William Stein
{{{id=5| /// }}}Defining Number Fields
Relative extensions (warning -- basic arithmetic is very slow in some relative extensions, due to the toy implementation. See trac 9541.)
{{{id=31| K. = NumberField([x^2 - 2, x^2 - 3, x^2 - 5]); K /// Number Field in a with defining polynomial x^2 - 2 over its base field }}} {{{id=30| a^2 + b^2 + c^2 /// 10 }}} {{{id=34| 1/(a+b+c) /// (-1/12*c*b + 1/4)*a + 1/6*b }}} {{{id=32| K.base_field() /// Number Field in b with defining polynomial x^2 - 3 over its base field }}} {{{id=33| K.base_field().base_field() /// Number Field in c with defining polynomial x^2 - 5 }}} {{{id=17| /// }}}Elements
Fractional Ideals
The Ring $\mathcal{O}_K$ of Integers
Class Groups
{{{id=75| var('x') K.(Bug in how the class group prints above: see trac 10141.)
{{{id=21| a = sqrt(1+sqrt(2)) f = RR(a).algdep(4); f /// x^4 - 2*x^2 - 1 }}} {{{id=23| K. = NumberField(f); K /// Number Field in a with defining polynomial x^4 - 2*x^2 - 1 }}} {{{id=22| K.class_number() /// 1 }}} {{{id=9| /// }}}(Massive) Efficiency Tricks
This would take forever:
{{{id=81| K.maximal_order() /// ^CTraceback (most recent call last): File "