
Noncommutative Dedekind Domains

Amy Supple

In this paper we will discuss noncommutative analogs of Dedekind Domains. First
we give the definition of a Dedekind Domain for the commutative case.

Definition. A (commutative) Dedekind Domain is a Noetherian, integrally closed,
integral domain of Krull dimension less than or equal to 1.

When R is a (commutative) Dedekind Domain and K is its field of fractions then we
get the following nice properties:

1. Every nonzero fractional ideal of R in K is invertible.

2. Every nonzero proper ideal I of R can be written as a finite product of (not
necessarily distinct) prime ideals. And this factorization is unique up to re-
ordering.

3. Every nonzero fractional ideal of R in K is a projective R-module.

4. Arithmetic of ideals.

5. Every ideal of R can be generated by two elements.

When we look for noncommutative analogs to Dedekind Domains, we will be
looking for noncommutative rings with similar properties. When we work in the non-
commutative world, the word ideal means two-sided ideal and the word Noetherian
means both left and right Noetherian.

Before we dive into definitions, let’s take a look at a family of rings that we will
use as an example throughout this paper.

Example. Weyl Algebras

Let k be a field of characteristic 0. Let An(k) be the k-algebra with generators
x1, . . . , xn, y1, . . . , yn and relations xiyj − yjxi = δij and xixj − xjxi = yiyj − yjyi = 0.
An(k) is called the nth Weyl Algebra.

Applying the relations repeatedly we get the forumlas

xiy
m
i − ymi xi = mym−1

i =
∂

∂yi
ymi
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xni yi − yixni = nxn−1
i =

∂

∂xi
xni

which will be useful later on.

There are different ways to think about An(k). One way is to look directly at the
relations. For example, A1(k) is like the polynomial ring k[x, y] except that x and y
don’t commute. Instead we get the relation yx = xy − 1. So A1(k) is not commu-
tative, but it is noncommutative in a nice way. We see that if we have a monomial
xn1yn2xm1ym2 in A1(k) we can use the relation to rewrite this as xn1+m1yn2+m2+(lower
order terms).

Another way to view An(k) is as a skew polynomial ring. So we pause here to make
a quick digression into the world of skew polynomial rings. Let R be a ring and let δ
be a derivation on R (that is, a map δ : R→ R that satisfying δ(ab) = δ(a)b+ aδ(b)
and δ(a+ b) = δ(a) + δ(b) for all a, b ∈ R. Then the skew polynomial ring S = R[y; δ]
is a ring that contains R as a subring, and contains an element y with relation
yr = ry + δ(r) for all r ∈ R. Now we state a couple of useful lemmas about skew
polynomial rings.

Lemma 1. If R is an integral domain, then S = R[y; δ] is also an integral do-
main.

Proof. See [4].

Lemma 2. If R is right (left) Noetherian, then S = R[y; δ] is also right (left)
Noetherian.

Proof. See [4].

We can view An(k) as skew polynomial ring Rn, defined as follows. Let R =
k[x1, . . . , xn] be the usual polynomial ring. We define Rn inductively: R0 = R,
Ri+1 = Ri[yi+1;

∂
∂xi+1

]. By basic calculus we know that ∂
∂xi+1

satisfies the definition of

a derivation. Direct computation shows that An(k) ∼= Rn.

Using the above tells us that each element of An(k) can be written uniquely in the
form

∑
aαβx

αyβ where α = (m1, . . . ,mn), β = (p1, . . . , pn), xα = xm1
1 · · ·xmn

n , and
yβ = yp11 · · · ypn

n . This standard form is often useful for computations. For example,
because we can write every element of A1(k) uniquely as

∑
aijx

iyj then we can define
the degree in x of an element to be the highest power of x that appears when the
element is written in this standard form. And we can define the degree in y of an
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element similarly.

Now we will proceed with defining noncommutative Dedekind domains. Our first
step will be to modify the definition of a prime ideal. In the commutative case, we
have the following definition:

Definition. If R is a commutative ring, an ideal P is a prime ideal if P is a proper
ideal of R and whenever ab ∈ P , for a, b ∈ R, then either a ∈ P or b ∈ P .

If we define prime ideals of noncommutative rings using this definition then there
are rings that will not have any prime ideals.

Example. Let R = Mn(k), where k is a field and n ≥ 2. Let Eij ∈ R be the
element with a 1 in the (i, j) position and 0’s elsewhere. Then E11E22 = 0 but nei-
ther are in the ideal 0. So if we use the commutative definition of prime ideal, then
0 is not a prime ideal. But R is a simple ring (that is, the only proper (two-sided)
ideal of R is 0) so with this definition R has no prime ideals.

So, for the noncommutative case this definition of prime ideal does not turn out
to be very useful. Instead we use the following definition of a prime ideal:

Definition. If R is a ring, an ideal P is a prime ideal if P is a proper (two-sided)
ideal of R and whenever IJ ⊂ P , for ideals I, J in R, then either I ⊂ P or J ⊂ P .

If R is a commutative ring, this definition is equivalent to the previous definition.
But for noncommutative rings, this definition turns out to be much more useful than
the previous definition. Note here that we use the common strategy for generalizing
commutative concepts to the noncommutative setting of replacing elements with ide-
als.

For noncommutative rings, we keep the same definition of integral domain. That
is,

Definition. A ring R (either commutative or noncommutative) is called an inte-
gral domain if the product of two nonzero elements is always nonzero.

But in the noncommutative setting we replace the concept of an integral domain
with concept of a prime ring, defined as follows:
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Definition. A ring is a prime ring if 0 is a prime ideal. Equivalently, if I and
J are nonzero ideals of R, then IJ is a nonzero ideal of R.

Here again we have used the general strategy of replacing elements by ideal to gen-
eralize from the commutative case to the noncommutative case.

If R is a commutative ring, then R is an integral domain if and only if R is a prime
ring. For the noncommutative case, every integral domain is a prime ring. But a
noncommutative prime ring is not necessarily an integral domain.

Example. Let R = Mn(k) with n ≥ 1. Let I and J be non zero ideals of R.
Let A ∈ I and B ∈ J be nonzero elements, say (A)ij and (B)kl are nonzero entries in
A and B. Then AEjkB has a nonzero entry in the (i, l) position. And AEjkB ∈ IJ .
So we see that IJ is a nonzero ideal. So R is a prime ring. But we already saw that
R is not an integral domain.

Proposition. An(k) is a prime ring.

Proof. We prove that An(k) is a prime ring by proving that is it an integral do-
main. We use the skew polynomial definition of An(k) and induction on n. For
n = 0 we have that R0 is a commutative polynomial ring, so it is an integral domain.
Now assume that Ri is an integral domain. Then Ri+1 = Ri[yi+1;

∂
∂xi+1

] is an inte-

gral domain, by lemma 1. So Rn is an integral domain, so An(k) ∼= Rn a prime ring.

Note for the particular case of A1(k) we can see that it is an integral domain in
a more direct manner. Let A and B be nonzero elements in A1(k). Then we can
write A =

∑n
i=0 fiy

i and B =
∑m

j=0 gjy
j where fi, gj ∈ k[x] and fn, gm are nonzero.

Then
fny

ngmy
m = fngmy

n+m + (lower order terms)

and fngm is nonzero because k[x] is an integral domain. All other terms in AB will
have degree in y of less than n + m, so no other term can cancel out this nonzero
term. So AB 6= 0.

Definition. A ring R is right Goldie if

1. R does not contain an infinite direct sum of non-zero right ideals, and

2. R satisfies the ascending chain condition on right annihilators (that is, if we
have an increasing chain of right annihilators A1 ⊂ A2 ⊂ · · · then this chain
eventually stablizes).
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A left Goldie ring is defined similarly. A ring is called Goldie if it is both left and
right Goldie.

We won’t concern ourselves with the precise definition of Goldie rings. We will just
note that Noetherian rings are Goldie rings.

Proposition. A right (left) Noetherian ring is a right (left) Goldie ring.

Proof. Let R be a right (left) Noetherian ring. Then condition (1) is satisfied
because if such an infinite direct sum of non-zero right (left) ideals existed, then
the ring would have an ascending chain of right (left) ideals that does not stablize.
And condition (2) is satisfied because right (left) annihilators are right (left) ideals.

Proposition. An(k) is a Goldie ring.

Proof. We prove that An(k) is a Goldie ring by proving that it is Noetherian.
Again, we use the skew polynomial definition of An(k) and induction on n. For n = 0
we have that R0 is a commutative polynomial ring, so it is left and right Noethe-
rian. Now assume that Ri is left and right Noetherian. Then Ri+1 = Ri[yi+1;

∂
∂xi+1

] is

Noetherian, by lemma 2. So Rn is Noetherian, so An(k) ∼= Rn is a Goldie ring.

Definition. An ideal I of a ring R is invertible if AB = BA = R for some sub-
set B of some extension ring S of R.

Definition. A ring R is an Asano prime ring if it is a prime Goldie ring such
that every non-zero ideal of R is invertible.

The following theorem shows us that Asano prime rings have nice properties of their
(two-sided) ideals.

Theorem. Every nonzero ideal of an Asano prime ring R is the unique commu-
tative product of maximal ideals.

Proof. First we show that the multiplication of maximal ideals is commutative. Let
M1 and M2 be distinct nonzero maximal ideals in R. Let X = M−1

1 (M1∩M2) (such an
M−1

1 exists because R is an Asano ring). Then X = M−1
1 (M1∩M2) ⊂M−1

1 (M1) = R.
So X is an ideal in R. And M1X = M1M

−1
1 (M1 ∩M2) = M1 ∩M2 ⊂M2. So we get

that M1X ⊂M2. But M2 is a maximal ideal, so it is also prime. So either M1 ⊂M2

or X ⊂ M2. But the first cannot happen because M1 and M2 are distinct maximal
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ideals. So X ⊂ M2. But this means that M1 ∩M2 = M1X ⊂ M1M2 ⊂ M1 ∩M2. So
we must have equality throughout. So M1M2 = M1 ∩M2. But the same argument
shows M2M1 = M2 ∩M1. So we get M1M2 = M2M1. According to [4] the “proof is
now routine”. So we take the authors at their word.

Proposition. An(k) is simple.

Proof. Let I be a nonzero two-sided ideal in An(k). Let c be a nonzero element
in I. Then xic − cxi and cyi − yic are elements in I. Recall that xi commutes with
xj for any j and with yj for i 6= j. Then using the formulas computed previously, we
get

xic− cxi =
∂c

∂yi
Similarly we get

cyi − yic =
∂c

∂xi
So these partial derivatives of c are in I. Now we can apply these partial derivatives
to c until all we get a nonzero element a of k. Then a ∈ I, so I = An(k). So An(k)
is simple.

We have already seen that An(k) is a prime Goldie ring. This proposition shows
us that An(k) itself is the only nonzero ideal of An(k), so every nonzero ideal of
An(k) is invertible. So An(k) is an Asano prime ring.

An(k) may not have any (two-sided) ideals other than 0 and itself, but this does
not mean that the set of one-sided ideals has such a simple structure.

Proposition. Let R = A1(k) and let I be the right ideal generated by 1 + xy
and x2. Then I is not a principal ideal.

Proof. Write I = (1 + xy)R + x2R. Suppose I = aR for some a ∈ I. Then
there exists some b ∈ R such that ab = 1 + xy and some c ∈ R such that ac = x2.

Then, as we saw in the discussion that showed A1(k) was an integral domain, the
degrees in x and y behave well with respect to multiplication. So we know that the
degree in y of a is 0 and degree in x of a must be less than or equal to 1.

But by direct computation we see that (1 + xy)x = x2y. So we can actually write
I = (1+xy)k[y]+x2R. We can easily use this to write every element of I in standard
form and we see that every element of I has degree in x of greater than 1. So, in
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particular, we get that degree in x of a is 1. So a = a0 +a1x, where ai ∈ k and a1 6= 0.
Then using similar degree arguments we get that degree in x of b is 0 and degree in
y of b is 1. So b = b0 + b1y, where bi ∈ k and b1 6= 0. But then

1 + xy = ab = (a0 + a1x)(b0 + b1y) = a0b0 + a0b1y + a1b0x+ a1b1xy

which is not possible when a1, b1 6= 0. So no such a exists. So I is not a principal
right ideal.

Nice properties of (two-sided) ideals will not be very useful for simple rings. And
in fact, we will see that many of the rings we will be interested in are simple. So
now we add more conditions on R so that we get rings whose one-sided ideals have
Dedekind-like properties.

Definition. A ring R is called (right) hereditary if every right ideal is projective.

Exercise. A commutative integral domain R is hereditary if and only if R is a
Dedekind Domain.

Definition. Let R be a ring, let I be a right ideal of R, and let pd(R/I) be the pro-
jective dimension of R/I. The right global dimension of a ring R, written r.gl.dim(R),
is sup{pd(R/I) : I is a right ideal of R}.

Proposition. r.gl.dim(An(k)) = n

Proof. See [4].

Theorem. A ring R is right hereditary if and only if r.gl.dim(R) ≤ 1.

Proof. First assume that R is right hereditary. Let I be a right ideal of R. Then we
have the short exact sequence

0→ I → R→ R/I → 0.

But R is always projective and by assumption I is projective, so this is a projective
resolution. So pd(R/I) ≤ 1, so r.gl.dim(R) ≤ 1.

Now assume that r.gl.dim(R) ≤ 1. Let I be a right ideal of R. Then by assumption
we have a short exact sequence

0→ P1 → P0 → R/I → 0
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where the Pi’s are projective. And we also have the short exact sequence

0→ I → R→ R/I → 0.

So by Schanuel’s Lemma (because R and P0 are projective) we have that P0 ⊕ I ∼=
R ⊕ P1. Then because R ⊕ P1 and P0 are projective we get that I is projective. So
R is hereditary.

So in some sense we are replacing the Krull dimension condition for commutative
Dedekind domains with a condition on right global dimension.

Proposition. A1(k) is hereditary.

Proof. This is true by the previous proposition and theorem.

Definition. A ring R is a Dedekind prime ring if it is a hereditary Noetherian
Asano prime ring.

Dedekind prime rings have one-sided ideals that behave as in Dedekind Domains.
Dedekind prime rings also have the nice Dedekind-like property that every right ideal
can be generated by 2 elements.

Example. By our previous work, we see that A1(k) is a Dedekind prime ring.

Example. Classical maximal orders over commutative Dedekind domains are Dedekind
prime rings. See [4] for details.

Definition. A ring R is a noncommutative Dedekind domain if it is a Dedekind
prime ring and an integral domain.

(Note: I don’t know how standard this definition of noncommutative Dedekind do-
mains is. But almost every paper or textbook I found that mentioned this idea
referenced [4], which is where I got the definition.)

If we unwind all of these definitions we see that we can more directly define a noncom-
mutative Dedekind domain to be a Noetherian integral domain with r.gl.dim(R) ≤ 1,
such that very nonzero ideal is invertible. And we can also more directly define a
Dedekind prime ring to be a Noetherian prime ring with r.gl.dim(R) ≤ 1, such that
very nonzero ideal is invertible.

So we see that A1(k) is a noncommutative Dedekind domain. It is interesting to

8

wstein
Cross-Out

wstein
Replacement Text
every

wstein
Cross-Out

wstein
Replacement Text
every



note that A1(k), which seems to be closely related to k[x, y], is a noncommutative
Dedekind domain, while k[x, y] itself is not a Dedekind domain. In some ways this
should not be surprising because we have seen how different the (two-sided) ideal
structures of these two rings are, A1(k) being a simple ring and k[x, y] having clas-
sical Krull dimension 2. And we note that k[x, y] is an integrally closed, Noetherian
integral domain, so its classical Krull dimension is the only way it fails to be a
Dedekind domain.

We conclude this paper by discussing an interesting result from [2]. The authors
comment that when Dedekind domains were extended to the noncommutative world
all of the examples were either classical orders or simple rings. They then go on to
determine under what conditions this dichotomy holds. They prove the following
theorem:

Theorem. If R is a (commutative or noncommutative) Dedekind domain that is
a finitely generated algebra over an uncountable, algebraically closed field, then R is
either simple or commutative.

The authors then go on to examine this dichotomy for various (weaker) conditions
on the ring or different conditions on the field.
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