Thus, t2v, t2n, t2x form a primitive pythagorean
triple, with t2n even. There exists integers a, b such that t2n = 2ab, t2v = a2 − b2 and t2x = a2 + b2.
Then the right triangle with sides 2a

t ,
2b
t and 2u has the desired area n.

If P = (x, y) is a point on the elliptic curve not of order 2, then with the additional law on the
points on elliptic curves, we get that then the x-coordinate of 2P is

(x2 + n2)2

(2y)2

This point satisfies all the conditions of theorem 4

• It is clearly the square of a rational number.

• If the numerator had a common factor with n say d, then d divides x and consequently divides
y2 also. But n was assumed to be squarefree. So the numerator does not have a common factor
with n.
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• We write x = x1
x2

where x1, x2 are integers with no common factors. Thus the x-coordinate of 2P
turns out to be

(x21 + n2x22)
2

4(x1)(x2)(x1 + nx2)(x1 − nx2)
. We divide it into three cases. Case i): If the numerator is odd, then we are done because the
denominator is even because of the 4 present. Case ii: If the numerator is even, then x1, x2 and
n, are odd, Consequently the numerator is a multiple of 4 and not 8. The denominator however
is a multiple of atleast 16, and so the denominator is even.

Hence by theorem 4, it is sufficient to find a point not of order 2 to say that n is congruent.
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Chapter 3

Using the Mordell Weil theorem

Theorem 5 Let q = pf and p - 2n. Suppose that q ≡ 3(mod4). Then there are q + 1 Fq-points on the
elliptic curve y2 = x3 − n2x

Proof: There are 4 points of order 2 - (0, 0), (n, 0), (−n, 0) and the point at infinity. Now we count
all pairs (x, y) where x 6= 0, n,−n. Since f(x) = x3 − n2x is an odd function of x, and since −1 is not
a square in Fq, it follows that only one of the two elements f(x) and f(−x) can be a square in Fq.
Also, exactly one of them will be a square in Fq because the group of squares in F∗q form a subgroup
of index 2. Therefore we only one from the pair {x,−x} form a square. Whichover of them forms a
square we obtain two points in the elliptic curve (x,±

√
f(x)) or else (−x,±

√
f(−x)). These give q− 3

points. We had 4 points of order 2. So we all in total q + 1 points in Fq .

We state the Mordel Weil Theorem and Dirichlets theorem on primes in arithmetic
progression.

Theorem 6 (Mordell Weil Theorem) The group E(Q) of Q-points of an elliptic curve defined over
Q is finitely generated abelian group.

Theorem 7 (Dirichlets theorem on primes in an arithmetic progression) For any two positive
coprime integers a and d, there are infinitely many primes of the form a+ nd, where n ∈ N. In other
words, there are infinitely many primes which are congruent to a modulo d.

Using the above two theorems we prove the following theorem.

Theorem 8
|En(Q)Tor| = 4

Before proving this theorem, consider the elliptic curves modulo a prime. If E is an elliptic curve
over Q and if p does not divide 2n, we can view the same elliptic curve over Fp. So given a point
P = (x, y, z) in E(Q), we can reduce the point modulo P = (x, y, overlinez) to get a point E(Fp).

Lemma 9 Given two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) on the elliptic curve En(Q). P1 =
P2 if and only if p divides y1z2 − y2z1, x2z1 − x1z2 and x1y2 − x2y1.

First assume p divides y1z2 − y2z1, x2z1 − x1z2 and x1y2 − x2y1. Consider the two cases

1. p divides x1. Then p divides x2z1 and x2y1 and therefore divides x2 because it cannot divide
x1, y1 and z1. Suppose that p - y1 (an analogous argument will apply if p - z1). Then P2 =
(0, y1y2, y1z2) = (0, y1y2, y2z1) = P1.

2. p does not divide x1. Then P2 = (x1x2, x1y2, x1z2) = (x1x2, x2y1, x2z1) = P1.
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Conversely, suppose that P1 = P2. Without loss of generality, suppose that p - x1. Then since P1 = P2,
we have that p - x2. Hence (x1x2, x1y2, x1z2) = P1 = P2 = (x2x1, x2y1, x2z1). Since the two are the
same, these two points are equal if and only if the two second and third coordinates are equal, i.e. if p
divides x1y2 − x2y1 and x1z2 − x2z1. Finally we must show that p divides y1z2 − y2z1. If both y1 and
z1 are divisible by p then this is trivial. Otherwise repeat the same argument replacing x1.

Let us suppose that there are more than 4 torsion points. Then torsion subgroup contains either an
element of odd order or 8 or 16 elements. In either case, there exists a subgroup S = {P1, P2, . . . , Pm} ⊂
En(Q)tors, where m = #S is either 8 or else an odd number.
Let us write each point in S as Pi = (xi, yi, zi). For each pair of points Pi, Pj , consider the ”cross-
product” vector (yizj − yjzi, xjzi − xizj , xiyj − xjyi). Let nij be the greatest common divisor of the
coordinates of this cross product. According to the lemma, the points Pi and Pj have the same image
in En(Fp) if and only if p divides nij . Thus if p is a prime of good reduction and greater than all of
the nij , then it follows that all images are distinct and that the map from En(Q) to En(Fp) gives an
injection of S into En(Fp).

But now for all but finitely many p (which are lesser than the maximum of the nij ’s) the number m
must divide #En(Fp). Then for all but finitely many primes congruent to 3 modulo 4,we have p ≡ −1
modulo m. This contradicts Dirichlet’s theorem on primes in an arithmetic progression. If m = 8,
this means thata there are only finitely many primes of the form 8k + 3. If 3 - m, then there are only
finitely many primes of the form 4mk + 3 and if 3 divides m, there are only finitely many primes of
the form 12k + 7. This concludes the proof of theorem 8.

This proves the following.

Theorem 10 n is a congruent number if and only if En(Q) is an elliptic curve of non-zero rank r.

Now we state the Tunnell’s theorem that assumes a weak form of BSD. Making this assumption,
Tunnell’s theorem provides us an algorithm to determine whether a given number is congruent or not.

Theorem 11 Weak form of BSD
L(E, 1) 6= 0 if and only if the Mordel-Weil group E(Q) is finite.

Theorem 12 Tunnell’s theorem Let n be an odd squarefree natural number. Consider the conditions

• n is congruent.

• the number of triples of integers (x, y, z) satisfying 2x2+y2+8z2 = n is equal to twice the number
of triples satisfying 2x2 + y2 + 32z2 = n.

If we assume ”A Weak form of Birch-Swinnerton-Dyer” conjecture, then the two statements are equiv-
alent.
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Chapter 4

Elliptic Curves using Weistrass
Functions

We define the Weistrass function ℘(z) for a lattice L as follows:

℘(z;L) =:
1

z2
+

∑
l∈L,l 6=0

(
1

(z − l)2
− 1

l2

)

The Weistrass function is a meromorphic function on the complex plane. It is doubly periodic and
hence can be considered as a meromorphic function on C L. Also ℘(z) is an even function and has a
pole of order 2 at the lattice points. Since ℘(z) is even, its derivative ℘′(z) is an odd function. Here are
some basic results (stated without proof, which can be proved using complex analysis) about lattice
functions and in general ℘(z) .

• Lattice functions have to be meromorphic (if they are not constant). Let f be a lattice function.
It turns out that if {mi} denotes the order of various zeroes of f and if {nj} denotes the order
of various poles of f , then

∑
mi =

∑
nj .

• By considering the function ℘(z) − u where u ∈ C we deduce that ℘(z) takes on every possible
value.

• ℘(z) generates all the even functions on the lattice. Hence there is a polynomial equation in ℘(z)
that equals ℘

′
(z)2.

• If f(z) is an elliptic function for a lattice L, then so are the two even functions f(z)+f(−z)
2 and

f(z)−f(−z)
2℘′(z) . This means that there exists rational functions g(X) and h(X) such that f(z) =

g(℘(z)) + ℘′(z)h(℘(z)).

• Make the following definition for constants Gk. Gk(L) =:
∑

l∈L,l 6=0

l−k

• Then (℘(z), ℘′(z)) satisfy the following equation y2 = 4x3 − 60G4x − 140G6, where y = ℘
′
(z)

and x = ℘(z).

• There is a complex analytic map from C/L to the ”projectization” of the elliptic curve y2 =
4x3 − 60G4x− 140G6 as follows.

If z 6= 0
z −→ (℘(z), ℘

′
(z), 1)

0 −→ (0, 1, 0)
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Chapter 5

Zeta-function on En

Determing the rank of an elliptic curve can be quite difficult. We look for progress by studying the
zeta functions on the Elliptic curves.
Given a sequence Nr ,r = 1, 2, 3, . . ., we define the corresponding “Zeta-function by ”

Z(T ) =: exp

( ∞∑
r=1

Nr
T r

r

)
For an elliptic curve E over Fq, we can define Nr = no. of points on E in Fqr
It turns out that the congruence-zeta function of any elliptic curve E defined over Fq has the form

Z(E/Fq;T ) =
1− 2aE + qT 2

(1− T )(1− qT )

Now taking the logarithmic derivative on both sides, and comparing coefficients, we get

Nr = qr + 1− αr − (
q

α

r
)

here α and q
α are roots of 1− 2aE + qT 2.

α turns out to be an algebraic integer and can be given in terms of Gauss and Jacobi sums(which
are defined later).

5.0.1 Gauss and Jacobi sums

Here, we simply state the definition of Gauss and Jacobi sums and some basic relations between them.
Let ψ : Fq → C∗ be a nontrivial additive character (a nontrivial homomorphism from the additive
group of finite field to the multiplicative group of complex numbers) defined by ψ(x) = ζTr(x) where

ζ = e
2πi
p and Tr is the trace from Fq to Fp. Since the trace is a nontrivial additive map and its image

is in Z/pZ, we get a proper non trivial additive character.
Now let χ : Fq → C∗ be any multiplicative character ( a group homomorphism from the multiplicative
group of the finite field to the multiplicative group of complex numbers). The trivial character is
defined to be that character that sends every element to 1. We define χ(0) = 0 for every character on
the multiplicative group of the finite field. We define the Gauss sum (depending on the variable χ) as
follows

g(χ) =
∑
x∈Fq

χ(x)ψ(x).

We define the Jacobi sum (depending on two variable multiplicative characters) by the formula

J(χ1, χ2) =
∑
x∈Fq

χ1(x)χ2(1− x).

We denote the trivial character as χtriv. χ2 denotes the character that sends generator of the multi-
plicative group of finite field to −1. If q ≡ 1 modulo 4, then we call χ4 the character defined on F∗q that
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sends the generator of this multiplicative group to i. Here are some basic relations (χ, χ1, χ2 denote
non trivial characters and χ denotes the complex conjugate or the inverse character of χ.)

1. g(χtriv) = 1 ; J(χtriv, χtriv) = q − 2 ; J(χtriv, χ) = −1 ;
J(χ1, χ2) = J(χ2, χ1) ; J(χ, χ) = −χ(−1) ;

2. g(χ).g(χ) = χ(−1)q ; |g(χ)| =√q

3. J(χ1, χ2) = g(χ1)g(χ2)/g(χ1χ2) if χ2 6= χ1.
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