

Function Based 3-D Solid
Modeler
Math 480B Spring 2010

An implicit 3D modeler is created using SAGE. A few complex
shapes are modeled using the system and then printed using
a 3D printer. Additionally, a function which interactively
allows the user to string shapes along a curve is
demonstrated.

Aaron Schilling
Fareed Faghih
Marcus Lew

Page 1 of 21

Background
Recent development of rapid prototyping technology, in conjunction with solid 3-D modeling,

has given the engineering world the ability to turn an idea into a tangible object in a very short

time period. The first step of this process is to design the concept. Originally done on paper,

even computer-aided design (CAD) has had difficulties making adaptations from two to three

dimensions. The modeling program outputs a universal file format from stereolithography

called STL. After electronic design, the part is input in 3-D printing software that breaks the

solid into a stack of layers for construction. Three dimensional printers have the ability to print

in many different materials, ranging from plastics to powders and resin, and even glass. The

object has then become a workable object that can be used for some limited applications.

All solid modeling programs use mathematical principles to generate three dimensional

geometries. However, they do not all utilize the same methods. Common types of solid

modelers use the methods boundary representation (B-Reps) or constructive solid geometry

(CSG). B-Reps are based on the idea that the boundaries are represented by a collection of

implicitly defined patches based on parameters. CSG uses primitive solids and Boolean

commands to form their objects. The solid modeler that we have developed is a combination of

the two. It can be described as an implicit representation or function based modeler. The

shapes and Booleans are based on functions that implicitly define the objects’ x-, y-, and z-

coordinates. After developing objects, the three dimensional representations were then

displayed with implicit_plot_3d, converted to STL using the function surface_to_stl, developed

by Christopher Olah, and printed in University of Washington’s Solheim RP Lab.

Methods
The code to achieve effective functional modeling is not very complex but provides

a powerful tool. To begin, three variables, x, y, and z, are defined as variables which represent

the three axes on which the modeling will be done. This provides an easy and convenient

method to both produce the models as well as to allow for various transformations to create

complex models.

The primitives and other basic shapes are defined as surfaces. This allows them to be defined as

mathematical equations using the previously mentioned variables. The primitive shapes that

were chosen were the ellipsoid, the prism, the cylinder, and the cone. By using various

transforms these shapes can be modified into almost any imaginable shape. Additional shapes

were also included such as the sinus and the drope. These shapes could be built from the

primitives but would be time consuming for the designer. Instead, including the various unique

shapes in a library allows the designer to pick from a more exact shape rather than starting

Page 2 of 21

from scratch. Any shape defined by a closed surface with an implicit function can easily be

added to the shape library improving the usefulness of our modeler.

The translation functions are the first of the transformations. Each function moves the surface

which it is passed in a specific direction. This is achieved by substituting out each variable value

with one that has had a constant subtracted from it resulting in a translation. The scaling

functions work similarly in which all the values in one direction are divided by a constant

resulting in the growth or shrinking of the surface in that direction. An additional function

which scales in all directions also exists which scales the surface equally in all directions

maintaining the aspect ratio of the surface. Another useful group of transformations are

reflections. Three functions exist which will reflect the surface across the XY plane, the XZ

plane, or the YZ plane. This is done by replacing the variable in the direction perpendicular to

the plane with its opposite, remapping the point to the opposite side of the plane. The modeler

also allows rotations in a specific direction. The rotations are achieved by using trigonometric

ratios to determine how the points not in the plane of rotation are shifted. Both radian and

degree values are accepted and specific functions exist for each as well as a conversion function

to switch between the two. These four basic types of transformations allow the designer to

create a near infinite amount of shapes from a simple starting shape.

Once the desired shape has been created the designer may want to add or remove a section to

the shape. For these operations various Boolean operators are needed. In this modeler the first

Boolean operation is Union which joins two shapes together. The function takes the two shapes

and adds them together in space very simply. If the designer wanted to only retain the shape

formed from the intersection of two shapes then Intersect should be used. This method

removes any material that is not shared between the two starting shapes. To remove one

shape from another the Subtract method is useful. This method takes a shape and removes any

section of that shape which the second shape overlaps. These three basic functions allow the

designer the versatility to piece together various shapes to form a complex object. In addition

to these three shape interaction functions, three more advanced shape interaction function are

defined, Morph, Blend and Combine. Each provides its own unique functionality to further

empower the designer.

To allow the designer to quickly and easily see the model which is being produced Plot3d was

defined. It allows the user to quickly call implicit_plot3d without needing to specific the

variables and the max and min of each axis. Instead, an isometric view is produced with axis

length being specified by the user. The functionality in specifying the number of points to plot

remains.

The function that converts from an image to a three dimensional STL representation was

originally developed by Christopher Olah. An STL file is a collection of triangles represented by

Page 3 of 21

a normal and three vertexes. We adapted the original function’s output to return a file of type

.stl without rapidly displaying all of its contents. The function now accepts both an implicit

three-dimensional plot of an object and the filename.

Using our function based 3D modeler various objects were created. The first complex object is

the drope block. Its interlocking pin and divot shape make it useful as an interlocking piece. To

create the piece first a sphere was created acting as the base for the shape. Then the drope

shape was created and shifted away from the origin. The drope shape was then rotated and

duplicated so that 4 copies forming a tube drope shape created. This was done using both the

rotate and the intersect functions. To complete the figure the drope tube and the original

sphere were intersected.

The sinus bug was created using the bug shape which resembles a coiled worm and the sinus

which is periodic. Two interlocking bugs were created and then joined using Union. To

incorporate the periodic features of the sinus the Combine function was used to merge the two

bugs and the sinus.

Page 4 of 21

 The super wiffle consists of a sphere trapped inside of a tetrahedron and showcases the

powers of additive printing. Traditional fabrication makes it difficult to trap a sphere inside the

larger shape. To make the model, a large tetrahedron is made and is joined to a smaller sphere

using Union. It is interesting to note that the sphere and tetrahedron don’t intersect at all.

The sinus sphere is created using a sinus which is modified with a periodic function. This creates

the characteristics of a step function in one direction with the periodic functions nature in the

other. Intersecting the modified sinus function with a sphere creates a unique shape which can

be used to create interlocking half spheres.

Page 5 of 21

The heart is created very simply by using the heart shape in the shape library.

Page 6 of 21

The spaceship is created using a combination of the prism, cone, cylinder, and the sinus sphere.

First the fins are created. A single fin is formed by creating a prism, then shifting it away from

the origin in the x direction and then rotating it along the x axis. To create the other fins the

first fin is rotated pi around z axis and then joined to itself. This double fin is rotated pi/2 in the

z and joined to itself creating the 4 fin figure. The cone, the cylinder, the four fins and the sinus

sphere and joined together with Union after being shifted in the z direction so that they align

properly. The design of the spaceship shows that our 3d modeler has the capability to create

complex objects in fairly straightforward methods.

Page 7 of 21

When building composite shapes by rotating, translating, and joining several shapes, the

amount of time and thought that is necessary to build them can become very great. Thus, it is

beneficial to create an automated system that can help build these composite shapes after only

entering a few parameters. The first function that was developed was the curve_fol_sphere

function, which takes a parametric function (f(t) = [x(t),y(t),z(t)]), the number of spheres desired

(n), the first and last t values (a,b), and the radius of the spheres (radius) as inputs and returns a

composite shape that consists of n spheres, equally spaced along the curve defined by f ,

between f(a) and f(b). This is done using the simple trans_point function (see below) that was

created to evaluate the parametric function at t = s and determine the translation distances.

 def trans_point(r,s): return f[r](t=s)

Then using the translation functions and the Union function, curve_fol_sphere builds the

composite shape along the parametric curve. This composite shape can then be plotted. For

example:

 t = var('t')
 f = [4*sin(t), 4*cos(t), 0*t]
 circ=curve_fol_sphere(f,7,(0,2*pi),2)
 Plot3d(circ,10,100)

Returns:

Page 8 of 21

The shape that is returned by the curve_fol_sphere function can then be used as building block

for another composite shape. For example:

 t = var('t')
 f = [4*sin(t), 4*cos(t), 2*t/t]
 circ2=curve_fol_sphere(f,7,(0,2*pi),2)
 Plot3d(Union(circ,circ2),10,100)

Returns:

The code for the curve_fol_sphere function can be easily adapted to place any shape along the

parametric curve. Specifically, we have developed curve_fol_cyyl and curve_fol_box, which

place cylinders and cubes, respectively, on the parametric curve. These take the same inputs as

curve_fol_sphere, with the exceptions that in curve_fol_cyyl, instead of radius it takes (c,d,e)

where c and d correspond to the radii of the base and e corresponds to the height of the

cylinders, and in curve_fol_box, size is used instead of radius and corresponds to the edge

length of the cubes. The most significant difference between curve_fol_sphere and

curve_fol_cyyl and curve_fol_box is that the curve_fol_cyyl and curve_fol_box functions not

only move the shapes to the different points on the curve, but also rotate them to match the

Page 9 of 21

tangent to the curve at each point. The rotation angles are calculated by the angle function (see

below) that was created. This function calculates the tangent vector at the point f(t = v) and

projects it onto the xy, yz, and xz planes when u = 0, 1, or 2 respectively. Then it finds the angle

between the projection and the respective x, y and z unit vectors using arctangent of the slope.

 def angle(u,v):
 if diff(f[u])(t = v) == 0:
 return pi/2
 else:
 return arctan(diff(f[(u+1)%3])(t = v)/diff(f[u])(t = v))

In order to facilitate generating composite shapes quickly and easily, an interact was created

(see below) using the Sage Notebook. This interact has many options and fields to fill. The first

option is to select the shape to be used in the curve follower. Next, the user can select to have

the shapes rotated to match the curve or not. Then the number of shapes and the functions for

x(t), y(t) and z(t) are entered, as well as the minimum and maximum t values. The radius and

height fields determine the size of the shapes. Checking the box labeled “Display Shape” will

display the implicit_plot3d of the composite shape and the final three fields determine the

scale of the plot. Finally, checking the box labeled “Save Plot” will save the plot as a .stl file. In

order to prevent the interact from performing unnecessary evaluations, an update button is

utilized so that all of the desired parameters can be entered and the interact only evaluates

when the user clicks the update button.

Page 10 of 21

Conclusion
The work presented in this report shows both the power of sage as well as the power of 3D

printing. A function based 3D solid modeler was created which was then used to draw various

parts. From these models solid objects were later printed. The current limitation of this project

is its user interface. Currently to create an object the transforms must be coded. It would

greatly benefit the user to create an interactive front that could be used to create the models.

All in all, the project was useful and allowed us to design and produce our own objects.

Appendix

Sage Code

The following is published at http://480.sagenb.org/home/pub/22 .

<p style="text-align: center;"><span style="font-size:

xx-large;">Function Based 3-D Solid Modeller</p>

<p style="text-align: center;">Aaron Schilling, Fareed Faghih,

Marcus Lew</p>

<p style="text-align: center;">Math480B Final Project --

6/4/2010</p>

http://480.sagenb.org/home/pub/22

Page 11 of 21

<p style="text-align: center;"><img

src="http://upload.wikimedia.org/wikipedia/commons/0/0f/Jack-in-

cube_solid_model%2C_light_background.gif" alt="" width="180" height="274" /></p>

<p style="text-align: center;"><span style="font-family:

verdana, geneva;">3D Model of a Jack in a Cube</p>

<p style="text-align: center;"><span style="font-family:

verdana, geneva;"><img src="http://upload.wikimedia.org/wikipedia/commons/7/71/Cad-fm01s.gif"

alt="" width="338" height="308" /></p>

<p style="text-align: center;"><span style="font-family:

verdana, geneva;">3D Modelling Software in action</p>

<p style="text-align: center;"><img src="http://reprap.org/mediawiki/images/1/1f/Mendel.jpg"

alt="" width="850" height="550" /></p>

<p style="text-align: center;"><span style="font-size: xx-

large;"><span style="font-family:

verdana, geneva;">Self-Replicating RepRap 3D Printer</p>

<p style="text-align: center;"> </p>

<p style="text-align: center;"><img

src="http://www.itg.uiuc.edu/printing/3D/3d%20printer%20open.jpg" alt="" width="500" height="375"

/></p>

<p style="text-align: center;"> </p>

<p style="text-align: center;"><span style="font-family:

verdana, geneva;">Commercial Z406 3D printer</p>

<p style="text-align: center;"><img

src="http://upload.wikimedia.org/wikipedia/commons/6/60/3D_scanning_and_printing.jpg" alt=""

width="800" height="754" /></p>

<p style="text-align: center;"><span style="font-family:

verdana, geneva;">Example 3D scan and 3D print</p>

<p style="text-align: center;">
</p>

sage: %auto

sage: #Define Variables

sage: x,y,z = var('x, y, z')

sage: #Transformations: Mathematical functions to change the geometrical size or location of

solids. Includes translations, scaling, reflection and rotation.

sage: #Translations: Movement in the specific direction

sage: def TransX(a,tx) : return a.substitute(x=(x-tx))

sage: def TransY(a,ty) : return a.substitute(y=(y-ty))

sage: def TransZ(a,tz) : return a.substitute(z=(z-tz))

sage: #Scaling: Size factor change in specific direction

sage: def ScaleX(a,sx) : return a.substitute(x=(x/sx))

sage: def ScaleY(a,sy) : return a.substitute(y=(y/sy))

sage: def ScaleZ(a,sz) : return a.substitute(z=(z/sz))

sage: def ScaleXYZ(a,s) : return a.substitute(x=(x/s),y=(y/s),z=(z/s))

sage: #Reflection: Reflects across specific plane

sage: def ReflectXY(a) : return a.substitute(z=(-z))

sage: def ReflectZX(a) : return a.substitute(y=(-y))

sage: def ReflectYZ(a) : return a.substitute(x=(-x))

sage: #Rotation: Turning in specific plane

sage: def DegToRad(a) : return (pi*a/180)

sage: def RotateRX(a,r) : return a.substitute(y=(y*cos(r) - z*sin(r)), z=(y*sin(r) + z*cos(r)))

Page 12 of 21

sage: def RotateRY(a,r) : return a.substitute(x=(x*cos(r) + z*sin(r)), z=(-x*sin(r) + z*cos(r)))

sage: def RotateRZ(a,r) : return a.substitute(x=(x*cos(r) + y*sin(r)), y=(-x*sin(r) + y*cos(r)))

sage: def RotateX(a,d) : return RotateRX(a, DegToRad(d))

sage: def RotateY(a,d) : return RotateRY(a, DegToRad(d))

sage: def RotateZ(a,d) : return RotateRZ(a, DegToRad(d))

sage: # Simpler Plot Function: Reduces implicit_plot3d to a simpler more practical plotter

sage: def Plot3d (sld,size,pts) : return implicit_plot3d(sld, (x, -size, size), (y, -size, size),

(z, -size, size), plot_points=pts)

sage: # Boolean Operators: For shape interactions

sage: def Union(a,b) : return Min(a,b)

sage: def Intersect(a,b) : return Max(a,b)

sage: def Subtract(a,b) : return Max(a,-b)

sage: def Morph (a,b,t) : return ((b-a)*t+a)

sage: def Blend (a,b,l) : return (a*b)-l

sage: def Combine (a,b,k) : return k*(a+b)

sage: Max(a,b) = (a + b + abs(a - b)) / 2

sage: Min(a,b) = (a + b - abs(a - b)) / 2

sage: # Primitives and Shapes: Defines the specific building blocks which can be pieced together

or transformed to form the desired object. Adapted from w3dsurf and wolfram mathworld

sage: def Sphere (a) : return (x^2+y^2+z^2-a^2)

sage: def Cube(h) : return (Max(Max(abs(x/(h/2)), abs(y/(h/2))), abs(z/(h/2))) - 1)

sage: def Prism(a,b,c) : return (Max(Max(abs(x/(a/2)), abs(y/(b/2))), abs(z/(c/2))) - 1)

sage: def Torus(a,b) : return ((a-sqrt(x^2+y^2)^2+z^2-b^2))

sage: def Cyyl(a,b,c) : return Intersect(((x^2/a)+(y^2/b)-1),Close(z,c))

sage: def Cone(a,b,c) : return Intersect(((c*sqrt((x^2/a^2)+(y^2/b^2)))-z),Close(z,c))

sage: def Ellip(a,b,c) : return ((x^2/a^2)+(y^2/b^2)+(z^2/c^2)-1)

sage: def Para (a,b,c) : return (Max((x^2/a^2+y^2/b^2-c*z),z)-1)

sage: def Close(a,b) : return (abs(a/(b/2))-1)

sage: def HSpace (h) : return z-h

sage: def Tetrahedral (a,b,c) : return ((x^2 + y^2 + z^2)^2 + a*x*y*z - b*(x^2 + y^2 + z^2) + c)

sage: def Sinus (r,h) : return (sin(pi*(x^2+y^2-r^2))/2+h*z)

sage: def Bug (a,b,c) : return ((x*cos(b*y)-z*sin(b*y))+a)^2+(y/c)^2+(x*sin(b*y)+z*cos(b*y))^2 -

1

sage: def Drope (h) : return (z - h*x*exp(-x^2-y^2))

sage: def Heart (a,b,c,d,e) : return (a*(x^2)+b*(y^2)+c*(z^2)-1)^3-d*(x^2)*(z^3)-e*(y^2)*(z^3)

sage: def surface_to_stl_filesave(surface,filename):

sage: # Return an STL representation of the surface to a file.

sage: # Original work by Christopher Olah and later modified to write to a

sage: # file.

sage: #

sage: # INPUT:

sage: # - `surface` -- any surface, eg. output of a 3d plot function.

sage: #

sage: # OUTPUT:

Page 13 of 21

sage: # A string that represents the surface in the STL format.

sage: #

sage: # COMMENTS:

sage: # (1) You must view the surface before plotting it.

sage: # Otherwise, this will not work.

sage: # (2) In order to do 3d printing with this, you will need to

sage: # convert it into gcode. Skeinforge is an open-source

sage: # program that can do this.

sage: # (3) The size of the surface is not normalized in export.

sage: # Sage's units will become the units of the STL

sage: # description. These seem to be ~0.05 cm (at least when

sage: # printed using skeinforge -> replicatorg -> hacklab.to's

sage: # cupcake).

sage: # (4) Be aware of the overhang limits of your 3d printer;

sage: # most printers can only handle an overhang of Pi/2 (45*)

sage: # before your model will start drooping.

sage: #

sage: # EXAMPLES:

sage: # sage: x,y,z = var('x,y,z')

sage: # sage: a = implicit_plot3d(x^2+y^2+z^2-9, [x,-5,5], [y,-5,5],[z,

sage: # -5,5])

sage: # sage: surface_to_stl_filesave(a,'file')

sage: #

... stl=open(filename + ".stl",'w');

... stl.write('solid mathsurface\n');

... for i in surface.face_list():

... n = (i[1][1]*i[2][2] - i[2][1]*i[1][2],

... i[1][2]*i[2][0] - i[1][0]*i[2][2],

... i[1][0]*i[2][1] - i[2][0]*i[1][1])

... abs = (n[0]^2+n[1]^2+n[2]^2)^0.5

... n= (n[0]/abs,n[1]/abs,n[2]/abs)

... stl.write(' facet normal ' + repr(n[0]) + ' ' + repr(n[1]) + ' ' + repr(n[2])

+ '\n');

... stl.write(' outer loop\n');

... stl.write(' vertex ' + repr(i[0][0]) + ' ' + repr(i[0][1]) + ' ' + repr(i[0][2]) +

'\n');

... stl.write(' vertex ' + repr(i[1][0]) + ' ' + repr(i[1][1]) + ' ' + repr(i[1][2]) +

'\n');

... stl.write(' vertex ' + repr(i[2][0]) + ' ' + repr(i[2][1]) + ' ' + repr(i[2][2]) +

'\n');

... stl.write(' endloop\n');

... stl.write(' endfacet\n');

... stl.write('endsolid surface\n');

... stl.close();

Page 14 of 21

... return

...

...

sage: # Functions for Curve Followers

sage: # Translation Distances - evaluates the parametric function at t = s to determine the

translation distance.

sage: def trans_point(r,s): return f[r](t=s)

sage: # Rotation Angles - takes the tangent line at time t = v and projects it onto the xy, yz,

and xz planes when u = 0, 1, or 2 respectively. Then it finds the angle between the projection

and the respective x, y and z unit vectors using arctangent of the slope.

...

...

sage: def angle(u,v):

... if diff(f[u])(t = v) == 0:

... return pi/2

... else:

... return arctan(diff(f[(u+1)%3])(t = v)/diff(f[u])(t = v))

...

...

sage: # Sphere Curve Follower - f is a parametric function for a curve such that f =

[x(t),y(t),z(t)], n is the number of shapes desired on the curve, (a,b) is the interval for t,

and radius is the radius of each sphere.

sage: def curve_fol_sphere(f,n,(a,b),radius):

... step = (b - a)/n

... x0 = trans_point(0,a)

... y0 = trans_point(1,a)

... z0 = trans_point(2,a)

... combo = TransZ(TransY(TransX(Sphere(radius),x0),y0),z0)

... for i in range(1,n):

... tnew = a + i*step

... x1 = trans_point(0,tnew)

... y1 = trans_point(1,tnew)

... z1 = trans_point(2,tnew)

... next_sphere = TransZ(TransY(TransX(Sphere(radius),x1),y1),z1)

... combo = Union(combo, next_sphere)

... return combo

...

sage: # Cylinder Curve Follower - f is a parametric function for a curve such that f =

[x(t),y(t),z(t)], n is the number of shapes desired on the curve, (a,b) is the interval for t,

and """""size is the size of each cube."""""""

sage: def curve_fol_cyyl(f,n,(a,b),(c,d,e)):

... step = (b - a)/n

... x0 = trans_point(0,a)

... y0 = trans_point(1,a)

... z0 = trans_point(2,a)

... angxy0 = angle(0,a)

Page 15 of 21

... angyz0 = angle(1,a)+pi/2

... angxz0 = angle(2,a)

... cyll = RotateRZ(RotateRY(RotateRX(Cyyl(c,d,e),angxy0),angyz0),angxz0)

... combo = TransZ(TransY(TransX(cyll,x0),y0),z0)

... for i in range(1,n):

... tnew = a + i*step

... x1 = trans_point(0,tnew)

... y1 = trans_point(1,tnew)

... z1 = trans_point(2,tnew)

... angxy1 = angle(0,tnew)

... angyz1 = angle(1,tnew)+pi/2

... angxz1 = angle(2,tnew)

... next_cyyl = RotateRZ(RotateRY(RotateRX(Cyyl(c,d,e),angxy1),angyz1),angxz1)

... move_next_cyyl = TransZ(TransY(TransX(next_cyyl,x1),y1),z1)

... combo = Union(combo, move_next_cyyl)

... return combo

...

...

sage: # Box Curve Follower - f is a parametric function for a curve such that f =

[x(t),y(t),z(t)], n is the number of shapes desired on the curve, (a,b) is the interval for t,

and size is the size of each cube.

sage: def curve_fol_box(f,n,(a,b),size):

... step = (b - a)/n

... x0 = trans_point(0,a)

... y0 = trans_point(1,a)

... z0 = trans_point(2,a)

... angxy0 = angle(0,a)

... angyz0 = angle(1,a)

... angxz0 = angle(2,a)

... box = RotateRZ(RotateRY(RotateRX(Cube(size),angxy0),angyz0),angxz0)

... combo = TransZ(TransY(TransX(box,x0),y0),z0)

... for i in range(1,n):

... tnew = a + i*step

... x1 = trans_point(0,tnew)

... y1 = trans_point(1,tnew)

... z1 = trans_point(2,tnew)

... angxy1 = angle(0,tnew)

... angyz1 = angle(1,tnew)

... angxz1 = angle(2,tnew)

... next_box = RotateRZ(RotateRY(RotateRX(Cube(size),angxy1),angyz1),angxz1)

... move_next_box = TransZ(TransY(TransX(next_box,x1),y1),z1)

... combo = Union(combo,move_next_box)

... return combo

Page 16 of 21

sage: # "Drope Block" a sphere with the drope function on 4 of its 6 "sides" - Adapted from

Nicholas Lewis

sage: sp = Sphere(4)

sage: dr = TransZ(Drope (4),2.5)

sage: top = dr

sage: side1 = RotateY(top,90)

sage: ts1 = Intersect(top ,side1)

sage: bs2 = RotateY(ts1,180)

sage: tube =Intersect(ts1 ,bs2)

sage: sld = Intersect(tube,sp)

sage: dbplt = Plot3d(sld,5,100)

sage: dbplt

sage: # "Sinus Bugs" two interlocking bugs patterned with a sinus - Adapted from Nicholas Lewis

sage: t1 = 5*Bug (-.5,1, 4)

sage: t2 = 5*Bug (.5,1, 4)

sage: s = Sinus (0,5)

sage: sld = Combine(Union(t1,t2),s,1)

sage: plt = Plot3d(sld,6,200)

sage: plt

sage: # "Super Wiffle" a ball locked inside a tetrahedron

sage: c = Tetrahedral (18,18,60)

sage: sp = Sphere(1.5)

sage: sld = Union(c,sp)

sage: swplt = Plot3d(sld,10,100)

sage: swplt

sage: # "Sinus Sphere" a sphere patterned with a sinus - Adapted from Nicholas Lewis

sage: a = Sinus(0,4)

sage: b = (cos(x) * cos(y)) * 10

sage: c = Sphere(4)

sage: sld = Intersect(b-a+2,c)

sage: Splt = Plot3d(sld,4,100)

sage: Splt

sage: #Heart

sage: hearts=Plot3d(Heart(1,9/4,1,1,9/80),1.5,100)

sage: hearts

sage: # "Spaceship" a spaceship modeled using prisms, a cone, a cylinder and the sinus sphere

sage: q=TransZ(TransX(RotateRY(Prism(1,.25,3),-pi/9),.75),8)

sage: r=Union(q,RotateRZ(q,pi))

sage: r2=Union(r,RotateRZ(r,pi/2))

sage:

spaceship=implicit_plot3d(Union(r2,Union(TransZ(RotateRX(ScaleXYZ(sld,.25),pi),10),Union(TransZ(C

yyl(.35,.35,6),7),Cone(1,1,9)))),(x, -5, 5), (y, -5, 5), (z, -.25, 12), plot_points=100)

sage: spaceship

sage: # "Sphere Circle"

Page 17 of 21

sage: t = var('t')

sage: f = [4*sin(t), 4*cos(t), 0*t]

sage: circ=curve_fol_sphere(f,7,(0,2*pi),2)

sage: Plot3d(circ,10,100)

sage: # "Stacked Sphere Circle"

sage: t = var('t')

sage: f = [4*sin(t), 4*cos(t), 2*t/t]

sage: circ2=curve_fol_sphere(f,7,(0,2*pi),2)

sage: criclplt=Plot3d(Union(circ,circ2),10,100)

sage: criclplt

sage: #stl_outputs

sage: surface_to_stl_filesave(spaceship,'spaceship')

sage: surface_to_stl_filesave(criclplt,'criclplt')

sage: surface_to_stl_filesave(hearts,'hearts')

sage: surface_to_stl_filesave(Splt,'Splt')

sage: surface_to_stl_filesave(swplt,'swplt')

sage: surface_to_stl_filesave(plt,'plt')

sage: surface_to_stl_filesave(dbplt,'dbplt')

sage: %auto

sage: # Interactive Curve Follower: Various parameters controlling the creation of a parametric

curve on which 3D object will be placed are presented. Once the proper parameters have been

selected a 3d model of the figure is displayed.

sage: var('t x y z')

sage: inter_plot = 0

sage: @interact

sage: def curve_fol(shape_type = ("Shape",['Sphere','Cube','Cylinder']), rotshapes =

checkbox(True, "Rotate Shapes to Match Curve?"), n = ("# of Shapes on Curve",1), xfun = ("x(t)",

t), yfun = ("y(t)", t), zfun = ("z(t)", t), a = ("t start", 0), b = ("t end",1), radius =

("radius", 1), height = ("height", 1), showplot = checkbox(True, "Display Shape?"), xaxes = ("X-

axis Size", 10), yaxes = ("Y-axis Size", 10), zaxes = ("Z-axis Size", 10), saveplot =

checkbox(False, "Save Plot?"), auto_update = False):

... var('t x y z')

... g = (xfun,yfun,zfun)

...

... if shape_type == 'Cylinder':

... shape_fun = Cyyl

... if shape_type == 'Sphere':

... shape_fun = Sphere

... if shape_type == 'Cube':

... shape_fun = Cube

... def trans_point2(r,s): return g[r](t=s)

... def angle(u,v):

... if diff(g[u])(t = v) == 0:

... return pi/2

... else:

... return arctan(diff(g[(u+1)%3])(t = v)/diff(g[u])(t = v))

Page 18 of 21

... if shape_type == 'Cylinder':

... step = (b - a)/n

... x0 = trans_point2(0,a)

... y0 = trans_point2(1,a)

... z0 = trans_point2(2,a)

... angxy0 = angle(0,a)

... angyz0 = angle(1,a)+pi/2

... angxz0 = angle(2,a)

... if rotshapes:

... shape1 =

RotateRZ(RotateRY(RotateRX(Cyyl(radius,radius,height),angxy0),angyz0),angxz0)

... else:

... shape1 = Cyyl(radius,radius,height)

... combo = TransZ(TransY(TransX(shape1,x0),y0),z0)

... for i in range(1,n):

... tnew = a + i*step

... x1 = trans_point2(0,tnew)

... y1 = trans_point2(1,tnew)

... z1 = trans_point2(2,tnew)

... angxy1 = angle(0,tnew)

... angyz1 = angle(1,tnew)+pi/2

... angxz1 = angle(2,tnew)

... if rotshapes:

... shape_next =

RotateRZ(RotateRY(RotateRX(Cyyl(radius,radius,height),angxy0),angyz0),angxz0)

... else:

... shape_next = Cyyl(radius,radius,height)

... next_sphere = TransZ(TransY(TransX(shape_next,x1),y1),z1)

... combo = Union(combo, next_sphere)

... elif shape_type == 'Cube':

... step = (b - a)/n

... x0 = trans_point2(0,a)

... y0 = trans_point2(1,a)

... z0 = trans_point2(2,a)

... angxy0 = angle(0,a)

... angyz0 = angle(1,a)

... angxz0 = angle(2,a)

... if rotshapes:

... shape1 = RotateRZ(RotateRY(RotateRX(Cube(radius),angxy0),angyz0),angxz0)

... else:

... shape1 = Cube(radius)

... combo = TransZ(TransY(TransX(shape1,x0),y0),z0)

... for i in range(1,n):

... tnew = a + i*step

Page 19 of 21

... x1 = trans_point2(0,tnew)

... y1 = trans_point2(1,tnew)

... z1 = trans_point2(2,tnew)

... angxy1 = angle(0,tnew)

... angyz1 = angle(1,tnew)

... angxz1 = angle(2,tnew)

... if rotshapes:

... shape_next =

RotateRZ(RotateRY(RotateRX(Cube(radius),angxy0),angyz0),angxz0)

... else:

... shape_next = Cube(radius)

... next_sphere = TransZ(TransY(TransX(shape_next,x1),y1),z1)

... combo = Union(combo, next_sphere)

... else:

... step = (b - a)/n

... x0 = trans_point2(0,a)

... y0 = trans_point2(1,a)

... z0 = trans_point2(2,a)

... combo = TransZ(TransY(TransX(Sphere(radius),x0),y0),z0)

... for i in range(1,n):

... tnew = a + i*step

... x1 = trans_point2(0,tnew)

... y1 = trans_point2(1,tnew)

... z1 = trans_point2(2,tnew)

...

... next_sphere = TransZ(TransY(TransX(Sphere(radius),x1),y1),z1)

... combo = Union(combo, next_sphere)

... inter_plot = implicit_plot3d(combo,(x,-xaxes,xaxes),(y,-yaxes,yaxes),(z,-zaxes,zaxes))

... if showplot:

... show(inter_plot)

... if saveplot:

... surface_to_stl_filesave(inter_plot,'inter_plot')

... return inter_plot

<html><!--notruncate--><div padding=6 id="div-interact-111"> <table width=800px height=20px

bgcolor="#c5c5c5"

 cellpadding=15><tr><td bgcolor="#f9f9f9" valign=top align=left><table><tr><td

align=right>Shape </td><td><table style="border:1px solid

#dfdfdf; background-color:#efefef;">

<tr><td><button style="border-style:inset;" value="0" onclick="$('BUTTON',

this.parentNode).css('border-style', 'outset'); $(this).css('border-style', 'inset');

interact(111, '_interact_.update(\'111\', \'shape_type\', 1,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')">Sphere</button>

<button style="border-style:outset;" value="1" onclick="$('BUTTON', this.parentNode).css('border-

style', 'outset'); $(this).css('border-style', 'inset'); interact(111,

'_interact_.update(\'111\', \'shape_type\', 1,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')">Cube</button>

Page 20 of 21

<button style="border-style:outset;" value="2" onclick="$('BUTTON', this.parentNode).css('border-

style', 'outset'); $(this).css('border-style', 'inset'); interact(111,

'_interact_.update(\'111\', \'shape_type\', 1,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')">Cylinder</button>

</td></tr></table></td></tr>

<tr><td align=right>Rotate Shapes to Match Curve? </td><td><input

type="checkbox" checked width=200px onchange="interact(111, '_interact_.update(\'111\',

\'rotshapes\', 2, _interact_.standard_b64decode(\''+encode64(this.checked)+'\'),

globals())')"></input></td></tr>

<tr><td align=right># of Shapes on Curve </td><td><input

type="text" value="1" size=80 onchange="interact(111, '_interact_.update(\'111\', \'n\', 3,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>x(t) </td><td><input type="text" value="t"

size=80 onchange="interact(111, '_interact_.update(\'111\', \'xfun\', 4,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>y(t) </td><td><input type="text" value="t"

size=80 onchange="interact(111, '_interact_.update(\'111\', \'yfun\', 5,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>z(t) </td><td><input type="text" value="t"

size=80 onchange="interact(111, '_interact_.update(\'111\', \'zfun\', 6,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>t start </td><td><input type="text" value="0"

size=80 onchange="interact(111, '_interact_.update(\'111\', \'a\', 7,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>t end </td><td><input type="text" value="1"

size=80 onchange="interact(111, '_interact_.update(\'111\', \'b\', 8,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>radius </td><td><input type="text" value="1"

size=80 onchange="interact(111, '_interact_.update(\'111\', \'radius\', 9,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>height </td><td><input type="text" value="1"

size=80 onchange="interact(111, '_interact_.update(\'111\', \'height\', 10,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>Display Shape? </td><td><input

type="checkbox" checked width=200px onchange="interact(111, '_interact_.update(\'111\',

\'showplot\', 11, _interact_.standard_b64decode(\''+encode64(this.checked)+'\'),

globals())')"></input></td></tr>

<tr><td align=right>X-axis Size </td><td><input type="text"

value="10" size=80 onchange="interact(111, '_interact_.update(\'111\', \'xaxes\', 12,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>Y-axis Size </td><td><input type="text"

value="10" size=80 onchange="interact(111, '_interact_.update(\'111\', \'yaxes\', 13,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>Z-axis Size </td><td><input type="text"

value="10" size=80 onchange="interact(111, '_interact_.update(\'111\', \'zaxes\', 14,

interact.standard_b64decode(\''+encode64(this.value)+'\'), globals())')"></input></td></tr>

<tr><td align=right>Save Plot? </td><td><input type="checkbox"

width=200px onchange="interact(111, '_interact_.update(\'111\', \'saveplot\', 15,

interact.standard_b64decode(\''+encode64(this.checked)+'\'), globals())')"></input></td></tr>

<tr><td colspan=2><input type="button" value="Update" onclick="interact(111,

'_interact_.recompute(\'111\')')">

</td></tr>

</table><div id="cell-interact-111"><?__SAGE__START>

 <table border=0 bgcolor="white" width=100% height=100%>

 <tr><td bgcolor="white" align=left valign=top><pre>

Graphics3d Object

Page 21 of 21

</pre></td></tr>

 <tr><td align=left valign=top><div><script>jmol_applet(500,

"/home/marcuslew/5/cells/111/sage0-size500.jmol?1275713609");</script></div></td></tr>

 </table><?__SAGE__END></div></td>

 </tr></table></div>

 </html>

sage: var('t')

sage: f = [t,t*t,t]

sage: v = curve_fol_cyyl(f,3,(0,1),(1,1,1))

sage: Plot3d(v,6,100)

