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Getting Started 

In order to understand the astrological motions that allow us to tell time with a sundial, 

there are some basic concepts that must be understood.  Since before Christ, civilizations have 

known that the earth is round.  And thanks to Galileo we know that the sun is the center for our 

orbit.  Most realize that the revolution around the sun is in a counterclockwise manner.  Yet the 

orbit of our planet in not perfectly circular, but instead takes a more elliptic path.  But the orbit is 

not 'perfect' as the sun is not the very center, but instead favors one side of the ellipse. 

At the same time Earth revolves around the sun, it also turns about its own axis of 

rotation.  The axis of rotation is tilted, however, by 23.5°.  Observers (or even those who care 

nothing of science) can see that the sun 'rises' in the east and 'sets' in the west - showing that the 

rotation of our planet is indeed counterclockwise.  We make one full rotation about every 24 

hours.  This number is not exact day by day, but instead an annual mean. 

Before we digress any further into the 

consequences of earth‟s non-perfect orbit we 

should explore some facts about the orbit around 

the sun, and around earth‟s own axis.  The earth 

is approximately 150 million kilometers away 

from the sun.  This distance varies, however, as 

the earth follows an elliptical orbit around the 

sun.  Earth is closest to the sun during the winter, 

at a time in its orbit called the perihelion.  

During the aphelion the earth is the furthest from 

the sun – giving a range of about five million 

kilometers.  Yet the distance the earth travels 

around the sun is almost six times greater, 940 million kilometers.  This orbit takes the earth a 

little more than 365 days, hence the „leap year‟ was introduced to the Gregorian calendar in 1582 

AD. 

Seasons 

It was mentioned before that the axis of the earth takes on a slight tilt.  Though we 

casually grazed by this fact, it actually is very significant in the explanation of the four seasons 

we experience.  Simply stated, when a part of the earth is tilted towards the sun, it experiences 

warmer weather, what we call summer.  Conversely, winter occurs when the given location is 

tilted away from the earth.  For example, the northern hemisphere experiences the peak of 

summer in June when the northern part of the axis faces the sun and the southern is pointing 

away.  Winter peaks in December when the northern tip of the axis points away from the sun.  

Autumn and spring are transitional seasons when the earth‟s axis is pointing neither directly 

towards, nor away from the sun.  Note that latitudes nears the equator experience less drastic 

changes in temperature because they do not favor (are not closer to) the northern nor southern 

axis.      

Orbit about the sun   

  Orbit time 365.242199 days 

  Orbital speed 30 km/s 

  Distance traveled 940,000,000 km 

Rotation about the earth's axis   

  Rotation time (mean) 24 hours 

  Rotation speed .45 km/s 

Distance from the sun 150,000,000 km 

  Average distance 149,597,888 km 

  Perihelion 147,098,074 km 

  Aphelion 152,097,701 km 

  Range 4,999,627 km 

   



Specific terms have been given to describe the tilt of the earth‟s axis throughout a given year.  When the 

axis is most inclined towards or away from the sun a solstice occurs.  At this time, the sun appears most northern or 

most southern in the sky.  Similarly, an equinox occurs twice per year.  As one would conjecture, this occurs in 

between the two solstices, particularly when the earth‟s axis points neither towards nor away from the sun.  At an 

equinox, the zenith as observed from the equator appears to intersect the sun.  It is to be noted that the solstices and 

equinoxes do not occur in consistent increments.  This is because of the elliptical orbit that earth follows around the 

sun.  Thus in the northern hemisphere summer and spring last longer than autumn and winter. 

 

Coordinate Systems 

The Horizon System 

A fixed coordinate system must be established to be able to speak of astrological locations 

quantitatively. The most natural system mimics our longitude and latitude system for locating 

positions on Earth. This system is called the horizontal coordinate system. 

The horizontal coordinate system uses a point 

of reference, O, on the surface of the Earth as its 

origin. The line formed by connecting the point 

representing the center of the Earth to the point O 

that continues out into space is the zenith axis.  This 

axis is normal to the horizon, which can be 

considered an XY plane, where the y-axis points 

north and the x-axis points east. 

Given this system, assume the sun is visible 

in the sky. If we point a unit vector to the sun with 

initial point O, then we see that we can represent this 

vector by its polar coordinates. However, this astronomical system does not follow common 

mathematical conventions. Instead of measuring its XY angle counterclockwise from the x-axis 

(east), we measure the angle clockwise from the y-axis (north). This angle has a special name in 

astronomy, the azimuth, A. The second angle measured is the angle the vector makes with the 

XY plane (the horizon). This angle is called the elevation angle and does correspond to 

mathematical convention (a in the diagram). 

The Ecliptic System 

The ecliptic coordinate system is one that is centered 

at the Sun and whose coordinates are based on the plane 

formed by the orbit of the Earth, i.e. the ecliptic plane. The 

ecliptic is also used to refer to the path that the Sun traces 

along our sky throughout the year if we measure it every 

sidereal day. This path progresses in a counterclockwise 

direction until the sun appears in the same position, i.e. a 

year, or one revolution around the sun, has passed. The 

ecliptic poles are Draco to the north and Dorado to the south.  

Relative to these poles, earth‟s axis is tilted 23.5°.  This 



means the two poles, and thus entire orbits are separated by 23.5°.  This causes the sun to appear 

to move north to south in the sky. 

 

How Sundials Work 

Introduction to Sundials 

The basic principle of how a sundial works is very simple.  The most general idea is that 

a shadow is cast onto some sort of surface and from that shadow the correct time can be found.  

The surface onto which the shadow is cast is referred to as the dial face or the dial plate and does 

not have to be a flat surface.  On the dial face, it is expected to find hours lines, which map out 

where the shadow will be according to the hour of the day.  The object from which the shadow is 

formed is called the gnomon (noh-mon). Gnomon is derived from the Greek, γνώμων, which 

means "indicator", "one who discerns," or "that which reveals.” Generally there is a specific part 

of the shadow that is used to tell time, the part of the gnomon that casts this piece of the shadow 

is called the style.  In certain sundial designs time and date are told only by the tip of the shadow 

given from a sharp feature on the gnomon.  The point-like feature that casts this shadow is called 

the nodus and is frequently found on the tip of the style.  In most sundials, the style is fixed, but 

for certain dials it may have a moving feature to adjust for month. 

Generally speaking, when we refer to sundials and their mechanics we are referring to 

sundials in the northern hemisphere.  This is largely due to the fact that most sundials can be 

found in the northern hemisphere.  This is not to say that there aren‟t sundials in the southern 

hemisphere, or that they don‟t work in the southern hemisphere.  In fact, a sundial made for the 

northern hemisphere will work perfectly fine in the southern hemisphere as long as it is placed at 

its perspective latitude in the sound and the gnomon is correctly aligned.  The main difference is 

that sundials in the southern hemisphere function somewhat backwards to northern hemisphere 

dials; instead of the style pointing due north, it would point due south, if the shadow normally 

moved across the dial face clockwise, it would now move counter-clockwise. 

Equatorial Sundial 

Equatorial sundials are modeled after the earth, 

and thus used as a base for building other types of 

sundials.  The model consists of a circular dial plate with 

a gnomon at the center, positioned perpendicular to the 

plate.  As to imitate the axis of the earth, the gnomon 

must point toward the celestial poles.  The plate is then 

positioned so that it is parallel to the equator.  This is 

achieved by tilting the dial so that the angle between the 

gnomon and the (flat) ground is equal to the latitude of 

the given location.  Setup for this type of sundial is thus 

dependent upon the physical location of the dial. 



Earth makes one full rotation every 24 hours.  Seeing that earth is round, a single point 

makes a 360° rotation before returning to its same location from 24 hours before.  An equatorial 

sundial mimics the circularity of the earth, and the gnomon is parallel to the axis of the earth.  

Thus every degree of rotation experience by the earth is experienced by the sundial to the same 

degree and the sundial too makes one full „rotation‟ (with the earth) in 24 hours.  The shadow 

then shifts a consistent amount, 15° (360°/ 24 hours), every hour.  When the sun rises in the east, 

shadows are casted toward the westerly side of the sundial.  As the day progresses, the shadow 

rotates in a clockwise manner until the sun sets in the west, casting a last shadow on the easterly 

side of the dial plate.  Noon occurs when the sun is highest in the sky, causing the shadow to cast 

directly towards the ground.  Thus 12:00 noon is observed as the lowest point on the dial plate.  

From this point, the remaining hours of the day can be marked off, clockwise, in 15° increments. 

Equatorial sundials read the time on both sides of the circular dial plate.  From the vernal 

equinox to the autumnal, the earth‟s axis is oriented towards the sun causing light to fall on the 

northern half of the dial plate.  Yet from the autumnal equinox to the vernal equinox the southern 

axis points towards the sun, and light is cast on the underside of the sundial.  To use the sundial 

during these months, the gnomon must extend to the southern side of the sundial.  Also, the 

numbers on this half of the dial plate run counter-clockwise.  But equatorial sundials have a 

major drawback; during equinoxes sunlight falls directly on the edges of the circular base of the 

dial plate, and the dial plate is rendered completely useless. 

Horizontal Sundial 

When a person thinks of sundial, the image that normally comes to mind the horizontal 

sundial, where the dial‟s face lays flat on the ground.  This is the most common type and is also 

the easiest to read.  In a horizontal sundial, because the style is in alignment with the Earth‟s 

rotational axis, the style always points true north. Unlike the equatorial dial, the horizontal dial‟s 

dial face is not perpendicular to the gnomon and therefore the lines on the dial face are not 

spaced out evenly to accommodate this difference. Instead the lines are spaced out according to 

the formula tanθ = sinλtan(15°×t). Where λ is the sundial‟s 

geographical latitude, θ is the angle between a given hour line and 

the noon hour line, and t is the number of hours before or after 

noon.  

The horizontal sundial can function all the way up to the 

North Pole, where due to the style pointing directly upward, the 

dial would become an equatorial dial. However, when used a the 

equator, the horizontal sundial becomes impractical because the 

latitude is 0° rendering the style to be completely flat and hence 

not casting a shadow at all. One of the chief advantages of the 

horizontal sundial is that the sun lights the dial face year round, and therefore is a reliable 

method of telling time year-round. Another great advantage is the ability to use a horizontal dial 

at more than one latitude.  For example, if a sundial were created to tell time at a latitude of 30° 



it could be used at 40°.  The reader of the sundial would merely have to tilt the sundial 10° so 

that the style still continue to point north. 

Vertical Sundial 

The vertical sundial has construction very similar to the horizontal sundial except that the 

shadow receiving plane is vertical instead of horizontal.  Also different from the horizontal and 

equatorial sundials, the shadow on a vertical sundial moves in a counter-clockwise direction.  

Like the horizontal sundial, the vertical dial does not have evenly spaced hour lines, instead the 

lines are spaced with a near identical formula: tanθ = cosλtan(15°×t).  Like in the horizontal 

sundial, λ is the sundial‟s geographical latitude, θ is 

the angle between a given hour line and the noon 

hour line, and t is the number of hours before or 

after noon. This formula is valid for vertical sundials 

that face south.  A vertical dial the faces exactly 

north, south, east, or west is called a vertical direct 

dial. If the dial is not facing south, the hours for 

which it works are limited: east dials work only in the morning, west in the evening, and north 

vertical dials function either before 6 am or after 6 pm. Dials that do not face directly in one of 

these directions are called declining dials. It is mathematically very difficult to calculate where 

the hour lines should be on a declining dial and is often done by observation instead.  

Polar Sundial 

The polar sundial has a construction much different than the equatorial, horizontal, and vertical 

sundials.  A polar sundial is very simple to construct and extremely easy to read. With a polar 

dial, the hour lines on the dial face are parallel to the gnomon/style.  As with the gnomon, the 

hour lines are aligned with the Earth‟s axis of rotation.  Though it is not necessary, the dial plate 

is most often tilted to the angle of 

latitude where it is located.  Most 

commonly, the noon hour is placed 

where the sunlight directly hits the 

gnomon and no shadow is cast.  The 

hour lines are closest together near 

the gnomon and spaced furthest 

apart when the sun is lower on the 

horizon as the shadow moves more quickly here. The perpendicular spacing X of the hour lines 

can be obtained from this formula: X = Htan(15°×t) where H is the height of the gnomon/style 

above the plane and t is the number of hours away from the center time (usually noon) on the 

dial. 

 

A Perfect Day, A Perfect Sundial 

Apparent Solar Time 



Time as given by a sundial is scientifically known as apparent solar time.  The 

determinant of this measurement is the apparent, or true position of the sun.  One solar day 

occurs when the earth makes a complete rotation and the sun returns to the meridian; an 

imaginary circle running along the longitudinal lines of earth. 

Standard Clock Time 

Though sundials were a chief source of time keeping for generations, the need for a 

consistent measurement of time made apparent solar time untenable. What people needed of time 

was a consistent length of day, something that apparent solar time did not deliver. The time it 

takes for the sun to return to the same position in the sky, i.e. what a sundial measures, changes 

from day to day. (To understand this, see the section below titled Analemma). The time system 

that we use now adjusts for this inconsistency by removing the two causes of apparent solar 

time‟s unequal length of days: the angle our equatorial plane makes with the ecliptic and also the 

ellipticity of the Earth‟s orbit around the Sun. 

However, our system goes one step further. We also incorporate time zones so that a 

broader range of longitudes share the same time (rather than each longitude having its own time). 

Time zones came out of a necessity to run trains over longer distances. Additionally, we also 

practice daylight savings time which adds an hour to our time so that farmers have greater 

sunlight throughout the day. 

To convert solar time to clock time, several adjustments must be made. A first 

consideration must be taken into the application of daylight saving.  If a sundial is read during 

the spring in a region that upholds daylight saving time, one hour must be added to the dial‟s 

reading.  Though the practice of daylight saving is controversial and currently used in less than 

half of the world. 

We must also adjust for the 24 time zones.  Standard clock time is consistent throughout 

a time zone, thus an adjustment must be made when converting between solar and standard clock 

time.  An extreme example of how great this adjustment can be occurs in China which upholds 

one time zone throughout the entire country.  The zone includes areas between 142°30′ E and 

67°30′ E.  In this zone, solar noon can be experienced as late as 15:00 standard clock time.  To 

adjust from solar time to clock time, add four 

minutes for every degree west from the center of 

the time zone or subtract four minutes for every 

degree east. 

Finally, to correct for the fact that the 

Earth is in an elliptic orbit and also has an axis of 

rotation angled to the ecliptic plane, one must 

use the Equation of Time, which is a universal 

correction, not based on the latitude of the 

sundial.  The Equation of Time can be 

incorporated manually to a sundial reading, but 



can also be included in the sundial itself by curved hour lines. 

Sidereal Time 

To understand solar time, it is helpful to put it in perspective relative to what is called 

sidereal time. In particular, one will commonly hear of a sidereal day. This is the interval of time 

for a star to return back to the same azimuth. This corresponds to the time that it takes for the 

Earth to make one complete rotation. The adjective, sidereal, simply means that one is basing 

their time on the apparent motion of the stars rather than the apparent motion of the sun. 

A sidereal day is always shorter than a solar day. This can be explained by the fact that a 

sidereal day measures the time it takes for the Earth to rotate and face the same direction relative 

to the ecliptic plane. On the other hand, a solar day is a measure of the time it takes for the earth 

to face the sun once again. This will always take longer than a sidereal day because the earth 

revolves a bit around its orbit during a day. Due to that very positional change, it must 

compensate (wait longer) if it wants to point to the sun again. 

Though the sidereal day measures the exact time it takes for the Earth to make one 

complete rotation, it is not a good time interval for our days. To understand why, imagine that we 

watch a star one night and wait until it reaches its  highest point in the sky. Let us consider that 

exact moment 12 midnight. Now, imagine that we that we continue to measure sidereal days 

until the Earth travels to the opposite side of its orbit from the day that we first measured. On that 

day, 12 midnight would occur during daylight because the Earth is now facing the sun in that 

direction. Obviously, to have a time completely reverse from night to daylight and vice versa 

would be useless to our lives that depend on daylight hours. 

Analemma 

The analemma is a natural phenomenon that occurs due to the Earth‟s orbital eccentricity 

and its tilt. If one measures the sun‟s azimuth and elevation at the same mean solar time each day 

throughout the year, the sun will appear to form a figure eight in the sky. This amounts to 

measuring the same time on your watch, not observing daylight savings time.  

This shape is found on globes and some sundials. 

 What it measures is the relative time difference between 

mean solar time and local solar time. Each point on the 

analemma corresponds to a moment in time where the sun is 

either at, east, or west of the expected position of the Sun if 

we did not have an elliptic orbit or a tilted axis of rotation. 

When the sun is at the same position, then in our local solar 

day was as long as a mean solar day. When the sun is east of 

its expected mean position, the local solar day is longer than 

the mean solar day. When the sun is west of its expected 

position, the local solar day was shorter than a mean solar 

day. In the former case, one would need to add a number of 

minutes to the time when the sun returns back to its azimuth 

position. In the latter case, time must be subtracted when the 



sun returns back to its azimuth position. 

The first cause of this analemma is that the Earth‟s orbit around the sun is elliptical with 

eccentricity 0.017.  Thus the earth moves faster at the perihelion, and slower at the aphelion. 

 The Earth‟s axial tilt is the second cause for the variation in length of a solar day.  Because of 

the tilt, the sun appears to move faster or slower throughout the year because XY velocity 

components change with time. When the sun crosses the equator at the equinoxes, it is moving at 

an angle to the equator causing the projection of the motion to be slower than average.  This is 

seen as a shortened solar day.  Conversely, days appear longer during the solstices.  At this time 

the sun is moving parallel to the equator causing the projection of the motion to be faster than the 

mean.  Yet the maximum seasonal deviations from the mean solar day is only 16 minutes.  Thus 

24 hours is generally assumed to be the length of a day on both a sundial and an every day wrist 

watch. 

Mathematics Behind a Sundial and Incorporating  

Our model 

The apparent angle of the Sun in the horizon coordinate system is the most important 

information when dealing with sundials and time.  For this reason, we started off the project by 

attempting to model the motion of the Sun through the sky with some equations based on 

Kepler‟s laws of planetary motion and conversions from the ecliptic coordinate systems to the 

horizon coordinate system.  We got as far as being able to predict the Earth‟s location given a 

time since perihelion (closest the Earth comes to the Sun). 

Solving for location involved computing the mean, eccentric, and true anomalies and 

heliocentric distance from other properties of Earth‟s orbit.  Finding the eccentric anomaly is 

equivalent to solving the famous Kepler‟s Equation, whose solution is the topic of many research 

papers.  In Sage, we just used find_root to approximate a decimal value!  From here, all we 

had to do was convert from ecliptic coordinates to equatorial then to local horizon.  However, we 

stumbled across a telnet accessible program called Horizons, which gave us a much easier and 

more accurate way to get our angle data (see below). 

Horizons 

The NASA Jet Propulsion Laboratory has a system called Horizons that gives extremely 

accurate ephemeris data (table of values) for most celestial objects, including the Earth and Sun.  

The system can be connected to via Telnet, and with the help of Pexpect we were able to retrieve 

azimuth and elevation angles of the sun for any longitude and latitude on Earth and for any 

recent time.  Horizons takes into account variables that we would have never been able to predict 

with a model we made, including gravitational attraction to other planets in the solar system, 

difference in light time, and defraction of the Sun‟s light through the atmosphere. 

“Stick” projections 

To model sundials in their simplest form, all we really needed was a way to project the 

endpoints of an arbitrary line segment on an arbitrarily oriented plane.  Connecting those two 

points gives a shadow of any sundial‟s gnomon on any wall or angled ground we needed. 

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKepler%2527s_Equation&sa=D&sntz=1&usg=AFQjCNEcFljOAk0CSppyY300xc-fr5K2Nw


To accomplish this, we found the intersection of the plane and the line connecting each endpoint 

to the Sun.  Those projected points are connected by a line to give the shadow at a certain time.  

We used this to model all of the different types of sundials, as well as explore projections from 

sundials we made up.  We found some pretty cool results! 

 

Applications 

Physics and Astronomy Building 

A beautiful example of (and variation of) a vertical sundial can be found right on our 

University of Washington campus.  The southwest facing wall of the Physics and Astronomy 

building contains a sundial that does more than just tell time.  Its gnomon aligned with the 

northern celestial pole also depicts the analemma, while shadow lengths vary between the 

summer and winter solstice. 

As the sun moves east to west across the wall, the shadow from the gnomon follows a 

continuous path left to right.  When it is solar noon, the sun is due south causing the shadow to 

be completely vertical.  The spacing between hour intervals becomes noticeably longer during 

the early and late hours in the day.  In the summer, the sun is higher causing the shadow length to 

be longer, reaching its maximum at the summer solstice.  A similar line is mapped for the winter 

solstice when the sun is relatively low, causing the shadow length to reach a minimum.  Most 

interesting is the shadow during the equinoxes, which follows a perfectly straight path.  Another 

interesting depiction on the wall is the 

analemma formed by the sun at solar 

noon throughout the year.  From the 

location of the sun on the analemma, an 

approximate date can be assumed.   

We were able to accurately model this 

sundial by estimating a normal vector 

relative to north for this particular wall of 

the astronomy building and projecting the 

shadow of a stick on this wall aligned 

with the polar axis. This is best illustrated 

by Figure 5 and Figure 6 in the table of 

figures below. 

Illumination 

With accurate data on the motion of the sun and powerful graphing software at our 

fingertips, we set out to plot a map of solar energy across the new land granted to the UW Farm. 

 The land is between Foege, Hitchcock, and the Ocean Sciences building on South campus. 

Our goal was to give a visual graph of how much sun hit different parts of the property so 

that the farm could decide where the best areas to plant would be.  This plot could be overlayed 

onto a map of the property to tell where the best growing conditions would be. 



We decided to model the land as a two rectangles in the xy-plane, with building walls of 

varying heights in the z-direction.  We plotted the area so that the buildings lined up with the xz- 

and yz- planes.  The buildings are actually 37.5 degrees off of N-S on campus, though.  Rotating 

our azimuth angles for the sun was much easier than plotting the buildings and field at an angle. 

The illumination algorithm accepts a list of points in a coordinate plane for which to 

gather solar data.  We also modeled the buildings surrounding the land axis-aligned rectangles. 

 Our Horizons data source gave us solar angles for different points in time. 

To calculate the illumination for one of the points, we examine the intersection of the line 

connecting the point and the sun and determine if that line intersects a wall or not.  We reused 

our line-plane intersection method for casting sticks‟ shadows, then further refined it to 

determine if that intersection occurred within a certain rectangle on the plane (a “wall”).  If any 

of the walls are between the sun and that point, the point isn‟t illuminated.  Otherwise, the point 

is in the sun at the given point in time. 

The illumination calculation is done (at most) once per point per wall per point in time. 

 This is a fairly involved calculation, so we made an easy way to change the resolution over the 

area in question to speed things up. 

We wrote a function to get a mapping of the illumination score for a list of points, sun 

vectors (ray towards the sun at a point in time), and walls.  The map is then plotted, giving each 

point a grayscale value corresponding to its illumination score in relation to the minimum and 

maximum scores for the set of points.  Combining the illumination graph with the walls, we were 

able to generate plots for any set of points, walls, and sun vectors. 

The UW Farm land was modeled with walls representing the buildings around the area. 

 We used a detailed map of campus, recording pixel locations on the map to plot out where walls 

were, and pictures to estimate the height of the buildings.  Lists of points in the two main areas 

that the farm is considering for planting were generated using our helper function.  We got solar 

data during summer and winter solstice as well as the vernal equinox, and drew the illumination 

graph in Sage.  See the resulting plots below. 

At the solstices, there was a well lit area just off of the middle of Foege that we hadn‟t 

predicted.  During equinox, there is a well lit triangle on the north end of the field that would be 

good for planting.  

The UW Farm could use our model to help them plan where to plant.  This is a very real 

and neat application of our program. 



Images 

 

 
1. Sun at noon every 2 days for 1 year 

starting May 25, 2010 

 
2. Sun every 10 minutes on May 25th, 

2010 (used for plots below) 

 
3. Stick (red) raised to a height above the 

ground and its shadow projected 

throughout a whole day. 

 
4. Stick attached to wall aligned with 

north-south line 



 
5. Model of the sundial on the side of the 

Physics & Astronomy building during a 

day in late Spring 

 
6. Physics & Astronomy sundial for a full 

day at equinox (notice that the shadow 

forms a straight line) 

 
7. Equatorial sundial (stick angle = 

latitude) 

 
8. Horizontal sundial 



 
9. Vertical sundial 

 
10. Polar sundial (lines all parallel) 

 

11. Earth 25% of the way through the year 

(time-wise).  Notice the Earth is more than 

25% through its orbit (top) 



 
12. Illumination plot – summer solstice 

 
13. Illumination plot – winter solstice 

 
14. Illumination plot – spring equinox 

 
 

 

 

15. Illumination plot – single sun vector 
 



 
16. Illumination plot – overlay with 

campus map 
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