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to me, one year ago

1. Internal Monologue (Prologue)

For some time now, I have been doing various computations and taking classes
involving elliptic curves and the BSD conjecture. During this time, I have seen
various definitions of the quantities involved in the BSD conjecture, but they haven’t
“stuck”. When I sit down and work on a problem in number theory, it takes me a
while to recall the definitions, or worse, I have to look them up. To date, I have not
found a decent reference which spells everything out in clear and concise terms.
Rather, I have found a number of wonderful references that are either very explicit,
or very concise and as a result, send the beginner on long side-quests to unravel
definitions of seemingly obscure notations that seem very natural to the author and
other experts in the field.

My goal in writing this document is to present every quantity in the BSD conjec-
ture in terms that I would have understood on my first day as a graduate student.
Preferably, something that I would have immediately recognized as a reference that
I should packrat away onto my desktop and print out a few copies for my various
workspaces. In discussing this paper with colleagues, I have recognized a secondary
goal: to make it useful for other students in the same position.

To that end, I assume that the reader has attended introductory courses in
algebra, analysis, and geometry. That is, an understanding of

• elementary set theory
• arithmetic over finite fields,
• groups and quotient groups,
• calculus, (limits, derivatives and integrals)
• a little complex analysis,
• the genus of a curve.

All in all, the coverage of any topic is the bare minimum. I have attempted to
streamline the definitions so they are comprehensible, easy to find in the document:
that is, the fewer pages to thumb through, the easier. Finally, a note on the
references. For almost every definition, I consulted each of [1, 4, 5, 6, 7], as well as
Wikipedia and PlanetMath. Wherever I wasn’t satisfied by the definitions there, I
consulted William Stein.

2. A Little Background

The typical undergraduate education may have left a hole that we need to fill
before we can begin. The p-adic numbers are often covered in analysis, or even
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topology, but truly shine in a number-theoretic setting. We do not do the topic
justice, and the reader is strongly encouraged to read [2]. Before that, we define a
couple of bits of notation:

(1) Given a set S and an equivalence relation ∼ on the set, we can define a
quotient

S/ ∼def= {{x ∼ y : y ∈ S} : x ∈ S} .

(2) If a set has a finite cardinality, we write #S def= |S|.

2.1. p-Adic Numbers. We recall a definition of the real numbers as “the” analytic
completion of the rationals; we denote the Cauchy sequences in Q by

S =
{
{x0, x1, · · · } ⊂ Q : lim

n→∞
sup
m>n
|xn − xm| = 0

}
,

then we can define an equivalence relation on S: if x = {x0, x1, · · · } and y =
{y0, y1, · · · }, then x ∼ y if

lim
n→∞

xn − yn = 0.

Then,

R def= S/ ∼
That is, a real number is represented by the equivalence classes of rational sequences
which converge to that number.

We define the p-adic numbers similarly. For any prime p ∈ Z, we can define the
p-adic valuation on Q by

νp

(a
b

)
= pordp b−ordp a,

where ordp x is the largest exponent e such that pe|x. It is easy to check that νp
is a metric, which gives us a natural notion of convergence. As above, we consider
the Cauchy sequences in Q,

Sp =
{
{x0, x1, · · · } ⊂ Q : lim

n→∞
sup
m>n

νp (xn − xm) = 0
}
,

and let x ∼p y if
lim
n→∞

νp (xn − yn) = 0.

Then, we define the p-adic numbers as the analytic completion of Q under this
metric;

Qp
def= Sp/ ∼p

Similar to the reals, Qp is an uncountable field which properly contains Q, in
which every Cauchy sequence converges to a limit in Qp with respect to the p-adic
valuation.

3. Definitions

Throughout this paper, E(K) is an elliptic curve over a field K; that is, a set of
points (x, y) ∈ K2 which satisfy the Weierstrass equation with coefficients ai ∈ K,

y2 + a1yx+ a3y = x3 + a2x
2 + a4x+ a6,

along with a formal “point at infinity”, O. Further, we will require that the curve
is nonsingular and the Weierstrass equation is minimal; these terms are defined
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Figure 1. Group law on y2 = x3 − 17x.

below. For brevity, we denote E = E(Q), and other fields will be noted explicitly.
Then, we define the b- and c-invariants and discriminant ∆ of an elliptic curve by

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2

3a2 − a2
4,

c4 = b22 − 24b4,
c6 = −b32 + 36b2b4 − 216b6,
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

If char(K) 6= 2, 3, the elements of E form an abelian group (E,+) with

+ : E(K)× E(K)→ E(K)

where P = (x1, y1), Q = (x2, y2),
(1) Inversion is defined by

−P = (x1,−y1 − a1x1 − a3)

(2) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0,, then

P +Q = O.

In particular, P − P = O, and P +O = P .
(3) Otherwise, let

λ =


y2 − y1
x2 − x1

if x1 6= x2,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if x1 = x2,

and

ν =


y1x2 − y2x1

x2 − x1
if x1 6= x2,

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
if x1 = x2.

Then,

P +Q = ((λ+ a1)λ− a2 − x1 − x2,−(λ+ a1)x3 − ν − a3) .
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Geometrically, one can view the point addition formula as letting

−(P +Q) = E ∩ PQ \ {P,Q} ,
where PQ is the infinite line through P and Q, or if P = Q, the tangent of E at
P . Similarly,

−P = E ∩ {x1, y : y ∈ K, y 6= y1} ,
which is roughly the point reflected about the x-axis. Examples of this can be seen
in figure 1. Note that any vertical line “intersects” the point at infinity, so O is the
natural choice as the identity element.

By the Mordell-Weil theorem, E is a finitely generated abelian group. Since E
is abelian, its torsion subgroup

Etor = {P ∈ E : 〈P 〉 ≈ Z/nZ, n <∞}
is normal, and E/Etor is also an abelian group. Moreover, since E is finitely
generated, its torsion subgroup is finite, and

E ≈ Zr × Etor.
Then, r is the algebraic rank of E.

3.1. Singularities. Let

F (x, y) = y2 + a1yx+ a3y − x3 − a2x
2 − a4x− a6,

so E(K) is precisely the solution set of F with an additional point O. Then, we
call a point (x, y) singular if

∂F

∂x
(x, y) =

∂F

∂y
(x, y) = 0,

that is, if
a1x+ a3 + 2y = a1y − 2a2x− 3x2 − a4 = 0.

If a point is not singular, we call it nonsingular. We compute the Taylor expansion
of F at a singular point P = (x0, y0),

F (x, y) = [(y − y0)− α(x− x0)][(y − y0)− β(x− x0)]− (x− x0)3(1)

where α, β ∈ K, and if (x, y) is a singular point, and call P a cusp if α = β, or a
node if α 6= β. See Figure 2 for a visual interpretation of this.

Similarly, if ∆ = 0, then we call E singular, otherwise E is nonsingular. This
precisely corresponds to the curve having a singular point – if c4 = 0, then E has
a cusp, and if c4 6= 0, then E has a node.

3.2. Minimal Weierstrass Equation and the Real Period. If we parametrize
a Weierstrass equation with coefficients in K via

x = u2x′ + r, y = u3y′ + su2x′ + t(2)

with u, r, s, t ∈ K, we obtain another Weierstrass equation for an elliptic curve E′,

y′2 + a1x
′y′ + a3y

′ = x′3 + a2x
′2 + a4x

′ + a6,

and from this, another discriminant ∆′. The parametrizations (2) are called per-
missible if the obtained coefficients aj are integral. Denote the family of elliptic
curves that can be obtained by permissible parametrizations by E and if p ∈ Z is
prime, define

κp(E) = min {ordp ∆(E′) : E′ ∈ E}
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Figure 2. Singular Curves

Then, a minimal Weierstrass equation is one such that

∆(E) =
∏
p

pκp(E)

Then, we define the real period of E,

ΩE =
∫
E(R)

dx

2y + a1x+ a3
,

where the coefficients aj are obtained from a minimal Weierstrass equation for E.

3.3. Reduction. In many problems involving itegers and rational numbers, it
makes sense to reduce the problem modulo various primes. In the setting of el-
liptic curves, if p is a prime, we define the curve reduced modulo p

E(Fp) =
{

(x, y) ∈ Fp : y2 + a1yx+ a3y ≡ x3 + a2x
2 + a4x+ a6, mod p

}
.

We say that the reduced curve has
(1) Good reduction if E(Fp) is non-singular; that is, ∆ 6≡ 0 mod p. Otherwise,

E has bad reduction at p. Bad reduction takes a few forms, which follow.
(2) Multiplicative reduction if E has a node, that is, if ∆ ≡ 0 and c4 6≡ 0 mod p.
(3) Additive reduction if E has a cusp, that is, if if ∆ ≡ c4 ≡ 0 mod p.

In the case that E has bad reduction at p, we say that the reduction is split if
α, β ∈ Fp as in (1) and non-split otherwise.

3.4. L-series. We define the L-series of an elliptic curve

L(E, s) =
∞∑
n=1

an
ns

where an is a multiplicative series with

ap = p+ 1−#E(Fp),
and

apm =
{
apapm−1 − papm−2 , if ∆ 6≡ 0 mod p,
(ap)m, if ∆ ≡ 0 mod p.
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It is highly nontrivial to prove that L has a holomorphic continuation to all of C –
that is, L has a complex-valued derivative in the entire complex plane. We define
the analytic rank of E by

ran = min
{
r ∈ Z≥0 : L(r)(E, 1) 6= 0

}
.

3.5. Tate-Shafarevich Group. An algebraic variety [3] is the solution set of a
polynomial equation

X = {x1, . . . , xk ∈ K : F (x1, . . . , xk) = 0}
where F ∈ K[x1, . . . , xk], where Q ⊆ K. Similarly, an algebraic curve is a one-
dimensional algebraic variety. Given any algebraic curve X, we define the genus of
X as the genus of the topological manifold

X(C) = {x1, . . . , xk ∈ C : F (x1, . . . , xk) = 0} .
Then, we let C1(K) denote the set of genus 1 curves X over K such that

X(Qp) 6= ∅ for all prime p ∈ Z.
Then, if X ∈ C1, we call a map

i : E ×X → X

a simply transitive group action if for all x, y ∈ X there is a unique e ∈ E such that

i(e, x) = y,

and for all e, f ∈ E and all x ∈ X,

i(f, i(e, x)) = i(f + e, x).

Then, we define

I(E,X) = {simply transitive group actions i : E ×X → X}
and

S = {(X, i) : X ∈ C1(C), i ∈ I(E,X)} .
Next, we define an equivalence relation (∼) by (X, i) ∼ (Y, j) when there exists a
bijection ϕ : X → Y such that for all e ∈ E,

ϕ(i(e, x)) = j(e, ϕ(x)).

Thus, we define
X = X(E/Q) = S/ ∼ .

For now, we shall treat this as a rather arbitrarily-defined set – a proper discussion
of X should, at the very least, explain why it is called the Tate-Shafarevich group.

3.6. Tamagawa Numbers. For a prime p ∈ Z, define

cp =
[
E(Qp) : E0(Qp)

]
where E0(Qp) is the subgroup of points in E(Qp) whose reduction modulo p is
nonsingular. One can prove that

(1) If E has good reduction at p then cp = 1.
(2) If E has additive reduction at p, then cp ≤ 4.
(3) If E has non-split multiplicative reduction at p, then

cp =
{

1 ordp ∆ is odd, and
2 otherwise.
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(4) Otherwise, E has split multiplicative reduction, and cp = ordp ∆.
In particular, note that cp = 1 for all but finitely many p ∈ Z, so∏

p

cp ∈ Z.

3.7. Regulator. For a point P = (x, y) ∈ E(Q), we define the näıve height of P ,

h(P ) = max {log |a|, log |b|}

where x = a
b is in reduced terms. Then, we define the Néron-Tate canonical height

ĥ(P ) = lim
n→∞

h(2nP )
4n

,

and the height pairing on E × E by

〈P,Q〉 =
1
2

(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
.

The height pairing is a bilinear form, that is,

〈P + P ′, Q〉 = 〈P,Q〉+ 〈P ′, Q〉 ,

and
〈P,Q+Q′〉 = 〈P,Q〉+ 〈P,Q′〉 ,

so
〈nP,Q〉 = 〈P, nQ〉 = n 〈P,Q〉 .

If P1, . . . , Pr generates E/Etor, then we define the height matrix to be an r × r
matrix,

H = (〈Pi, Pj〉) .
Then, we define the regulator of E by

Reg(E) = detH.

4. Holes

Section 3 introduces a large volume of material, with absolutely no proof in sight.
Here, we attempt to list a number of missing proofs, and reasonable questions
that one should ask upon seeing these definitions. Since proofs, and resolutions
to everything below exist, the reader should treat these as exercises. The author
certainly intends to.

4.1. Missing Proofs.
(1) E is a group.
(2) E is singular if and only if ∆ = 0, classification of singularities based on c4.
(3) Mordell’s theorem, or the more general Mordell-Weil theorem, that E is

finitely generated.
(4) L has a holomorphic continuation to all of C.
(5) X is a group.
(6) All claims made about Tamagawa numbers.
(7) E0(Qp) is a closed subgroup of E(Qp)
(8) The N’eron-Tate canonical height is finite.
(9) The height pairing 〈·, ·〉 is a bilinear form.
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4.2. Natural Questions.
(1) Is there a group law in characteristic 2 or 3?
(2) Is the regulator well-defined? From the definition, it is not obvious that

a minimal Weierstrass equation exists, and if one does, that it is the only
one.

(3) Is the Néron-Tate canonical height well-defined on E/Etor? It’s clear that
ĥ(P ) = 0 if P has finite order; but is ĥ(P +Q) = ĥ(Q) for all Q ∈ E, too?

(4) Is the regulator well-defined? At first glance, it looks like it could depend
heavily upon the choice of basis for E.

It is conjectured that X is a finite group. Incredibly, it is known that if X is
finite, its order is square.

5. The Birch and Swinnerton-Dyer Conjecture

Conjecture 5.1. Let E be an elliptic curve over Q of algebraic rank r. Then,
r = ord1 L(E, s), and

L(r)(E, 1)
r!

=
ΩE · Reg(E) ·#X ·

∏
p cp

#(Etor)2
.

Alternately, we can reformulate this into a statement about the Tate-Shafarevich
group, since it is by far the most mysterious object we’ve defined. That is, we define
the analytic order of X,

#Xan =
L(r)(E, 1) ·#(Etor)2

r! · ΩE · Reg(E) ·
∏
p cp

.

Of course, we expect a finite group to have an integral order – however, it is not
even clear that this is a rational number.
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