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Abstract

My paper explains how X0(p) has complex structure for p prime, via Exercise 3.1.4 in
Diamond and Shurman’s A First Course in Modular Forms. It illustrates how to compute
the orbits of the fundamental domain, the elliptic points, and the congruence classes on the
boundary arcs used to “glue” these arcs together into a torus of genus g. I then demonstrate
the process with p = 13.

1 Exercise 3.1.4 from Washington

I will begin with the proof of exercise 3.1.4 in Washington.
First the setup. As usual let p be a prime, i = eiπ/2, and µn = ei2π/n.

TakeH = {z ∈ C : Im(z) > 0}, H∗ = H∪(Q ∪ {∞}), X0(p) = Γ0(p)\H∗. Let α∞ =
(

1 −1
0 1

)
and αj =

(
1 0
j 1

)
for j = 0, 1, ..., p− 1.

To identify which “sides” of the orbits are “glued” together, it is necessary to examine elliptic
points and cusps.

Definition 1. Let Γ be a congruence subgroup of SL2(Z). For each point τ ∈ H let Γτ denote the
isotropy subgroup of τ , i.e. the subgroup of Γ which fixes τ ,

Γτ = {γ ∈ Γ : γ(τ) = τ}.

Definition 2. A point τ ∈ H is an elliptic point for Γ if Γτ is nontrival as a group of transforma-
tions.

Definition 3. The points Γτ ∈ Γ \ (Q ∪ {∞}) are the cusps of X(Γ).

Now on to the exercises.

Theorem 4 (3.1.4(a)). SL2(Z) = ∪jΓ0(p)αj, where ∪jΓ0(p)αj is a disjoint union.

Proof. First notice that ∪jΓ0(p)αj ⊂ SL2(Z). Next I show the other inclusion. For some γ ∈

SL2(Z), Let α∞ =
(

1 −1
0 1

)
say γ =

(
a b
c d

)
, if γ = ααj for some α ∈ Γ0(p), say α =(

e f
g h

)
, then f = b and h = d so e+ bj = a and g+ dj = c. Note that as α ∈ Γ0(p), p divides g.

So dj ≡ c (mod p). As p is prime, d is invertable modulo p. As j = 0, 1, 2, ..., p− 1, we have found
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a unique j ≡ cd−1 (mod p). Thus we have e = a− bj and so we have found a matrix α ∈ Γ0(p) so
that γ = ααj . So SL2(Z) ⊂ ∪jΓ0(p)αj and thus we have equality.

To show the disjoint union, notice that to prove equality the j found is uniquely defined. So no
γ can be in Γ0(p)αj and Γ0(p)αi for i 6= j.

Theorem 5 (3.1.4 (b)). X0(p) has exactly two cusps.

Proof. Suppose there is only one cusp. Specifically, suppose for some γ ∈ Γ0(p) that γ(∞) = 0. If

γ =
(
a b
c d

)
then 0 = γ(∞) = a

c . Thus a = 0. However ad − bc = 1 and p divides c. So we get

−bc = 1 and so p divides 1. As p > 1 this cannot occur. Thus X0(p) has at least two cusps.
To show X0(p) has only two cusps, I will show that for any s divisible by p, there exists γ so

that γ(∞) = r
s where r, s are coprime. Further if p does not divide s then there exists γ such that

γ(0) = r
s where r, s are coprime.

For the first, take a = r and c = s. Then γ(∞) = a
c = r

s .
For the second, take b = r and d = s. If p divides d then p divides ad − bc = 1. So p cannot

divide d thus cannot divide s.

Theorem 6 (3.1.4 (c)). γαj(i) = αj(i) for some γ ∈ Γ0(p) of order 4 if and only if j2 + 1 ≡ 0
(mod p). Thus the number of elliptic points of period 2 in X0(p) is 2 if p ≡ 1 (mod 4), 0 if p ≡ 3
(mod 4), and 1 if p = 2.

Before I prove this theorem, I need a lemma:

Lemma 7. The isotropy subgroups of i and µ3 are

SL2(Z)i = 〈
(

0 −1
1 0

)
〉

and

SL2(Z)µ3 = 〈
(

0 −1
1 1

)
〉.

In other words, the only matrices in SL2(Z) which fix i are those generated in a group generated

by
(

0 −1
1 0

)
and the only matrices in SL2(Z) which fix µ3 are those in a group generated by(

0 −1
1 1

)
.

Proof of 3.1.4.(c). First, γαj(i) = αj(i) if and only if α−1
j γαj(i) = i. Computing the matrix

α−1
j γαj =

(
bj + a b

−(bj − d)j − aj + c −bj + d

)
. However, by the previous lemma,

α−1
j γαj = ±

(
0 −1
1 0

)
.

Without loss of generality pick

α−1
j γαj =

(
0 −1
1 0

)
.
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Thus b = −1, a = −d = j, and c = j2 + 1. As γ ∈ Γ0(p), p|c. Thus j2 + 1 ≡ 0 (mod p).
Working backwards, if p|j2 + 1 we can construct a matrix γ ∈ Γ0(p),

γ =
(

j −1
j2 + 1 −j

)
which satisfies γαj(i) = αj(i). Thus the theorem holds.

Theorem 8 (3.1.4 (d)). γαj(µ3) = αj(µ3) for some γ ∈ Γ0(p) of order 6 if and only if j2−j+1 ≡ 0
(mod p). Thus the number of elliptic points of period 3 in X0(p) is the number of solutions of
x2 − x+ 1 ≡ 0 (mod p). This number is 2 if p ≡ 1 (mod 3), 0 if p ≡ 2 (mod 3), and 1 if p = 3.

Along with 3.1.4 (c), this shows that the number of elliptic points is determined by p (mod 12).
The following example of p = 13 is the smallest case where all four possible elliptic points exist.

Proof. First, γαj(µ3) = αj(µ3) if and only if α−1
j γαj(µ3) = µ3. As the matrix is α−1

j γαj =(
bj + a b

−(bj − d)j − aj + c −bj + d

)
and by the previous lemma,

α−1
j γαj =

(
0 −1
1 1

)
,

we have b = −1, d = 1− j, a = j, and c = j2 − j + 1. As p|c, j2 − j + 1 ≡ 0 (mod p).
Again, moving backwards we can take

γ =
(

j −1
j2 − j + 1 1− j

)
.

Then γ ∈ Γ0(p) and γαj(µ3) = αj(µ3).

Theorem 9 (3.1.4 (e)). Let g be the genus of X0(p) and let k = p+ 1. Show that

g =

{
b k12c − 1 if k ≡ 2(mod 12)
b k12c otherwise.

To prove this I need the following well known theorem:

Theorem 10. Let Γ be a congruence subgroup of SL2(Z). Let f : X(Γ) → X(1) be the natural
projection, and let d denote its degree. Let ε2 and ε3 denote the number of elliptic points of period
2 and 3 in X(Γ), and ε∞ the number of cusps of X(Γ). Then the genus of X(Γ) is

g = 1 +
d

12
− ε2

4
− ε3

3
− ε∞

2
.

Proof of 3.1.4 (e). First take p 6= 2, 3. If p ≡ 3, 9 (mod 12) then p ≡ 0 (mod p) so 3|p. Thus
p 6≡ 3, 9 (mod 12). The choices left are p ≡ 1, 5, 7, 11 (mod 12). Notice that the natural projection
X0(p) → X(1) has degree p + 1 and that from a prevoious exercise ε∞ = 2. Going through by
cases:

If p ≡ 1 (mod 12), k = 2 + 12n for some n ∈ N, p ≡ 1 (mod 4), and p ≡ 1 (mod 3). By the
previous exercises ε2 = 2 and ε3 = 2, so
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g = 1 +
p+ 1

12
− 2

4
− 2

3
− 2

2

=
12n− 12

12
= n− 1

= b k
12
c − 1.

If p ≡ 5 (mod 12), k = 6 + 12n for some n, p ≡ 1 (mod 4), and p ≡ 2 (mod 3). So

g = 1 +
p+ 1

12
− 2

4
− 0

3
− 2

2

=
12n+ 6− 6

12

= b k
12
c.

Similarly the cases p ≡ 7, 11 (mod 12) hold.
If p = 2, ε2 = 1 and ε3 = 0. Thus

g =
3
12
− 1

4
= 0

= b 3
12
c.

If p = 3, ε2 = 0 and ε3 = 1. So

g =
4
12
− 1

3
= 0

= b 4
12
c.

Thus all the cases are covered and we have for all p prime

g =

{
b k12c − 1 if k ≡ 2(mod 12)
b k12c otherwise.

The rest of this exercise (3.1.4 (f)) focuses on using the previous exercises to construct the
orbits of Γ0(p) for a few primes p, and further to show how the edges glue together to create the
associated tori with g holes.
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2 Example p = 13

Take αi =
(

0 −1
1 0

)
and βj = αjαi for j = −6, ..., 6 and β∞ =

(
1 −1
0 1

)
α∞αi. Additionally

let D be the fundamental domain, i.e. D = {z ∈ C : −1
2 ≤ Re(z)1

2 and |z| ≥ 1}.

I will show that the coset representatives {βj} and β∞ generate the orbits of Γ0(13). The code
which generates these images (βj(D) for j = −6, ..., 6) can be found at the end of the paper.

Showing the coset representatives {βj} for j = −6, ..., 6 generate the orbits of Γ0(13) amounts
to finding what the region D is mapped to via each linear fractional transformation βj . As each βj
is an linear fractional transformation, it maps circles to circles (where a line is just a circle through
infinity) and discs to discs. So it is enough to check where each βj sends the arcs {z = x+ iy : x =
1/2,
√

3/2 ≤ y}, {z = x + iy : x = −1/2,
√

3/2 ≤ y}, and {z = eiθ : π/3 ≤ θ ≤ 2π/3}. We have
βj(z) = −1

z−j , so

βj(±
1
2

+ iy) =
(j ∓ 1/2) + iy

(j ∓ 1/2)2 + y2

for 0 ≤ y ≤ ∞. The unit circle is mapped to

βj(eiθ) =
j − cos(θ) + i sin(θ)
(cos(θ)− j)2 + sin2 θ

.

By examining these for individual j’s, j = −6, ..., 6, we can compute the end points of the curves.
These are βj(±1/2 + i

√
3/2) and βj(∞) = 0 (for j = −6, ..., 6). From this we see we get the desired

orbits. Additionally, this shows the 13 points of SL2(Z)(i) are βj(i) for j = −6, ..., 6, and the 14
points of SL2(Z)(µ3) = SL2(Z)(µ6) are βj(µ6) for j = −6, ..., 7. In the following image, the blue
points are the βj(i) and the red points are the βj(µ6). Attached is the sage code which graphs
these orbits for given j and the points βj(i) and βj(µ6).
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Now that we have the orbits, we will examine the elliptic points and cusps so that we can glue
the orbits together.

We have seen that the map αi fixes i, thus from 3.1.4 (c) the elliptic points of order 2 in Γ0(13)
are βj(i) when j2 + 1 ≡ 0 (mod 13), so when j = 5, 8. Thus the elliptic points of order 2 are i+5

26
and i+8

65 .

Lemma 11. γβj(i) = βj′(i) for some γ ∈ Γ0(p) of order 4 if and only if jj′ + 1 ≡ 0 (mod p).

This lemma will be used to partition the 13 points of SL2(Z)(i) into eight equivalence classes
under Γ0(13); five with two points each where the angle is π, giving a total of 2π; one with a point
where the angle is 2π; and two with one point where the angle is π as it is at i in D, representing
the unramified points.

Proof of Lemma. Noticing that γβj(i) = βj′(i) if and only if β−1
j′ γβj(i) = i, we again have β−1

j′ γβj =
αi. The rest of the proof follows identically to 3.1.4 (c).
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Now to partition the 13 points of SL2(Z)(i), we see that the pairs {j, j′} so that jj′ + 1 ≡ 0
(mod 13) are {1,−1)}, {2, 6}, {3, 4}, {−2,−6}, {−4,−3}, {5}, {−5} giving 7 equivalence classes and
that leave 0 in its separate equivalence class {0}. Thus we can identify the boundary arcs pairwise,
i.e. for j and j′, j 6= j′ so that jj′ + 1 ≡ 0 (mod 13), except for the two arcs that fold in on
themselves j2 + 1 ≡ 0 (mod 13).

Now moving on to elliptic points of order 3, note that SL2(Z)(µ3) = SL2(Z)(µ6). Since αi
takes µ6 to µ3, the ellitpic points of order 3 are βj(µ6) when j2 − j + 1 ≡ 0 (mod 13). We have
j2 − j + 1 ≡ 0 (mod 13) when j = 4, 10. So the elliptic points of order 3 are

β4(µ6) = (1266)3i+ 23266
(

1
266

) √
3i+

23
266

and

β10(µ+ 6) = (1266I)3 + 23266
(

1
266

I

) √
3 +

23
266

.

Lemma 12. γβj(µ6) = βj′(µ6) for some γ ∈ Γ0(p) of order 3 or 6 if and only if j2 − j + 1 ≡ 0
(mod 13) or jj′ − j′ + 1 ≡ 0 (mod p).

Proof. This proof follows exactly as the similar proofs before.

Using this to partition the 14 points of SL2(Z)(µ3) in the figure into six equivalence classes
under Γ0(13), we get one equivalence class {−6,−1, 2, 7} with the four points where two of the
angles are 2π/3 and two of the angles are π/3, giving a total of 2π; two with three points where
the angle is 2π/3, {−2,−4,−5} and {3, 5, 6}, again giving 2π; one with the two pints where the
angle is π, {0, 1} giving 2π; and two classes with one point each, {−3} and {4}, where the angle is
2π/3 as it is at µ3 in D, representing the unrammified points.

From the information we have gathered we can now determine how to glue the edges together to
create a sphere (as g = 0 we know this will be a sphere). The boundary arcs with elliptic points of
order 2 fold together at the elliptic point. Similarly the boundary arcs joined at an elliptic point of
order 3 fold together at those elliptic points. This is because the elliptic points there is a γ ∈ Γ0(13)
such that they are fixed, i.e. they get sent to themselves. This is exactly what has happened to
the βj(i) or βj(µ6) when we see that for j so that they are in their own equivalence class (under
either jj′ + 1 or jj′ − j′ + 1 ≡ 0 (mod 13) respectively).

Using the other equivalence relations we find how to glue the rest of the boundary arcs. We
then identify the two remaining curved boundary arcs in the left half which don’t include the cusp
0 with each other and similarly we identify the equivalent boundary arcs in the right half. Via the
linear fractional transformation which sends z 7→ z + 1 the vertical segments of the left identify
with the vertical segments of the right. The two remaining boundary arcs are thus identified with
eachother as well. Via this gluing we arrive at a sphere.

This same process of finding the elliptic points of order 2 and 3, using the coset represenatatives
of βj for j = −(p − 1), ..., p − 1, and then computing the two sets of cosets, can be used to find
the orbits of Γ0(p) for any p prime and to further find how to glue the edges to gether to get a
g-holed torus. The code for the primes p = 11 and p = 17, to show X0(p) is a torus in these cases,
is attached.

To see the orbits of the fundamental domain computed for general N ∈ N see H. A. Verrill’s
webpage: http://www.math.lsu.edu/ verrill/ One quick note on the choice of orbits, they are non-
cannonical. How Verrill computes the orbits gives a different map for some of the orbits. Her aim
is to compute each orbit so that is has as large an area as possible. Here is her Γ0(13).
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