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Preface

This is a textbook about prime numbers, congruences, basic public-key
cryptography, quadratic reciprocity, continued fractions, elliptic curves, and
number theory algorithms. We will mention groups, rings, and �elds in
passing at various places in this book, but much of the book should be
comprehensible without a course in algebra. This book grew out of an
undergraduate course that the author taught at Harvard University in 2001
and 2002, at UC San Diego in 2005, and at University of Washington in
2007.

Notation and Conventions. We let N = f 1; 2; 3; : : :g denote the natural
numbers, and use the standard notationZ, Q, R , and C for the rings of
integer, rational, real, and complex numbers, respectively. In this book we
will use the words proposition, theorem, lemma, and corollary as follows.
Usually a proposition is a less important or less fundamental assertion, a
theorem a deeper culmination of ideas, a lemma something that we will
use later in this book to prove a proposition or theorem, and a corollary
an easy consequence of a proposition, theorem, or lemma.

Acknowledgements. Brian Conrad and Ken Ribet made a large number
of clarifying comments and suggestions throughout the book. Baurzhan
Bektemirov, Lawrence Cabusora, and Keith Conrad read drafts of this book
and made many comments. Frank Calegari used the course when teaching
Math 124 at Harvard, and he and his students provided much feedback.
Noam Elkies made comments and suggested Exercise 4.6. Seth Kleinerman
wrote a version of Section 5.3 as a class project. Samit Dasgupta, George
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Stephanides, Kevin Stern, Ting-You Wang, and Heidi Williams all sug-
gested corrections. I also bene�ted from conversations with Henry Cohn
and David Savitt. I used SAGE, emacs, and LATEX in the preparation of
this book.

Numerous mistakes and typos corrected by: Arthur Patterson, Eve Thomp-
son
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1
Prime Numbers

In Section 1.1 we describe how the integers are built out of the prime
numbers 2; 3; 5; 7; 11; : : :. In Section 1.2 we discuss theorems about the set
of primes numbers, starting with Euclid's proof that this set is in�nite,
then explore the distribution of primes via the prime number theorem and
the Riemann Hypothesis (without proofs).

1.1 Prime Factorization

1.1.1 Primes

The set of natural numbers is

N = f 1; 2; 3; 4; : : :g;

and the set of integers is

Z = f : : : ; � 2; � 1; 0; 1; 2; : : :g:

De�nition 1.1.1 (Divides). If a; b 2 Z we say that a divides b, written
a j b, if ac = b for somec 2 Z. In this case we saya is a divisor of b. We say
that a does not divideb, written a - b, if there is no c 2 Z such that ac = b.

For example, we have 2j 6 and � 3 j 15. Also, all integers divide 0, and 0
divides only 0. However, 3 does not divide 7 inZ.

Remark 1.1.2. The notation b
:
: a for \ b is divisible by a" is common in

Russian literature on number theory.
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De�nition 1.1.3 (Prime and Composite). An integer n > 1 is prime if it
the only positive divisors of n are 1 andn. We call n compositeif n is not
prime.

The number 1 is neither prime nor composite. The �rst few primes ofN
are

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71; 73; 79; : : : ;

and the �rst few composites are

4; 6; 8; 9; 10; 12; 14; 15; 16; 18; 20; 21; 22; 24; 25; 26; 27; 28; 30; 32; 33; 34; : : : :

Remark 1.1.4. J. H. Conway argues in [Con97, viii] that � 1 should be
considered a prime, and in the 1914 table [Leh14], Lehmer considers 1 to
be a prime. In this book we consider neither� 1 nor 1 to be prime.

SAGE Example 1.1.5. In SAGE we compute all prime numbers betweena
and b� 1, inclusive, using the commandprime range(a,b) :

sage: prime_range(10,50)
[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Computing the composites in an interval is a little more complicated:

sage: [n for n in range(10,30) if not is_prime(n)]
[10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28]

Every natural number is built, in a unique way, out of prime numbers:

Theorem 1.1.6 (Fundamental Theorem of Arithmetic) . Every natural
number can be written as a product of primes uniquely up to order.

Note that primes are the products with only one factor and 1 is the
empty product.

Remark 1.1.7. Theorem 1.1.6, which we will prove in Section 1.1.4, is trick-
ier to prove than you might �rst think. For example, unique factorization
fails in the ring

Z[
p

� 5] = f a + b
p

� 5 : a; b2 Zg � C;

where 6 factors in two di�erent ways:

6 = 2 � 3 = (1 +
p

� 5) � (1 �
p

� 5):

1.1.2 The Greatest Common Divisor

We will use the notion of greatest common divisor of two integers to prove
that if p is a prime and p j ab, then p j a or p j b. Proving this is the key
step in our proof of Theorem 1.1.6.
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De�nition 1.1.8 (Greatest Common Divisor). Let

gcd(a; b) = max f d 2 Z : d j a and d j bg;

unless botha and b are 0 in which case gcd(0; 0) = 0.

For example, gcd(1; 2) = 1, gcd(6; 27) = 3, and for any a, gcd(0; a) =
gcd(a;0) = a.

If a 6= 0, the greatest common divisor exists because ifd j a then d � a,
and there are only a positive integers � a. Similarly, the gcd exists when
b 6= 0.

Lemma 1.1.9. For any integers a and b we have

gcd(a; b) = gcd( b; a) = gcd( � a; � b) = gcd( a; b� a) = gcd( a; b+ a):

Proof. We only prove that gcd(a; b) = gcd( a; b� a), since the other cases
are proved in a similar way. Supposed j a and d j b, so there exist integers
c1 and c2 such that dc1 = a and dc2 = b. Then b� a = dc2 � dc1 = d(c2 � c1),
so d j b� a. Thus gcd(a; b) � gcd(a; b� a), since the set over which we are
taking the max for gcd(a; b) is a subset of the set for gcd(a; b � a). The
same argument with a replaced by � a and b replaced byb� a, shows that
gcd(a; b� a) = gcd( � a; b� a) � gcd(� a; b) = gcd( a; b), which proves that
gcd(a; b) = gcd( a; b� a).

Lemma 1.1.10. Supposea; b; n 2 Z. Then gcd(a; b) = gcd( a; b� an).

Proof. By repeated application of Lemma 1.1.9, we have

gcd(a; b) = gcd( a; b� a) = gcd( a; b� 2a) = � � � = gcd(a; b� an):

Assume for the moment that we have already proved Theorem 1.1.6.
A natural (and naive!) way to compute gcd(a; b) is to factor a and b as
a product of primes using Theorem 1.1.6; then the prime factorization of
gcd(a; b) can read o� from that of a and b. For example, if a = 2261 and
b = 1275, then a = 7 � 17 � 19 and b = 3 � 52 � 17, so gcd(a; b) = 17. It turns
out that the greatest common divisor of two integers, even huge numbers
(millions of digits), is surprisingly easy to compute using Algorithm 1.1.13
below, which computes gcd(a; b) without factoring a or b.

To motivate Algorithm 1.1.13, we compute gcd(2261; 1275) in a di�erent
way. First, we recall a helpful fact.

Proposition 1.1.11. Suppose thata and b are integers with b 6= 0 . Then
there exists unique integersq and r such that 0 � r < jbj and a = bq+ r .
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Proof. For simplicity, assume that both a and b are positive (we leave the
general case to the reader). LetQ be the set of all nonnegative integersn
such that a � bn is nonnegative. ThenQ is nonempty because 02 Q and Q
is bounded becausea � bn < 0 for all n > a=b. Let q be the largest element
of Q. Then r = a � bq < b, otherwise q + 1 would also be in Q. Thus q
and r satisfy the existence conclusion.

To prove uniqueness, suppose for the sake of contradiction thatq0 and
r 0 = a � bq0 also satisfy the conclusion but that q0 6= q. Then q0 2 Q since
r 0 = a � bq0 � 0, so q0 < q and we can write q0 = q � m for somem > 0.
But then r 0 = a � bq0 = a � b(q � m) = a � bq+ bm = r + bm > b since
r � 0, a contradiction.

For us an algorithm is a �nite sequence of instructions that can be fol-
lowed to perform a speci�c task, such as a sequence of instructions in a
computer program, which must terminate on any valid input. The word \al-
gorithm" is sometimes used more loosely (and sometimes more precisely)
than de�ned here, but this de�nition will su�ce for us.

Algorithm 1.1.12 (Division Algorithm) . Supposea andb are integers with
b 6= 0 . This algorithm computes integersq and r such that 0 � r < jbj and
a = bq+ r . We will not describe the actual steps of this algorithm, since it is
just the familiar long division algorithm.

We use the division algorithm repeatedly to compute gcd(2261; 1275).
Dividing 2261 by 1275 we �nd that

2261 = 1 � 1275 + 986;

so q = 1 and r = 986. Notice that if a natural number d divides both 2261
and 1275, thend divides their di�erence 986 and d still divides 1275. On
the other hand, if d divides both 1275 and 986, then it has to divide their
sum 2261 as well! We have made progress:

gcd(2261; 1275) = gcd(1275; 986):

This equality also follows by repeated application of Lemma 1.1.9. Repeat-
ing, we have

1275 = 1 � 986 + 289;

so gcd(1275; 986) = gcd(986; 289). Keep going:

986 = 3 � 289 + 119

289 = 2 � 119 + 51

119 = 2 � 51 + 17:

Thus gcd(2261; 1275) = � � � = gcd(51; 17), which is 17 because 17j 51. Thus

gcd(2261; 1275) = 17:



1.1 Prime Factorization 9

Aside from some tedious arithmetic, that computation was systematic, and
it was not necessary to factor any integers (which is something we do not
know how to do quickly if the numbers involved have hundreds of digits).

Algorithm 1.1.13 (Greatest Common Division). Given integersa; b, this
algorithm computesgcd(a; b).

1. [Assumea > b � 0] We havegcd(a; b) = gcd( jaj; jbj) = gcd( jbj; jaj),
so we may replacea and b by their absolute value and hence assume
a; b � 0. If a = b output a and terminate. Swapping if necessary we
assumea > b.

2. [Quotient and Remainder] Using Algorithm 1.1.12, writea = bq+ r , with
0 � r < b and q 2 Z.

3. [Finished?] Ifr = 0 then b j a, so we outputb and terminate.

4. [Shift and Repeat] Seta  b and b  r , then go to step 2.

Proof. Lemmas 1.1.9{1.1.10 imply that gcd(a; b) = gcd( b; r) so the gcd
does not change in step 4. Since the remainders form a decreasing sequence
of nonnegative integers, the algorithm terminates.

Example 1.1.14. Set a = 15 and b = 6.

15 = 6 � 2 + 3 gcd(15; 6) = gcd(6; 3)

6 = 3 � 2 + 0 gcd(6; 3) = gcd(3; 0) = 3

Note that we can just as easily do an example that is ten times as big, an
observation that will be important in the proof of Theorem 1.1.19 below.

Example 1.1.15. Set a = 150 and b = 60.

150 = 60 � 2 + 30 gcd(150; 60) = gcd(60; 30)

60 = 30 � 2 + 0 gcd(60; 30) = gcd(30; 0) = 30

SAGE Example1.1.16. SAGE uses the commandgcd to compute the great-
est common divisor of two integers. For example,

sage: gcd(97,100)
1
sage: gcd(97 * 10^15, 19^20 * 97^2)
97

Lemma 1.1.17. For any integers a; b; n, we have

gcd(an; bn) = gcd( a; b) � n:

Proof. The idea is to follow Example 1.1.15; we step through Euclid's al-
gorithm for gcd(an; bn) and note that at every step the equation is the
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equation from Euclid's algorithm for gcd(a; b) but multiplied through by n.
For simplicity, assume that both a and b are positive. We will prove the
lemma by induction on a + b. The statement is true in the base case when
a + b = 2, since then a = b = 1. Now assumea; b are arbitrary with a � b.
Let q and r be such that a = bq+ r and 0 � r < b . Then by Lemmas 1.1.9{
1.1.10, we have gcd(a; b) = gcd( b; r). Multiplying a = bq+ r by n we see
that an = bnq+ rn , so gcd(an; bn) = gcd( bn; rn). Then

b+ r = b+ ( a � bq) = a � b(q � 1) � a < a + b;

so by induction gcd(bn; rn) = gcd( b; r) � n. Since gcd(a; b) = gcd( b; r), this
proves the lemma.

Lemma 1.1.18. Supposea; b; n 2 Z are such that n j a and n j b. Then
n j gcd(a; b).

Proof. Sincen j a and n j b, there are integersc1 and c2, such that a = nc1

and b = nc2. By Lemma 1.1.17, gcd(a; b) = gcd( nc1; nc2) = n gcd(c1; c2),
so n divides gcd(a; b).

At this point it would be natural to formally analyze the complexity of
Algorithm 1.1.13. We will not do this, because the main reason we intro-
duced Algorithm 1.1.13 is that it will allow us to prove Theorem 1.1.6,
and we have not chosen to formally analyze the complexity of the other
algorithms in this book. For an extensive analysis of the complexity of
Algorithm 1.1.13, see [Knu98,x4.5.3].

With Algorithm 1.1.13, we can prove that if a prime divides the product
of two numbers, then it has got to divide one of them. This result is the
key to proving that prime factorization is unique.

Theorem 1.1.19 (Euclid) . Let p be a prime anda; b 2 N . If p j ab then
p j a or p j b.

You might think this theorem is \intuitively obvious", but that might be
because the fundamental theorem of arithmetic (Theorem 1.1.6) is deeply
ingrained in your intuition. Yet Theorem 1.1.19 will be needed in our proof
of the fundamental theorem of arithmetic.

Proof of Theorem 1.1.19. If p j a we are done. Ifp - a then gcd(p; a) = 1,
since only 1 andp divide p. By Lemma 1.1.17, gcd(pb; ab) = b. Sincep j pb
and, by hypothesis,p j ab, it follows from Lemma 1.1.17 that

p j gcd(pb; ab) = bgcd(p; a) = b� 1 = b:
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1.1.3 Numbers Factor as Products of Primes

In this section, we prove that every natural number factors as a product
of primes. Then we discuss the di�culty of �nding such a decomposition
in practice. We will wait until Section 1.1.4 to prove that factorization i s
unique.

As a �rst example, let n = 1275. The sum of the digits of n is divisible
by 3, son is divisible by 3 (see Proposition 2.1.8), and we haven = 3 � 425.
The number 425 is divisible by 5, since its last digit is 5, and we have
1275 = 3 � 5 � 85. Again, dividing 85 by 5, we have 1275 = 3� 52 � 17,
which is the prime factorization of 1275. Generalizing this process proves
the following proposition:

Proposition 1.1.20. Every natural number is a product of primes.

Proof. Let n be a natural number. If n = 1, then n is the empty product
of primes. If n is prime, we are done. Ifn is composite, thenn = ab with
a; b < n. By induction, a and bare products of primes, son is also a product
of primes.

Two questions immediately arise: (1) is this factorization unique, and
(2) how quickly can we �nd such a factorization? Addressing (1), what if
we had done something di�erently when breaking apart 1275 as a product
of primes? Could the primes that show up be di�erent? Let's try: we have
1275 = 5� 255. Now 255 = 5� 51 and 51 = 17� 3, and again the factorization
is the same, as asserted by Theorem 1.1.6 above. We will prove uniqueness
of the prime factorization of any integer in Section 1.1.4.

SAGE Example 1.1.21. The command factor in SAGE factors an integer
as a product of primes with multiplicities. For example,

sage: factor(1275)
3 * 5^2 * 17
sage: factor(2007)
3^2 * 223
sage: factor(31415926535898)
2 * 3 * 53 * 73 * 2531 * 534697

Regarding (2), there are algorithms for integer factorization. It is a major
open problem to decide how fast integer factorization algorithms can be. We
say that an algorithm to factor n is polynomial time if there is a polynomial
f (x) such that for any n the number of steps needed by the algorithm to
factor n is less than f (log10(n)). Note that log 10(n) is an approximation
for the number of digits of the input n to the algorithm.

Open Problem 1.1.22. Is there an algorithm which can factor any inte-
ger n in polynomial time?
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Peter Shor [Sho97] devised a polynomial time algorithm for factoring
integers on quantum computers. We will not discuss his algorithm further,
except to note that in 2001 IBM researchers built a quantum computer
that used Shor's algorithm to factor 15 (see [LMG+ 01, IBM01]). Building
much larger quantum computers appears to be extremely di�cult.

You can earn money by factoring certain large integers. Many cryptosys-
tems would be easily broken if factoring certain large integers were easy.
Since nobody has proven that factoring integers is di�cult, one way to in-
crease con�dence that factoring is di�cult is to o�er cash prizes for factor-
ing certain integers. For example, until recently there was a $10000 bounty
on factoring the following 174-digit integer (see [RSA]):

1881988129206079638386972394616504398071635633794173827007
6335642298885971523466548531906060650474304531738801130339
6716199692321205734031879550656996221305168759307650257059

This number is known as RSA-576 since it has 576 digits when written in
binary (see Section 2.3.2 for more on binary numbers). It was factored at the
German Federal Agency for Information Technology Security in December
2003 (see [Wei03]):

398075086424064937397125500550386491199064362342526708406
385189575946388957261768583317

�
472772146107435302536223071973048224632914695302097116459
852171130520711256363590397527

The previous RSA challenge was the 155-digit number

1094173864157052742180970732204035761200373294544920599091
3842131476349984288934784717997257891267332497625752899781
833797076537244027146743531593354333897:

It was factored on 22 August 1999 by a group of sixteen researchers in four
months on a cluster of 292 computers (see [ACD+ 99]). They found that
RSA-155 is the product of the following two 78-digit primes:

p = 10263959282974110577205419657399167590071656780803806

6803341933521790711307779

q = 10660348838016845482092722036001287867920795857598929

1522270608237193062808643:

The next RSA challenge is RSA-640:

31074182404900437213507500358885679300373460228427275457201619
48823206440518081504556346829671723286782437916272838033415471
07310850191954852900733772482278352574238645401469173660247765
2346609;
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and its factorization was worth $20000 until November 2005 when it was
factored by F. Bahr, M. Boehm, J. Franke, and T. Kleinjun. This factor-
ization took 5 months. Here is one of the prime factors (you can �nd the
other):

16347336458092538484431338838650908598417836700330923121811108
52389333100104508151212118167511579:

(This team also factored a 663-bit RSA challenge integer.)
The smallest currently open challenge is RSA-704, worth $30000:

74037563479561712828046796097429573142593188889231289084936232
63897276503402826627689199641962511784399589433050212758537011
89680982867331732731089309005525051168770632990723963807867100
86096962537934650563796359

SAGE Example 1.1.23. Using SAGE we see that the above number has
212 decimal digits and is de�nitely composite:

sage: n = 74037563479561712828046796097429573142593188889231289084936232638972765034028266276891996419625117843995894330502127585370118968098286
sage: len(n.str(2))
704
sage: len(n.str(10))
212
sage: n.is_prime() # this is instant
False

These RSA numbers were factored using an algorithm called the number
�eld sieve (see [LL93]), which is the best-known general purpose factoriza-
tion algorithm. A description of how the number �eld sieve works is beyond
the scope of this book. However, the number �eld sieve makes extensive use
of the elliptic curve factorization method, which we will describe in Sec-
tion 6.3.

1.1.4 The Fundamental Theorem of Arithmetic

We are ready to prove Theorem 1.1.6 using the following idea. Suppose
we have two factorizations ofn. Using Theorem 1.1.19 we cancel common
primes from each factorization, one prime at a time. At the end, we dis-
cover that the factorizations must consist of exactly the same primes. The
technical details are given below.

Proof. If n = 1, then the only factorization is the empty product of primes,
so supposen > 1.

By Proposition 1.1.20, there exist primesp1; : : : ; pd such that

n = p1p2 � � � pd:
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Suppose that
n = q1q2 � � � qm

is another expression ofn as a product of primes. Since

p1 j n = q1(q2 � � � qm );

Euclid's theorem implies that p1 = q1 or p1 j q2 � � � qm . By induction, we
see that p1 = qi for somei .

Now cancel p1 and qi , and repeat the above argument. Eventually, we
�nd that, up to order, the two factorizations are the same.

1.2 The Sequence of Prime Numbers

This section is concerned with three questions:

1. Are there in�nitely many primes?

2. Given a; b2 Z, are there in�nitely many primes of the form ax + b?

3. How are the primes spaced along the number line?

We �rst show that there are in�nitely many primes, then state Dirichlet's
theorem that if gcd(a; b) = 1, then ax + b is a prime for in�nitely many
values ofx. Finally, we discuss the Prime Number Theorem which asserts
that there are asymptotically x= log(x) primes less thanx, and we make a
connection between this asymptotic formula and the Riemann Hypothesis.

1.2.1 There Are In�nitely Many Primes

Each number on the left in the following table is prime. We will see soon
that this pattern does not continue inde�nitely, but something similar
works.

3 = 2 + 1

7 = 2 � 3 + 1

31 = 2 � 3 � 5 + 1

211 = 2 � 3 � 5 � 7 + 1

2311 = 2 � 3 � 5 � 7 � 11 + 1

Theorem 1.2.1 (Euclid) . There are in�nitely many primes.

Proof. Suppose that p1; p2; : : : ; pn are n distinct primes. We construct a
prime pn +1 not equal to any of p1; : : : ; pn as follows. If

N = p1p2p3 � � � pn + 1 ; (1.2.1)
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then by Proposition 1.1.20 there is a factorization

N = q1q2 � � � qm

with each qi prime and m � 1. If q1 = pi for somei , then pi j N . Because
of (1.2.1), we also havepi j N � 1, so pi j 1 = N � (N � 1), which is a
contradiction. Thus the prime pn +1 = q1 is not in the list p1; : : : ; pn , and
we have constructed our new prime.

For example,

2 � 3 � 5 � 7 � 11� 13 + 1 = 30031 = 59 � 509:

Multiplying together the �rst 6 primes and adding 1 doesn't produce a
prime, but it produces an integer that is merely divisible by a new prime.

Joke 1.2.2 (Hendrik Lenstra) . There are in�nitely many composite num-
bers. Proof. To obtain a new composite number, multiply together the
�rst n composite numbers and don't add 1.

1.2.2 Enumerating Primes

The Sieve of Eratosthenes is an e�cient way to enumerate all primes up
to n. The sieve works by �rst writing down all numbers up to n, noting
that 2 is prime, and crossing o� all multiples of 2. Next, note that the �rst
number not crossed o� is 3, which is prime, and cross o� all multiples of 3,
etc. Repeating this process, we obtain a list of the primes up ton. Formally,
the algorithm is as follows:

Algorithm 1.2.3 (Sieve of Eratosthenes). Given a positive integern, this
algorithm computes a list of the primes up ton.

1. [Initialize] Let X = [3 ; 5; : : :] be the list of all odd integers between3
and n. Let P = [2] be the list of primes found so far.

2. [Finished?] Letp be the �rst element ofX . If p �
p

n, append each
element ofX to P and terminate. Otherwise appendp to P.

3. [Cross O�] Set X equal to the sublist of elements inX that are not
divisible byp. Go to step 2.

For example, to list the primes � 40 using the sieve, we proceed as
follows. First P = [2] and

X = [3 ; 5; 7; 11; 13; 15; 17; 19; 21; 23; 25; 27; 29; 31; 33; 35; 37; 39]:

We append 3 toP and cross o� all multiples of 3 to obtain the new list

X = [5 ; 7; 11; 13; 17; 19; 23; 25; 29; 31; 35; 37]:
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Next we append 5 toP, obtaining P = [2 ; 3; 5], and cross o� the multiples
of 5, to obtain X = [7 ; 11; 13; 17; 19; 23; 29; 31; 37]: Because 72 � 40, we
append X to P and �nd that the primes less than 40 are

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37:

Proof of Algorithm 1.2.3. The part of the algorithm that is not clear is
that when the �rst element a of X satis�es a �

p
n, then each element of

X is prime. To see this, supposem is in X , so
p

n � m � n and that m is
divisible by no prime that is �

p
n. Write m =

Q
pei

i with the pi distinct
primes ordered so thatp1 < p 2 < : : : . If pi >

p
n for each i and there is

more than onepi , then m > n , a contradiction. Thus some pi is less thanp
n, which also contradicts our assumptions onm.

SAGE Example 1.2.4. The eratosthenes command implements the sieve
in SAGE:

sage: eratosthenes(50)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

1.2.3 The Largest Known Prime

Though Theorem 1.2.1 implies that there are in�nitely many primes, it still
makes sense to ask the question \What is the largestknown prime?"

A Mersenne prime is a prime of the form 2q � 1. According to [Cal] the
largest known prime as of March 2007 is the 44th Mersenne prime

p = 2 32582657 � 1;

which has 9,808,358 decimal digits. The Electronic Frontier Foundation
has o�ered a $100,000 prize to the �rst person who �nds a 10,000,000 digit
prime.

Euclid's theorem implies that there de�nitely are in�nitely many primes
bigger than p. Deciding whether or not a number is prime is interesting, as
a theoretical problem, and as a problem with applications to cryptography,
as we will see in Section 2.4 and Chapter 3.

SAGE Example 1.2.5. We can compute the decimal expansion ofp in
SAGE, though watch out as this is a serious computation that may take
around a minute on your computer. Also, do not print out p or s below,
because both would take a very long time to scroll by.

sage: p = 2^32582657 - 1 # this is easy
sage: s = p.str(10) # this takes a long time (about a minute)
sage: len(s) # s is a very long string (long time)
9808358
sage: s[:20] # the first 20 digits of p (long time)
'12457502601536945540'
sage: s[-20:] # the last 20 digits (long time)
'11752880154053967871'
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1.2.4 Primes of the Formax + b

Next we turn to primes of the form ax + b, wherea and b are �xed integers
with a > 1 and x varies over the natural numbers N . We assume that
gcd(a; b) = 1, because otherwise there is no hope thatax + b is prime
in�nitely often. For example, 2 x + 2 = 2( x + 1) is only prime if x = 0, and
is not prime for any x 2 N .

Proposition 1.2.6. There are in�nitely many primes of the form 4x � 1.

Why might this be true? We list numbers of the form 4x� 1 and underline
those that are prime:

3; 7; 11; 15; 19; 23; 27; 31; 35; 39; 43; 47; : : :

Not only is it plausible that underlined numbers will continue to appear
inde�nitely, it is something we can easily prove:

Proof. Supposep1; p2; : : : ; pn are distinct primes of the form 4x � 1. Con-
sider the number

N = 4p1p2 � � � pn � 1:

Then pi - N for any i . Moreover, not every prime p j N is of the form
4x + 1; if they all were, then N would be of the form 4x + 1. Thus there is
a p j N that is of the form 4x � 1. Sincep 6= pi for any i , we have found a
new prime of the form 4x � 1. We can repeat this process inde�nitely, so
the set of primes of the form 4x � 1 cannot be �nite.

Note that this proof does not work if 4x � 1 is replaced by 4x + 1, since
a product of primes of the form 4x � 1 can be of the form 4x + 1.

Example 1.2.7. Set p1 = 3, p2 = 7. Then

N = 4 � 3 � 7 � 1 = 83

is a prime of the form 4x � 1. Next

N = 4 � 3 � 7 � 83� 1 = 6971;

which is again a prime of the form 4x � 1. Again:

N = 4 � 3 � 7 � 83� 6971� 1 = 48601811 = 61� 796751:

This time 61 is a prime, but it is of the form 4x + 1 = 4 � 15 + 1. However,
796751 is prime and 796751 = 4� 199188� 1. We are unstoppable:

N = 4 � 3 � 7 � 83� 6971� 796751� 1 = 5591 � 6926049421:

This time the small prime, 5591, is of the form 4x � 1 and the large one is
of the form 4x + 1.

Theorem 1.2.8 (Dirichlet) . Let a and b be integers withgcd(a; b) = 1 .
Then there are in�nitely many primes of the form ax + b.

Proofs of this theorem typically use tools from advanced number theory,
and are beyond the scope of this book (see e.g., [FT93,xVIII.4]).
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1.2.5 How Many Primes are There?

We saw in Section 1.2.1 that there are in�nitely many primes. In order to
get a sense for just how many primes there are, we consider a few warm-
up questions. Then we consider some numerical evidence and state the
prime number theorem, which gives an asymptotic answer to our question,
and connect this theorem with a form of the famous Riemann Hypothesis.
Our discussion of counting primes in this section is very cursory; for more
details, read Crandall and Pomerance's excellent book [CP01,x1.1.5].

The following vague discussion is meant to motivate a precise way to
measure the number (or percentage) of primes. What percentage of natu-
ral numbers are even? Answer: Half of them. What percentage of natural
numbers are of the form 4x � 1? Answer: One fourth of them. What per-
centage of natural numbers are perfect squares? Answer: Zero percent of
all natural numbers, in the sense that the limit of the proportion of perfect
squares to all natural numbers converges to 0. More precisely,

lim
x !1

# f n 2 N : n � x and n is a perfect squareg
x

= 0 ;

since the numerator is roughly
p

x and limx !1

p
x

x = 0. Likewise, it is an
easy consequence of Theorem 1.2.11 below that zero percent of all natural
numbers are prime (see Exercise 1.4).

We are thus led to ask another question: How many positive integers� x
are perfect squares? Answer: roughly

p
x. In the context of primes, we ask,

Question 1.2.9. How many natural numbers � x are prime?

Let
� (x) = # f p 2 N : p � x is a primeg:

For example,
� (6) = # f 2; 3; 5g = 3 :

Some values of� (x) are given in Table 1.1, and Figures 1.1 and 1.2 contain
graphs of � (x). These graphs look like straight lines, which maybe bend
down slightly.

SAGE Example1.2.10. To compute � (x) in SAGE use the commandprime pi(x) :

sage: prime_pi(6)
3
sage: prime_pi(100)
25
sage: prime_pi(3000000)
216816

We can also draw a plot of� (x) using the plot command:
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TABLE 1.1. Values of � (x)

x 100 200 300 400 500 600 700 800 900 1000
� (x) 25 46 62 78 95 109 125 139 154 168

x

y

(100 ; 25)
(200 ; 46)

(900 ; 154) (1000 ; 168)180

100

900100

Graph of � (x)

FIGURE 1.1. Graph of � (x) for x < 1000

sage.: show(plot(prime_pi, 1,1000, rgbcolor=(0,0,1)))

Gauss was an inveterate computer: he wrote in an 1849 letter that there
are 216; 745 primes less than 3; 000; 000 (this is wrong but close; the correct
count is 216; 816).

Gauss conjectured the following asymptotic formula for� (x), which was
later proved independently by Hadamard and Vall�ee Poussin in 1896 (but
will not be proved in this book):

Theorem 1.2.11 (Prime Number Theorem). The function � (x) is asymp-
totic to x= log(x), in the sense that

lim
x !1

� (x)
x= log(x)

= 1 :

We do nothing more here than motivate this deep theorem with a few
further observations. The theorem implies that

lim
x !1

� (x)
x

= lim
x !1

1
log(x)

= 0 ;

so for any a,

lim
x !1

� (x)
x=(log(x) � a)

= lim
x !1

� (x)
x= log(x)

�
a� (x)

x
= 1 :

Thus x=(log(x) � a) is also asymptotic to � (x) for any a. See [CP01,x1.1.5]
for a discussion of whya = 1 is the best choice. Table 1.2 compares� (x)
and x=(log(x) � 1) for severalx < 10000.

As of 2004, the record for counting primes appears to be

� (4 � 1022) = 783964159847056303858:

The computation of � (4 � 1022) reportedly took ten months on a 350 Mhz
Pentium II (see [GS02] for more details).
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TABLE 1.2. Comparison of � (x) and x=(log(x) � 1)

x � (x) x=(log(x) � 1) (approx)
1000 168 169.2690290604408165186256278
2000 303 302.9888734545463878029800994
3000 430 428.1819317975237043747385740
4000 550 548.3922097278253264133400985
5000 669 665.1418784486502172369455815
6000 783 779.2698885854778626863677374
7000 900 891.3035657223339974352567759
8000 1007 1001.602962794770080754784281
9000 1117 1110.428422963188172310675011
10000 1229 1217.976301461550279200775705

x

� (x)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

650

x

� (x)

100002000030000400005000060000700008000090000100000

4800

FIGURE 1.2. Graphs of � (x) for x < 10000 andx < 100000
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For the reader familiar with complex analysis, we mention a connection
between � (x) and the Riemann Hypothesis. The Riemann zeta function
� (s) is a complex analytic function on C n f 1g that extends the function
de�ned on a right half plane by

P 1
n =1 n� s. The Riemann Hypothesis is

the conjecture that the zeros inC of � (s) with positive real part lie on the
line Re(s) = 1 =2. This conjecture is one of the Clay Math Institute million
dollar millennium prize problems [Cla].

According to [CP01, x1.4.1], the Riemann Hypothesis is equivalent to the
conjecture that

Li( x) =
Z x

2

1
log(t)

dt

is a \good" approximation to � (x), in the following precise sense:

Conjecture 1.2.12 (Equivalent to the Riemann Hypothesis).
For all x � 2:01,

j� (x) � Li( x)j �
p

x log(x):

If x = 2, then � (2) = 1 and Li(2) = 0, but
p

2 log(2) = 0:9802: : :, so the
inequality is not true for x � 2, but 2:01 is big enough. We will do nothing
more to explain this conjecture, and settle for one numerical example.

Example 1.2.13. Let x = 4 � 1022. Then

� (x) = 783964159847056303858;

Li( x) = 783964159852157952242:7155276025801473: : : ;

j� (x) � Li( x)j = 5101648384:71552760258014: : : ;
p

x log(x) = 10408633281397:77913344605: : : ;

x=(log(x) � 1) = 783650443647303761503:5237113087392967: : : :

SAGE Example 1.2.14. We use SAGE to graph� (x), Li( x), and
p

x log(x).

sage: def Li(x):
... return integral_numerical(lambda t: 1/log(t), 2, x)[0 ]
sage: P = plot(prime_pi, 2,10000, rgbcolor=(1,0,0),plot_ points=30)
sage: Q = plot(Li, 2,10000, rgbcolor=(0,0,1), plot_points =30)
sage: R = plot(lambda x: sqrt(x)*log(x), 2, 10000)
sage.: show(P+Q+R,xmin=0)
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� � � � � � � � � � � � � � � � �

� � �

� � �

� � �

� � � �

� � � �

For more on the prime number theorem and the Riemann hypothesis see
[Zag75] and [MS07].

1.3 Exercises

1.1 Compute the greatest common divisor gcd(455; 1235) by hand.

1.2 Use the Sieve of Eratosthenes to make a list of all primes up to 100.

1.3 Prove that there are in�nitely many primes of the form 6x � 1.

1.4 Use Theorem 1.2.11 to deduce that lim
x !1

� (x)
x

= 0.

1.5 Let  (x) be the number of primes of the form 4k � 1 that are � x. Use
a computer to make a conjectural guess about limx !1  (x)=� (x).

1.6 So far 44 Mersenne primes 2p � 1 have been discovered. Give a guess,
backed up by an argument, about when the next Mersenne prime
might be discovered (you will have to do some online research).

1.7 (a) Let y = 10000. Compute � (y) = # f primes p � yg:

(b) The prime number theorem implies � (x) is asymptotic to x
log( x ) .

How close is� (y) to y=log(y), where y is as in (a)?

1.8 Let a; b; c; d, and m be integers. Prove that

(a) if a j b and b j c then a j c,

(b) if a j b and c j d then ac j bd,

(c) if m 6= 0, then a j b if and only if ma j mb, and

(d) if d j a and a 6= 0, then jdj � j aj.
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1.9 In each of the following, apply the division algorithm to �nd q and r
such that a = bq+ r and 0 � r < jbj:

a = 300; b = 17; a = 729; b = 31; a = 300; b = � 17; a = 389; b = 4 :

1.10 (a) (Do this part by hand.) Compute the greatest common divisor of
323 and 437 using the algorithm described in class that involves
quotients and remainders (i.e., do not just factor a and b).

(b) Compute by any means the greatest common divisor

gcd(314159265358979323846264338; 271828182845904523536028747):

1.11 (a) Supposea, b and n are positive integers. Prove that if an j bn ,
then a j b.

(b) Supposep is a prime and a and k are positive integers. Prove
that if p j ak , then pk j ak .

1.12 (a) Prove that if a positive integer n is a perfect square, thenn
cannot be written in the form 4k + 3 for k an integer. (Hint:
Compute the remainder upon division by 4 of each of (4m)2,
(4m + 1) 2, (4m + 2) 2, and (4m + 3) 2.)

(b) Prove that no integer in the sequence

11; 111; 1111; 11111; 111111; : : :

is a perfect square. (Hint: 111� � � 111 = 111� � � 108+3 = 4k +3.)

1.13 Prove that a positive integern is prime if and only if n is not divisible
by any prime p with 1 < p �

p
n.
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2
The Ring of Integers Modulon

This chapter is about the ring Z=nZ of integers modulon. First we discuss
when linear equations modulon have a solution, then introduce the Euler'
function and prove Fermat's Little Theorem and Wilson's theorem. Next
we prove the Chinese Remainer Theorem, which addresses simultaneous
solubility of several linear equations modulo coprime moduli. With these
theoretical foundations in place, in Section 2.3 we introduce algorithms
for doing interesting computations modulo n, including computing large
powers quickly, and solving linear equations. We �nish with a very brief
discussion of �nding prime numbers using arithmetic modulo n.

2.1 Congruences Modulon

De�nition 2.1.1 (Group) . A group is a set G equipped with a binary
operation G � G ! G (denoted by multiplication below) and an identity
element 12 G such that:

1. For all a; b; c2 G, we have (ab)c = a(bc).

2. For each a 2 G, we have 1a = a1 = a, and there exists b 2 G such
that ab= 1.

De�nition 2.1.2 (Abelian Group) . An abelian group is a group G such
that ab= ba for every a; b2 G.
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De�nition 2.1.3 (Ring) . A ring R is a set equipped with binary operations
+ and � and elements 0; 1 2 R such that R is an abelian group under +,
and for all a; b; c2 R we have

� 1a = a1 = a

� (ab)c = a(bc)

� a(b+ c) = ab+ ac.

If in addition ab= ba for all a; b2 R, then we call R a commutative ring.

In this section we de�ne the ring Z=nZ of integers modulon, introduce
the Euler ' -function, and relate it to the multiplicative order of certain
elements ofZ=nZ.

If a; b2 Z and n 2 N , we say that a is congruent to b modulo n if n j a� b,
and write a � b (mod n). Let nZ = ( n) be the ideal of Z generated byn.

De�nition 2.1.4 (Integers Modulo n). The ring of integers modulo n is
the quotient ring Z=nZ of equivalence classes of integers modulon. It is
equipped with its natural ring structure:

(a + nZ) + ( b+ nZ) = ( a + b) + nZ

(a + nZ) � (b+ nZ) = ( a � b) + nZ:

Example 2.1.5. For example,

Z=3Z = ff : : : ; � 3; 0; 3; : : :g; f : : : ; � 2; 1; 4; : : :g; f : : : ; � 1; 2; 5; : : :gg

SAGE Example 2.1.6. In SAGE we list the elements ofZ=nZ as follows:
sage: R = Integers(3)
sage: list(R)
[0, 1, 2]

We use the notation Z=nZ becauseZ=nZ is the quotient of the ring Z
by the ideal nZ of multiples of n. BecauseZ=nZ is the quotient of a ring
by an ideal, the ring structure on Z induces a ring structure onZ=nZ. We
often let a or a (mod n) denote the equivalence classa + nZ of a.

De�nition 2.1.7 (Field) . A �eld K is a ring such that for every nonzero
element a 2 K there is an elementb 2 K such that ab= 1.

For example, if p is a prime, then Z=pZ is a �eld (see Exercise 2.12).
We call the natural reduction map Z ! Z=nZ, which sendsa to a + nZ,

reduction modulo n. We also say that a is a lift of a + nZ. Thus, e.g., 7 is
a lift of 1 mod 3, since 7 + 3Z = 1 + 3 Z.

We can use that arithmetic in Z=nZ is well de�ned is to derive tests for
divisibility by n (see Exercise 2.8).

Proposition 2.1.8. A number n 2 Z is divisible by 3 if and only if the
sum of the digits ofn is divisible by 3.



2.1 Congruences Modulon 27

Proof. Write
n = a + 10b+ 100c + � � � ;

where the digits of n are a, b, c, etc. Since 10� 1 (mod 3),

n = a + 10b+ 100c + � � � � a + b+ c + � � � (mod 3);

from which the proposition follows.

2.1.1 Linear Equations Modulon

In this section, we are concerned with how to decide whether or not a linear
equation of the form ax � b (mod n) has a solution modulon. Algorithms
for computing solutions to ax � b (mod n) are the topic of Section 2.3.

First we prove a proposition that gives a criterion under which one can
cancel a quantity from both sides of a congruence.

Proposition 2.1.9 (Cancellation). If gcd(c; n) = 1 and

ac � bc (mod n);

then a � b (mod n).

Proof. By de�nition
n j ac � bc= ( a � b)c:

Since gcd(n; c) = 1, it follows from Theorem 1.1.6 that n j a � b, so

a � b (mod n);

as claimed.

When a has a multiplicative inverse a0 in Z=nZ (i.e., aa0 � 1 (mod n))
then the equation ax � b (mod n) has a unique solutionx � a0b (mod n)
modulo n. Thus, it is of interest to determine the units in Z=nZ, i.e., the
elements which have a multiplicative inverse.

We will use complete sets of residues to prove that the units inZ=nZ
are exactly the a 2 Z=nZ such that gcd(~a; n) = 1 for any lift ~a of a to Z
(it doesn't matter which lift).

De�nition 2.1.10 (Complete Set of Residues). We call a subsetR � Z
of sizen whose reductions modulon are pairwise distinct a complete set of
residuesmodulo n. In other words, a complete set of residues is a choice of
representative for each equivalence class inZ=nZ.

For example,
R = f 0; 1; 2; : : : ; n � 1g

is a complete set of residues modulon. When n = 5, R = f 0; 1; � 1; 2; � 2g
is a complete set of residues.
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Lemma 2.1.11. If R is a complete set of residues modulon and a 2 Z
with gcd(a; n) = 1 , then aR = f ax : x 2 Rg is also a complete set of
residues modulon.

Proof. If ax � ax0 (mod n) with x; x 0 2 R, then Proposition 2.1.9 implies
that x � x0 (mod n). BecauseR is a complete set of residues, this implies
that x = x0. Thus the elements ofaR have distinct reductions modulo n. It
follows, since #aR = n, that aR is a complete set of residues modulon.

Proposition 2.1.12 (Units) . If gcd(a; n) = 1 , then the equationax � b
(mod n) has a solution, and that solution is unique modulon.

Proof. Let R be a complete set of residues modulon, so there is a unique
element ofR that is congruent to b modulo n. By Lemma 2.1.11,aR is also
a complete set of residues modulon, so there is a unique elementax 2 aR
that is congruent to b modulo n, and we haveax � b (mod n).

Algebraically, this proposition asserts that if gcd(a; n) = 1, then the map
Z=nZ ! Z=nZ given by left multiplication by a is a bijection.

Example 2.1.13. Consider the equation 2x � 3 (mod 7), and the complete
set R = f 0; 1; 2; 3; 4; 5; 6g of coset representatives. We have

2R = f 0; 2; 4; 6; 8 � 1; 10 � 3; 12 � 5g;

so 2� 5 � 3 (mod 7).

When gcd(a; n) 6= 1, then the equation ax � b (mod n) may or may
not have a solution. For example, 2x � 1 (mod 4) has no solution, but
2x � 2 (mod 4) does, and in fact it has more than one mod 4 (x = 1
and x = 3). Generalizing Proposition 2.1.12, we obtain the following more
general criterion for solvability.

Proposition 2.1.14 (Solvability) . The equation ax � b (mod n) has a
solution if and only if gcd(a; n) divides b.

Proof. Let g = gcd(a; n). If there is a solution x to the equation ax � b
(mod n), then n j (ax � b). Since g j n and g j a, it follows that g j b.

Conversely, suppose thatg j b. Then n j (ax � b) if and only if

n
g

j
�

a
g

x �
b
g

�
:

Thus ax � b (mod n) has a solution if and only if a
g x � b

g (mod n
g ) has

a solution. Since gcd(a=g; n=g) = 1, Proposition 2.1.12 implies this latter
equation does have a solution.

In Chapter 4 we will study quadratic reciprocity, which gives a nice
criterion for whether or not a quadratic equation modulo n has a solution.
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2.1.2 Fermat's Little Theorem

Let (Z=nZ) � denote the subset of elements [x] 2 Z=nZ such that gcd(x; n) =
1.

The set (Z=nZ) � is a group, called thegroup of units of the ring Z=nZ;
it will be of great interest to us. Each element of this group has an order,
and Lagrange's theorem from group theory implies that each element of
(Z=nZ) � has order that divides the order of (Z=nZ) � . In elementary number
theory this fact goes by the monicker \Fermat's Little Theorem", and we
reprove it from basic principles in this section.

De�nition 2.1.15 (Order of an Element). Let n 2 N and x 2 Z and
suppose that gcd(x; n) = 1. The order of x modulo n is the smallestm 2 N
such that

xm � 1 (mod n):

To show that the de�nition makes sense, we verify that such anm exists.
Considerx; x 2; x3; : : : modulo n. There are only �nitely many residue classes
modulo n, so we must eventually �nd two integers i; j with i < j such that

x j � x i (mod n):

Since gcd(x; n) = 1, Proposition 2.1.9 implies that we can cancelx's and
conclude that

x j � i � 1 (mod n):

SAGE Example 2.1.16. Use x.multiplicative order() to compute the
order of an element ofZ=nZ in SAGE.

sage: R = Integers(10)
sage: a = R(3) # create an element of Z/10Z
sage: a.multiplicative_order()
4

Notice that the powers of a are periodic with period 4, i.e., there are four
powers and they repeat:

sage: [a^i for i in range(15)]
[1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9]

The commandrange(n) we use above returns the list of integers between
0 and n � 1, inclusive.

De�nition 2.1.17 (Euler's phi-function) . For n 2 N , let

' (n) = # f a 2 N : a � n and gcd(a; n) = 1 g:

For example,

' (1) = # f 1g = 1 ;

' (2) = # f 1g = 1 ;

' (5) = # f 1; 2; 3; 4g = 4 ;

' (12) = # f 1; 5; 7; 11g = 4 :
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Also, if p is any prime number then

' (p) = # f 1; 2; : : : ; p � 1g = p � 1:

In Section 2.2.1, we will prove that ' is a multiplicative function. This will
yield an easy way to compute' (n) in terms of the prime factorization of n.

SAGE Example 2.1.18. Use the commandeuler phi(n) to compute ' (n)
in SAGE:

sage: euler_phi(2007)
1332

Theorem 2.1.19 (Fermat's Little Theorem) . If gcd(x; n) = 1 , then

x ' (n ) � 1 (mod n):

Proof. As mentioned above, Fermat's Little Theorem has the following
group-theoretic interpretation. The set of units in Z=nZ is a group

(Z=nZ) � = f a 2 Z=nZ : gcd(a; n) = 1 g:

which has order' (n). The theorem then asserts that the order of an element
of (Z=nZ) � divides the order ' (n) of (Z=nZ) � . This is a special case of the
more general fact (Lagrange's theorem) that if G is a �nite group and
g 2 G, then the order of g divides the cardinality of G.

We now give an elementary proof of the theorem. Let

P = f a : 1 � a � n and gcd(a; n) = 1 g:

In the same way that we proved Lemma 2.1.11, we see that the reductions
modulo n of the elements of xP are the same as the reductions of the
elements ofP. Thus

Y

a2 P

(xa) �
Y

a2 P

a (mod n);

since the products are over the same numbers modulon. Now cancel the
a's on both sides to get

x# P � 1 (mod n);

as claimed.

SAGE Example2.1.20. We illustrate Fermat's Little Theorem using SAGE.
The command Mod(x,n) returns the equivalence class ofx in Z=nZ.

sage: n = 20
sage: k = euler_phi(n); k
8
sage: [Mod(x,n)^k for x in range(n) if gcd(x,n) == 1]
[1, 1, 1, 1, 1, 1, 1, 1]
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2.1.3 Wilson's Theorem

The following characterization of prime numbers, from the 1770s, is called
\Wilson's Theorem", though it was �rst proved by Lagrange.

Proposition 2.1.21 (Wilson's Theorem). An integer p > 1 is prime if
and only if (p � 1)! � � 1 (mod p):

For example, if p = 3, then ( p � 1)! = 2 � � 1 (mod 3). If p = 17, then

(p � 1)! = 20922789888000� � 1 (mod 17):

But if p = 15, then

(p � 1)! = 87178291200� 0 (mod 15);

so 15 is composite. Thus Wilson's theorem could be viewed as a primality
test, though, from a computational point of view, it is probably one of the
world's least e�cient primality tests since computing (n � 1)! takes so many
steps.

Proof. The statement is clear whenp = 2, so henceforth we assume that
p > 2. We �rst assume that p is prime and prove that (p � 1)! � � 1
(mod p). If a 2 f 1; 2; : : : ; p � 1g then the equation

ax � 1 (mod p)

has a unique solutiona0 2 f 1; 2; : : : ; p � 1g. If a = a0, then a2 � 1 (mod p),
sop j a2 � 1 = ( a� 1)(a+1), so p j (a� 1) or p j (a+1), so a 2 f 1; p� 1g. We
can thus pair o� the elements of f 2; 3; : : : ; p � 2g, each with their inverse.
Thus

2 � 3 � � � � � (p � 2) � 1 (mod p):

Multiplying both sides by p � 1 proves that (p � 1)! � � 1 (mod p).
Next we assume that (p � 1)! � � 1 (mod p) and prove that p must be

prime. Suppose not, so thatp � 4 is a composite number. Let̀ be a prime
divisor of p. Then ` < p , so ` j (p � 1)!. Also, by assumption,

` j p j ((p � 1)! + 1) :

This is a contradiction, because a prime can not divide a numbera and
also divide a + 1, since it would then have to divide (a + 1) � a = 1.

Example 2.1.22. We illustrate the key step in the above proof in the case
p = 17. We have

2�3 � � � 15 = (2 �9)�(3�6)�(4�13)�(5�7)�(8�15)�(10�12)�(14�11) � 1 (mod 17);

where we have paired up the numbersa; b for which ab � 1 (mod 17).
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SAGE Example 2.1.23. We use SAGE to create a table of triples; the �rst
column contains n, the second column contains (n � 1)! modulo n, and the
third contains � 1 modulo n. Notice that the �rst columns contains a prime
precisely when the second and third columns are equal. (The ... notation
indicates indentation in SAGE; you should not type the dots in explicitly.)

sage: for n in range(1,10):
... print n, factorial(n-1) % n, -1 % n
1 0 0
2 1 1
3 2 2
4 2 3
5 4 4
6 0 5
7 6 6
8 0 7
9 0 8

2.2 The Chinese Remainder Theorem

In this section we prove the Chinese Remainder Theorem, which gives con-
ditions under which a system of linear equations is guaranteed to have a
solution. In the 4th century a Chinese mathematician asked the following:

Question 2.2.1. There is a quantity whose number is unknown. Repeat-
edly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the
remainder is 2. What is the quantity?

In modern notation, Question 2.2.1 asks us to �nd a positive integer
solution to the following system of three equations:

x � 2 (mod 3)

x � 3 (mod 5)

x � 2 (mod 7)

The Chinese Remainder Theorem asserts that a solution exists, and the
proof gives a method to �nd one. (See Section 2.3 for the necessary algo-
rithms.)

Theorem 2.2.2 (Chinese Remainder Theorem). Let a; b 2 Z and n; m 2
N such that gcd(n; m) = 1 . Then there existsx 2 Z such that

x � a (mod m);

x � b (mod n):

Moreover x is unique modulomn.
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Proof. If we can solve fort in the equation

a + tm � b (mod n);

then x = a + tm will satisfy both congruences. To see that we can solve,
subtract a from both sides and use Proposition 2.1.12 together with our
assumption that gcd(n; m) = 1 to see that there is a solution.

For uniqueness, suppose thatx and y solve both congruences. Thenz =
x � y satis�es z � 0 (mod m) and z � 0 (mod n), so m j z and n j z. Since
gcd(n; m) = 1, it follows that nm j z, so x � y (mod nm).

Algorithm 2.2.3 (Chinese Remainder Theorem). Given coprime integers
m andn and integersa andb, this algorithm �nd an integerx such thatx � a
(mod m) and x � b (mod n).

1. [Extended GCD] Use Algorithm 2.3.7 below to �nd integersc; d such
that cm + dn = 1 .

2. [Answer] Outputx = a + ( b� a)cm and terminate.

Proof. Sincec 2 Z, we havex � a (mod m), and using that cm + dn = 1,
we havea + ( b� a)cm � a + ( b� a) � b (mod n).

Now we can answer Question 2.2.1. First, we use Theorem 2.2.2 to �nd
a solution to the pair of equations

x � 2 (mod 3);

x � 3 (mod 5):

Set a = 2, b = 3, m = 3, n = 5. Step 1 is to �nd a solution to t � 3 � 3 � 2
(mod 5). A solution is t = 2. Then x = a + tm = 2 + 2 � 3 = 8. Since any x0

with x0 � x (mod 15) is also a solution to those two equations, we can
solve all three equations by �nding a solution to the pair of equations

x � 8 (mod 15)

x � 2 (mod 7):

Again, we �nd a solution to t � 15 � 2 � 8 (mod 7). A solution is t = 1, so

x = a + tm = 8 + 15 = 23 :

Note that there are other solutions. Any x0 � x (mod 3 � 5 � 7) is also a
solution; e.g., 23 + 3� 5 � 7 = 128.

SAGE Example 2.2.4. The SAGE command CRT(a,b,m,n) computes an
integer x such that x � a (mod m) and x � b (mod n). For example,

sage: CRT(2,3, 3, 5)
8

The CRTlist command computes a number that reduces to several num-
bers modulo coprime modulo. We use it to answer Question 2.2.1:

sage: CRT_list([2,3,2], [3,5,7])
23
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2.2.1 Multiplicative Functions

De�nition 2.2.5 (Multiplicative Function) . A function f : N ! Z is
multiplicative if, whenever m; n 2 N and gcd(m; n) = 1, we have

f (mn) = f (m) � f (n):

Recall from De�nition 2.1.17 that the Euler ' -function is

' (n) = # f a : 1 � a � n and gcd(a; n) = 1 g:

Lemma 2.2.6. Suppose thatm; n 2 N and gcd(m; n) = 1 . Then the map

 : (Z=mnZ) � ! (Z=mZ) � � (Z=nZ) � : (2.2.1)

de�ned by
 (c) = ( c mod m; c mod n)

is a bijection.

Proof. We �rst show that  is injective. If  (c) =  (c0), then m j c� c0 and
n j c � c0, so nm j c � c0 because gcd(n; m) = 1. Thus c = c0 as elements of
(Z=mnZ) � .

Next we show that  is surjective, i.e., that every element of (Z=mZ) � �
(Z=nZ) � is of the form  (c) for some c. Given a and b with gcd(a; m) = 1
and gcd(b; n) = 1, Theorem 2.2.2 implies that there exists c with c � a
(mod m) and c � b (mod n). We may assume that 1 � c � nm, and
since gcd(a; m) = 1 and gcd(b; n) = 1, we must have gcd(c; nm) = 1. Thus
 (c) = ( a; b).

Proposition 2.2.7 (Multiplicativity of ' ). The function ' is multiplica-
tive.

Proof. The map  of Lemma 2.2.6 is a bijection, so the set on the left in
(2.2.1) has the same size as the product set on the right in (2.2.1). Thus

' (mn) = ' (m) � ' (n):

The proposition is helpful in computing ' (n), at least if we assume we can
compute the factorization of n (see Section 3.3.1 for a connection between
factoring n and computing ' (n)). For example,

' (12) = ' (22) � ' (3) = 2 � 2 = 4:

Also, for n � 1, we have

' (pn ) = pn �
pn

p
= pn � pn � 1 = pn � 1(p � 1); (2.2.2)

since ' (pn ) is the number of numbers less thanpn minus the number of
those that are divisible by p. Thus, e.g.,

' (389� 112) = 388 � (112 � 11) = 388 � 110 = 42680:
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2.3 Quickly Computing Inverses and Huge Powers

This section is about how to solve the equationax � 1 (mod n) when
we know it has a solution, and how to e�ciently compute am (mod n).
We also discuss a simple probabilistic primality test that relies on our
ability to compute am (mod n) quickly. All three of these algorithms are
of fundamental importance to the cryptography algorithms of Chapter 3.

2.3.1 How to Solveax � 1 (mod n)

Supposea; n 2 N with gcd(a; n) = 1. Then by Proposition 2.1.12 the
equation ax � 1 (mod n) has a unique solution. How can we �nd it?

Proposition 2.3.1 (Extended Euclidean representation). Supposea; b2 Z
and let g = gcd(a; b). Then there existsx; y 2 Z such that

ax + by = g:

Remark 2.3.2. If e = cg is a multiple of g, then cax + cby = cg = e; so
e = ( cx)a + ( cy)b can also be written in terms of a and b.

Proof of Proposition 2.3.1. Let g = gcd(a; b). Then gcd(a=g; b=g) = 1, so
by Proposition 2.1.14 the equation

a
g

� x � 1
�

mod
b
g

�
(2.3.1)

has a solution x 2 Z. Multiplying (2.3.1) through by g yields ax � g
(mod b), so there existsy such that b � (� y) = ax � g. Then ax + by = g,
as required.

Given a; band g = gcd(a; b), our proof of Proposition 2.3.1 gives a way to
explicitly �nd x; y such that ax + by = g, assuming one knows an algorithm
to solve linear equations modulon. Since we do not know such an algorithm,
we now discuss a way to explicitly �nd x and y. This algorithm will in fact
enable us to solve linear equations modulon|to solve ax � 1 (mod n)
when gcd(a; n) = 1, use the algorithm below to �nd x and y such that
ax + ny = 1. Then ax � 1 (mod n):

Example 2.3.3. Supposea = 5 and b = 7. The steps of Algorithm 1.1.13
to compute gcd(5; 7) are, as follows. Here we underline certain numbers,
because it clari�es the subsequent back substitution we will use to �nd x
and y.

7 = 1 � 5 + 2 so 2= 7 � 5

5 = 2 � 2 + 1 so 1= 5 � 2 � 2 = 5 � 2(7 � 5) = 3 � 5 � 2 � 7

On the right, we have back-substituted in order to write each partial re-
mainder as a linear combination of a and b. In the last step, we obtain
gcd(a; b) as a linear combination of a and b, as desired.
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Example 2.3.4. That example was not too complicated, so we try another
one. Let a = 130 and b = 61. We have

130= 2 � 61+ 8 8 = 130 � 2 � 61

61 = 7 � 8 + 5 5 = � 7 � 130+ 15 � 61

8 = 1 � 5 + 3 3 = 8 � 130� 17� 61

5 = 1 � 3 + 2 2 = � 15� 130+ 32 � 61

3 = 1 � 2 + 1 1 = 23 � 130� 49� 61

Thus x = 23 and y = � 49 is a solution to 130x + 61y = 1.

Example 2.3.5. This example is just like Example 2.3.4 above, except we
make the notation on the right more compact.

130= 2 � 61+ 8 8 = (1 ; � 2)

61 = 7 � 8 + 5 5 = ( � 7; 15) = (0 ; 1) � 7(1; � 2)

8 = 1 � 5 + 3 3 = (8 ; � 17) = (1 ; � 2) � (� 7; 15)

5 = 1 � 3 + 2 2 = ( � 15; 32) = ( � 7; 15) � (8; � 17)

3 = 1 � 2 + 1 1 = (23 ; � 49) = (8 ; � 17) � (� 15; 32)

Notice at each step that the vector on the right is just the vector from
two steps ago minus a multiple of the vector from one step ago, where the
multiple is the co�cient of what we divide by.

SAGE Example2.3.6. The SAGE commandxgcd(a,b) computes the great-
est common divisor g of a and b along with x; y such that ax + by = g.

sage: xgcd(5,7)
(1, 3, -2)
sage: xgcd(130,61)
(1, 23, -49)

Algorithm 2.3.7 (Extended Euclidean Algorithm) . Supposea and b are
integers and letg = gcd(a; b). This algorithm �nds g, x and y such that
ax + by = g. We describe only the steps whena > b � 0, since one can easily
reduce to this case.

1. [Initialize] Setx = 1 , y = 0 , r = 0 , s = 1 .

2. [Finished?] Ifb = 0 , set g = a and terminate.

3. [Quotient and Remainder] Use Algorithm 1.1.12 to writea = qb+ c with
0 � c < b.

4. [Shift] Set (a; b; r; s; x; y) = ( b; c; x � qr; y � qs; r; s) and go to step 2.
(This shift step is nicely illustrated in Example 2.3.5.)

Proof. This algorithm is the same as Algorithm 1.1.13, except that we keep
track of extra variables x; y; r; s , so it terminates and when it terminates
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d = gcd(a; b). We omit the rest of the inductive proof that the algorithm
is correct, and instead refer the reader to [Knu97,x1.2.1] which contains a
detailed proof in the context of a discussion of how one writes mathematical
proofs.

Algorithm 2.3.8 (Inverse Modulo n). Supposea and n are integers and
gcd(a; n) = 1 . This algorithm �nds anx such thatax � 1 (mod n).

1. [Compute Extended GCD] Use Algorithm 2.3.7 to compute integersx; y
such thatax + ny = gcd(a; n) = 1 .

2. [Finished] Outputx.

Proof. Reduceax+ ny = 1 modulo n to see thatx satis�es ax � 1 (mod n).

Example 2.3.9. Solve 17x � 1 (mod 61). First, we use Algorithm 2.3.7 to
�nd x; y such that 17x + 61y = 1:

61 = 3 � 17+ 10 10 = 61 � 3 � 17

17 = 1 � 10+ 7 7 = � 61+ 4 � 17

10 = 1 � 7 + 3 3 = 2 � 61� 7 � 17

3 = 2 � 3 + 1 1 = � 5 � 61+ 18 � 17

Thus 17� 18 + 61 � (� 5) = 1 so x = 18 is a solution to 17x � 1 (mod 61).

SAGE Example 2.3.10. SAGE implements the above algorithm for quickly
computing inverses modulon. For example,

sage: a = Mod(17, 61)
sage: a^(-1)
18
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2.3.2 How to Computeam (mod n)

Let a and n be integers, andm a nonnegative integer. In this section we de-
scribe an e�cient algorithm to compute am (mod n). For the cryptography
applications in Chapter 3, m will have hundreds of digits.

The naive approach to computing am (mod n) is to simply compute
am = a� a � � � a (mod n) by repeatedly multiplying by a and reducing mod-
ulo m. Note that after each arithmetic operation is completed, we reduce
the result modulo n so that the sizes of the numbers involved do not get
too large. Nonetheless, this algorithm is horribly ine�cient because it takes
m � 1 multiplications, which is huge if m has hundreds of digits.

A much more e�cient algorithm for computing am (mod n) involves
writing m in binary, then expressingam as a product of expressionsa2i

, for
various i . These latter expressions can be computed by repeatedly squaring
a2i

. This more clever algorithm is not \simpler", but it is vastly more
e�cient since the number of operations needed grows with the number of
binary digits of m, whereas with the naive algorithm above the number of
operations ism � 1.

Algorithm 2.3.11 (Write a number in binary) . Let m be a nonnegative
integer. This algorithm writesm in binary, so it �nds " i 2 f 0; 1g such that
m =

P r
i =0 " i 2i with each" i 2 f 0; 1g.

1. [Initialize] Seti = 0 .

2. [Finished?] Ifm = 0 , terminate.

3. [Digit] If m is odd, set" i = 1 , otherwise" i = 0 . Incrementi .

4. [Divide by2] Set m =
�

m
2

�
, the greatest integer� m=2. Goto step 2.

SAGE Example 2.3.12. To write a number in binary using SAGE, use the
str command:

sage: 100.str(2)
'1100100'

Notice the above is the correct binary expansion:
sage: 0*2^0 + 0*2^1 + 1*2^2 + 0*2^3 + 0*2^4 + 1*2^5 + 1*2^6
100

Algorithm 2.3.13 (Compute Power). Let a and n be integers andm a
nonnegative integer. This algorithm computesam modulon.

1. [Write in Binary] Write m in binary using Algorithm 2.3.11, soam =
Q

" i =1 a2i
(mod n):

2. [Compute Powers] Computea, a2, a22
= ( a2)2, a23

= ( a22
)2, etc., up

to a2r
, wherer + 1 is the number of binary digits ofm.

3. [Multiply Powers] Multiply together thea2i
such that " i = 1 , always

working modulon.
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Example 2.3.14. We can compute the last 2 digits of 791, by �nding 7 91

(mod 100). First, because gcd(7; 100) = 1, we have by Theorem 2.1.19 that
7' (100) � 1 (mod 100). Because' is multiplicative,

' (100) = ' (22 � 52) = (2 2 � 2) � (52 � 5) = 40:

Thus 740 � 1 (mod 100), hence

791 � 740+40+11 � 711 (mod 100):

We now compute 711 (mod 100) using the above algorithm. First, write 11
in binary by repeatedly dividing by 2.

11 = 5 � 2 + 1

5 = 2 � 2 + 1

2 = 1 � 2 + 0

1 = 0 � 2 + 1

So in binary, (11)2 = 1011, which we check:

11 = 1 � 8 + 1 � 2 + 1:

Next, compute a; a2; a4; a8 and output a8 � a2 � a. We have

a = 7

a2 � 49

a4 � 492 � 1

a8 � 12 � 1

Note { it is easiest to square 49 by working modulo 4 and 25 and using the
Chinese Remainder Theorem. Finally,

791 � 711 � a8 � a2 � a � 1 � 49� 7 � 43 (mod 100):

SAGE Example 2.3.15. SAGE implements the above algorithm for com-
puting powers e�ciently. For example,

sage: Mod(7,100)^91
43

We can also, of course, directly compute 791 in SAGE, though we would
not want to do this by hand:

sage: 7^91
80153343160247310515380886994816022539378033762994852007501964604841680190743
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2.4 Primality Testing

Theorem 2.4.1 (Pseudoprimality) . An integer p > 1 is prime if and only
if for every a 6� 0 (mod p),

ap� 1 � 1 (mod p):

Proof. If p is prime, then the statement follows from Proposition 2.1.21.
If p is composite, then there is a divisora of p with 2 � a < p. If ap� 1 � 1
(mod p), then p j ap� 1 � 1. Sincea j p, we havea j ap� 1 � 1 hence there exists
an integer k such that ak = ap� 1 � 1. Subtracting we see thatap� 1 � ak = 1,
so a(ap� 2 � k) = 1. This implies that a j 1, which is a contradiction since
a � 2.

Supposen 2 N . Using Theorem 2.4.1 and Algorithm 2.3.13, we can either
quickly prove that n is not prime, or convince ourselves thatn is likely prime
(but not quickly prove that n is prime). For example, if 2n � 1 6� 1 (mod n),
then we have proved that n is not prime. On the other hand, if an � 1 � 1
(mod n) for a few a, it \seems likely" that n is prime, and we loosely refer
to such a number that seems prime for several bases as apseudoprime.

There are composite numbersn (called Carmichael numbers) with the
amazing property that an � 1 � 1 (mod n) for all a with gcd(a; n) = 1. The
�rst Carmichael number is 561, and it is a theorem that there are in�nitely
many such numbers ([AGP94]).

Example 2.4.2. Is p = 323 prime? We compute 2322 (mod 323). Making a
table as above, we have

i m " i 22i
mod 323

0 322 0 2
1 161 1 4
2 80 0 16
3 40 0 256
4 20 0 290
5 10 0 120
6 5 1 188
7 2 0 137
8 1 1 35

Thus
2322 � 4 � 188� 35 � 157 (mod 323);

so 323 is not prime, though this computation gives no information about
how 323 factors as a product of primes. In fact, one �nds that 323 = 17�19.

SAGE Example 2.4.3. It's possible to easily prove that a large number is
composite, but the proof does not easily yield a factorization. For example
if

n = 95468093486093450983409583409850934850938459083;
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then 2n � 1 6� 1 (mod n), so n is composite.
sage: n = 95468093486093450983409583409850934850938459083
sage: Mod(2,n)^(n-1)
34173444139265553870830266378598407069248687241

Note that factoring n actually takes much longer than the above com-
putation (which was essentially instant).

sage: factor(n) # takes up to a few seconds.
1610302526747 * 59285812386415488446397191791023889

Another practical primality test is the Miller-Rabin test, which has the
property that each time it is run on a number n it either correctly asserts
that the number is de�nitely not prime, or that it is probably prime, and
the probability of correctness goes up with each successive call. If Miller-
Rabin is called m times on n and in each case claims thatn is probably
prime, then one can in a precise sense bound the probability thatn is
composite in terms ofm.

We state the Miller-Rabin algorithm precisely, but do not prove anything
about the probability that it will succeed.

Algorithm 2.4.4 (Miller-Rabin Primality Test) . Given an integern � 5
this algorithm outputs either true or false. If it outputs true, thenn is \probably
prime", and if it outputs false, thenn is de�nitely composite.

1. [Split O� Power of 2] Compute the unique integersm andk such thatm
is odd andn � 1 = 2k � m.

2. [Random Base] Choose a random integera with 1 < a < n .

3. [Odd Power] Setb = am (mod n). If b � � 1 (mod n) output true and
terminate.

4. [Even Powers] Ifb2r
� � 1 (mod n) for any r with 1 � r � k � 1,

output true and terminate. Otherwise output false.

If Miller-Rabin outputs true for n, we can call it again with n and if it
again outputs true then the probability that n is prime increases.

Proof. We will prove that the algorithm is correct, but will prove noth-
ing about how likely the algorithm is to assert that a composite is prime.
We must prove that if the algorithm pronounces an integer n compos-
ite, then n really is composite. Thus supposen is prime, yet the algo-
rithm pronounces n composite. Then am 6� � 1 (mod n), and for all r
with 1 � r � k � 1 we havea2r m 6� � 1 (mod n). Since n is prime and
2k � 1m = ( n� 1)=2, Proposition 4.2.1 implies thata2k � 1 m � � 1 (mod n), so
by our hypothesis a2k � 1 m � 1 (mod n). But then ( a2k � 2 m )2 � 1 (mod n),
so by Proposition 2.5.3 (which is proved below, and whose proof does not
depend on this argument), we havea2k � 2 m � � 1 (mod n). Again, by our
hypothesis, this implies a2k � 2

� 1 (mod n). Repeating this argument in-
ductively we see that am � � 1 (mod n), which contradicts our hypothesis
on a.
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Until recently it was an open problem to give an algorithm (with proof)
that decides whether or not any integer is prime in time bounded by a poly-
nomial in the number of digits of the integer. Agrawal, Kayal, and Saxena
recently found the �rst polynomial-time primality test (see [AKS02]). We
will not discuss their algorithm further, because for our applications to
cryptography Miller-Rabin or pseudoprimality tests will be su�cient.

SAGE Example 2.4.5. The SAGE command is prime uses a combination
of techniques to determines (provably correctly!) whether or not an integer
is prime.

sage: is_prime(95468093486093450983409583409850934850938459083)
False

We use the is prime function to make a small table of the �rst few
Mersenne primes (see Section 1.2.3).

sage: for p in primes(100):
... if is_prime(2^p - 1):
... print p, 2^p - 1
2 3
3 7
5 31
7 127
13 8191
17 131071
19 524287
31 2147483647
61 2305843009213693951
89 618970019642690137449562111

There is a specialized tests for primality of Mersenne numbers called the
Lucas-Lehmer test. This remarkably simple algorithm determines provably
correctly whether or not a number 2p � 1 is prime. We implement it in a
few lines of code and use the Lucas-Lehmer test to check for primality of
two Mersenne numbers:

sage: def is_prime_lucas_lehmer(p):
... s = Mod(4, 2^p - 1)
... for i in range(3, p+1):
... s = s^2 - 2
... return s == 0
sage: is_prime_lucas_lehmer(next_prime(1000))
False
sage: is_prime_lucas_lehmer(9941)
True

For more on searching for Mersenne primes, see the Great Internet Mersenne
Prime Search (GIMPS) project at http://www.mersenne.org/ .
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2.5 The Structure of (Z=pZ)�

This section is about the structure of the group (Z=pZ) � of units modulo
a prime number p. The main result is that this group is always cyclic. We
will use this result later in Chapter 4 in our proof of quadratic reciprocity.

De�nition 2.5.1 (Primitive root) . A primitive root modulo an integer n
is an element of (Z=nZ) � of order ' (n).

We will prove that there is a primitive root modulo every prime p. Since
the unit group ( Z=pZ) � has orderp� 1, this implies that ( Z=pZ) � is a cyclic
group, a fact this will be extremely useful, since it completely determines
the structure of (Z=pZ) � as a group.

If n is an odd prime power, then there is a primitive root modulo n (see
Exercise 2.28), but there is no primitive root modulo the prime power 23,
and hence none mod 2n for n � 3 (see Exercise 2.27).

Section 2.5.1 is the key input to our proof that (Z=pZ) � is cyclic; here
we show that for every divisor d of p � 1 there are exactly d elements of
(Z=pZ) � whose order dividesd. We then use this result in Section 2.5.2 to
produce an element of (Z=pZ) � of order qr when qr is a prime power that
exactly divides p� 1 (i.e., qr divides p� 1, but qr +1 does not dividep� 1),
and multiply together these elements to obtain an element of (Z=pZ) � of
order p � 1.

SAGE Example2.5.2. In SAGE use theprimitive root command to com-
pute the smallest positive integer that is a primitive root modulo n. For
example, below we compute primitive roots modulop for each primep < 20.

sage: for p in primes(20):
... print p, primitive_root(p)
2 1
3 2
5 2
7 3
11 2
13 2
17 3
19 2

2.5.1 Polynomials overZ=pZ

The polynomials x2 � 1 has four roots in Z=8Z, namely 1, 3, 5, and 7.
In contrast, the following proposition shows that a polynomial of degreed
over a �eld, such asZ=pZ, can have at mostd roots.
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Proposition 2.5.3 (Root Bound) . Let f 2 k[x] be a nonzero polynomial
over a �eld k. Then there are at most deg(f ) elements � 2 k such that
f (� ) = 0 .

Proof. We prove the proposition by induction on deg(f ). The cases in which
deg(f ) � 1 are clear. Write f = an xn + � � � a1x + a0. If f (� ) = 0 then

f (x) = f (x) � f (� )

= an (xn � � n ) + � � � + a1(x � � ) + a0(1 � 1)

= ( x � � )(an (xn � 1 + � � � + � n � 1) + � � � + a2(x + � ) + a1)

= ( x � � )g(x);

for some polynomialg(x) 2 k[x]. Next suppose that f (� ) = 0 with � 6= � .
Then (� � � )g(� ) = 0, so, since� � � 6= 0 and k is a �eld, we have g(� ) = 0.
By our inductive hypothesis, g has at mostn � 1 roots, so there are at most
n � 1 possibilities for � . It follows that f has at most n roots.

SAGE Example 2.5.4. We use SAGE to �nd the roots of a polynomials
over Z=13Z.

sage: R.<x> = PolynomialRing(Integers(13))
sage: f = x^15 + 1
sage: f.roots()
[(12, 1), (10, 1), (4, 1)]
sage: f(12)
0

The output of the roots command above lists each root along with its
multiplicity (which is 1 in each case above).

Proposition 2.5.5. Let p be a prime number and letd be a divisor of
p � 1. Then f = xd � 1 2 (Z=pZ)[x] has exactlyd roots in Z=pZ.

Proof. Let e = ( p � 1)=d. We have

xp� 1 � 1 = ( xd)e � 1

= ( xd � 1)((xd)e� 1 + ( xd)e� 2 + � � � + 1)

= ( xd � 1)g(x);

where g 2 (Z=pZ)[x] and deg(g) = de � d = p � 1 � d. Theorem 2.1.19
implies that xp� 1 � 1 has exactlyp � 1 roots in Z=pZ, since every nonzero
element of Z=pZ is a root! By Proposition 2.5.3, g has at most p � 1 � d
roots and xd � 1 has at mostd roots. Since a root of (xd � 1)g(x) is a root
of either xd � 1 or g(x) and xp� 1 � 1 hasp � 1 roots, g must have exactly
p � 1 � d roots and xd � 1 must have exactly d roots, as claimed.

SAGE Example 2.5.6. We use SAGE to illustrate the proposition.
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sage: R.<x> = PolynomialRing(Integers(13))
sage: f = x^6 + 1
sage: f.roots()
[(11, 1), (8, 1), (7, 1), (6, 1), (5, 1), (2, 1)]

We pause to reemphasize that the analogue of Proposition 2.5.5 is false
when p is replaced by a composite integern, since a root mod n of a
product of two polynomials need not be a root of either factor. For example,
f = x2 � 1 = ( x � 1)(x + 1) 2 Z=15Z[x] has the four roots 1, 4, 11, and 14.

2.5.2 Existence of Primitive Roots

Recall from Section 2.1.2 that theorder of an elementx in a �nite group
is the smallest m � 1 such that xm = 1. In this section, we prove that
(Z=pZ) � is cyclic by using the results of Section 2.5.1 to produce an element
of (Z=pZ) � of order d for each prime power divisord of p � 1, and then we
multiply these together to obtain an element of order p � 1.

We will use the following lemma to assemble elements of each order
dividing p � 1 to produce an element of orderp � 1.

Lemma 2.5.7. Supposea; b 2 (Z=nZ) � have ordersr and s, respectively,
and that gcd(r; s) = 1 . Then ab has order rs.

Proof. This is a general fact about commuting elements of any group; our
proof only uses that ab= ba and nothing special about (Z=nZ) � . Since

(ab)rs = ars brs = 1 ;

the order of ab is a divisor of rs. Write this divisor as r 1s1 where r 1 j r and
s1 j s. Raise both sides of the equation

ar 1 s1 br 1 s1 = ( ab)r 1 s1 = 1

to the power r 2 = r=r 1 to obtain

ar 1 r 2 s1 br 1 r 2 s1 = 1 :

Sincear 1 r 2 s1 = ( ar 1 r 2 )s1 = 1, we have

br 1 r 2 s1 = 1 ;

so s j r 1r 2s1. Since gcd(s; r1r 2) = gcd( s; r ) = 1, it follows that s = s1.
Similarly r = r 1, so the order ofab is rs.

Theorem 2.5.8 (Primitive Roots) . There is a primitive root modulo any
prime p. In particular, the group (Z=pZ) � is cyclic.
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Proof. The theorem is true if p = 2, since 1 is a primitive root, so we may
assumep > 2. Write p � 1 as a product of distinct prime powersqn i

i :

p � 1 = qn 1
1 qn 2

2 � � � qn r
r :

By Proposition 2.5.5, the polynomial xqn i
i � 1 has exactly qn i

i roots, and

the polynomial xqn i � 1
i � 1 has exactlyqn i � 1

i roots. There areqn i
i � qn i � 1

i =

qn i � 1
i (qi � 1) elementsa 2 Z=pZ such that aqn i

i = 1 but aqn i � 1
i 6= 1; each

of these elements has orderqn i
i . Thus for each i = 1 ; : : : ; r , we can choose

an ai of order qn i
i . Then, using Lemma 2.5.7 repeatedly, we see that

a = a1a2 � � � ar

has orderqn 1
1 � � � qn r

r = p � 1, soa is a primitive root modulo p.

Example 2.5.9. We illustrate the proof of Theorem 2.5.8 whenp = 13. We
have

p � 1 = 12 = 2 2 � 3:

The polynomial x4 � 1 has rootsf 1; 5; 8; 12g and x2 � 1 has rootsf 1; 12g,
so we may takea1 = 5. The polynomial x3 � 1 has rootsf 1; 3; 9g, and we
set a2 = 3. Then a = 5 � 3 = 15 � 2 is a primitive root. To verify this, note
that the successive powers of 2 (mod 13) are

2; 4; 8; 3; 6; 12; 11; 9; 5; 10; 7; 1:

Example 2.5.10. Theorem 2.5.8 is false if, e.g.,p is replaced by a power of 2
bigger than 4. For example, the four elements of (Z=8Z) � each have order
dividing 2, but ' (8) = 4.

Theorem 2.5.11 (Primitive Roots mod pn ). Let pn be a power of an odd
prime. Then there is a primitive root modulo pn .

The proof is left as Exercise 2.28.

Proposition 2.5.12 (Number of primitive roots) . If there is a primitive
root modulo n, then there are exactly' (' (n)) primitive roots modulo n.

Proof. The primitive roots modulo n are the generators of (Z=nZ) � , which
by assumption is cyclic of order' (n). Thus they are in bijection with the
generators of any cyclic group of order' (n). In particular, the number of
primitive roots modulo n is the same as the number of elements ofZ=' (n)Z
with additive order ' (n). An element of Z=' (n)Z has additive order ' (n)
if and only if it is coprime to ' (n). There are ' (' (n)) such elements, as
claimed.

Example 2.5.13. For example, there are ' (' (17)) = ' (16) = 2 4 � 23 =
8 primitive roots mod 17, namely 3; 5; 6; 7; 10; 11; 12; 14. The ' (' (9)) =
' (6) = 2 primitive roots modulo 9 are 2 and 5. There are no primitive
roots modulo 8, even though' (' (8)) = ' (4) = 2 > 0.
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2.5.3 Artin's Conjecture

Conjecture 2.5.14 (Emil Artin) . Supposea 2 Z is not � 1 or a perfect
square. Then there are in�nitely many primes p such that a is a primitive
root modulo p.

There is no single integera such that Artin's conjecture is known to
be true. For any given a, Pieter [Mor93] proved that there are in�nitely
many p such that the order of a is divisible by the largest prime factor
of p � 1. Hooley [Hoo67] proved that something called the Generalized
Riemann Hypothesis implies Conjecture 2.5.14.

Remark 2.5.15. Artin conjectured more precisely that if N (x; a) is the
number of primes p � x such that a is a primitive root modulo p, then
N (x; a) is asymptotic to C(a)� (x), where C(a) is a positive constant that
depends only ona and � (x) is the number of primes up to x.

2.5.4 Computing Primitive Roots

Theorem 2.5.8 does not suggest an e�cient algorithm for �nding primitive
roots. To actually �nd a primitive root mod p in practice, we try a = 2,
then a = 3, etc., until we �nd an a that has order p � 1. Computing the
order of an element of (Z=pZ) � requires factoring p � 1, which we do not
know how to do quickly in general, so �nding a primitive root modulo p
for large p seems to be a di�cult problem.

Algorithm 2.5.16 (Primitive Root) . Given a primep this algorithm com-
putes the smallest positive integera that generates(Z=pZ) � .

1. [p = 2?] If p = 2 output 1 and terminate. Otherwise seta = 2 .

2. [Prime Divisors] Compute the prime divisorsp1; : : : ; pr of p � 1.

3. [Generator?] If for everypi , we havea(p� 1)=pi 6� 1 (mod p), then a is a
generator of(Z=pZ) � , so output a and terminate.

4. [Try next] Seta = a + 1 and go to step 3.

Proof. Let a 2 (Z=pZ) � . The order of a is a divisor d of the order p � 1 of
the group (Z=pZ) � . Write d = ( p � 1)=n, for some divisorn of p � 1. If a is
not a generator of (Z=pZ) � , then sincen j (p � 1), there is a prime divisor
pi of p � 1 such that pi j n. Then

a(p� 1)=pi = ( a(p� 1)=n )n=p i � 1 (mod p):

Conversely, if a is a generator, thena(p� 1)=pi 6� 1 (mod p) for any pi . Thus
the algorithm terminates with step 3 if and only if the a under consideration
is a primitive root. By Theorem 2.5.8 there is at least one primitive root,
so the algorithm terminates.
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2.6 Exercises

2.1 Prove that for any positive integer n, the set (Z=nZ) � under multi-
plication modulo n is a group.

2.2 Compute the following gcd's using Algorithm 1.1.13:

gcd(15; 35); gcd(247; 299); gcd(51; 897); gcd(136; 304)

2.3 Use Algorithm 2.3.7 to �nd x; y 2 Z such that 2261x + 1275y = 17.

2.4 Prove that if a and b are integers andp is a prime, then (a + b)p �
ap + bp (mod p). You may assume that the binomial coe�cient

p!
r !(p � r )!

is an integer.

2.5 (a) Prove that if x; y is a solution to ax + by = d, then for all c 2 Z,

x0 = x + c �
b
d

; y0 = y � c �
a
d

(2.6.1)

is also a solution toax + by = d.

(b) Find two distinct solutions to 2261 x + 1275y = 17.

(c) Prove that all solutions are of the form (2.6.1) for somec.

2.6 Let f (x) = x2 + ax + b 2 Z[x] be a quadratic polynomial with inte-
ger coe�cients and positive leading coe�cients, e.g., f (x) = x2 +
x + 6. Formulate a conjecture about when the set f f (n) : n 2
Z and f (n) is primeg is in�nite. Give numerical evidence that sup-
ports your conjecture.

2.7 Find four complete sets of residues modulo 7, where thei th set sat-
is�es the i th condition: (1) nonnegative, (2) odd, (3) even, (4) prime.

2.8 Find rules in the spirit of Proposition 2.1.8 for divisibility of an integer
by 5, 9, and 11, and prove each of these rules using arithmetic modulo
a suitable n.

2.9 (*) The following problem is from the 1998 Putnam Competition.
De�ne a sequence of decimal integersan as follows: a1 = 0, a2 =
1, and an +2 is obtained by writing the digits of an +1 immediately
followed by those ofan . For example, a3 = 10, a4 = 101, and a5 =
10110. Determine then such that an a multiple of 11, as follows:

(a) Find the smallest integer n > 1 such that an is divisible by 11.
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(b) Prove that an is divisible by 11 if and only if n � 1 (mod 6).

2.10 Find an integer x such that 37x � 1 (mod 101).

2.11 What is the order of 2 modulo 17?

2.12 Let p be a prime. Prove that Z=pZ is a �eld.

2.13 Find an x 2 Z such that x � � 4 (mod 17) and x � 3 (mod 23).

2.14 Prove that if n > 4 is composite then

(n � 1)! � 0 (mod n):

2.15 For what values ofn is ' (n) odd?

2.16 (a) Prove that ' is multiplicative as follows. Supposem; n are pos-
itive integers and gcd(m; n) = 1. Show that the natural map
 : Z=mnZ ! Z=mZ � Z=nZ is an injective homomorphism of
rings, hence bijective by counting, then look at unit groups.

(b) Prove conversely that if gcd(m; n) > 1 then the natural map
 : Z=mnZ ! Z=mZ � Z=nZ is not an isomorphism.

2.17 Seven competitive math students try to share a huge hoard of stolen
math books equally between themselves. Unfortunately, six books are
left over, and in the �ght over them, one math student is expelled.
The remaining six math students, still unable to share the math books
equally since two are left over, again �ght, and another is expelled.
When the remaining �ve share the books, one book is left over, and
it is only after yet another math student is expelled that an equal
sharing is possible. What is the minimum number of books which
allow this to happen?

2.18 Show that if p is a positive integer such that both p and p2 + 2 are
prime, then p = 3.

2.19 Let ' : N ! N be the Euler ' function.

(a) Find all natural numbers n such that ' (n) = 1.

(b) Do there exist natural numbers m and n such that ' (mn) 6=
' (m) � ' (n)?

2.20 Find a formula for ' (n) directly in terms of the prime factorization
of n.

2.21 (a) Prove that if ' : G ! H is a group homomorphism, then ker(' )
is a subgroup ofG.

(b) Prove that ker( ' ) is normal, i.e., that if a 2 G and b 2 ker(' ),
then a� 1ba2 ker(' ).
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2.22 Is the setZ=5Z = f 0; 1; 2; 3; 4g with binary operation multiplication
modulo 5 a group?

2.23 Find all four solutions to the equation

x2 � 1 � 0 (mod 35):

2.24 Prove that for any positive integer n the fraction (12n + 1) =(30n + 2)
is in reduced form.

2.25 Supposea and b are positive integers.

(a) Prove that gcd(2a � 1; 2b � 1) = 2 gcd( a;b) � 1:

(b) Does it matter if 2 is replaced by an arbitrary prime p?

(c) What if 2 is replaced by an arbitrary positive integer n?

2.26 For every positive integerb, show that there exists a positive integer
n such that the polynomial x2 � 1 2 (Z=nZ)[x] has at leastb roots.

2.27 (a) Prove that there is no primitive root modulo 2n for any n � 3.

(b) (*) Prove that ( Z=2n Z) � is generated by� 1 and 5.

2.28 Let p be an odd prime.

(a) (*) Prove that there is a primitive root modulo p2. (Hint: Use
that if a; b have ordersn; m, with gcd(n; m) = 1, then ab has
order nm.)

(b) Prove that for any n, there is a primitive root modulo pn .

(c) Explicitly �nd a primitive root modulo 125.

2.29 (*) In terms of the prime factorization of n, characterize the integersn
such that there is a primitive root modulo n.

2.30 Compute the last two digits of 345.

2.31 Find the integer a such that 0 � a < 113 and

10270 + 1 � a37 (mod 113):

2.32 Find the proportion of primes p < 1000 such that 2 is a primitive
root modulo p.

2.33 Find a prime p such that the smallest primitive root modulo p is 37.
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3
Public-Key Cryptography

The author recently watched a TV show called
La Femme Nikita about a woman named Nikita
who is forced to be an agent for a shady
anti-terrorist organization called Section One.
Nikita has strong feelings for fellow agent
Michael, and she most trusts Walter, Section
One's ex-biker gadgets and explosives expert.
Often Nikita's worst enemies are her superiors
and coworkers at Section One.

A synopsis for a season three episode is as follows:

PLAYING WITH FIRE

On a mission to secure detonation chips from a terrorist or-
ganization's heavily armed base camp, Nikita is captured as a
hostage by the enemy. Or so it is made to look. Michael and
Nikita have actually created the scenario in order to secretly
rendezvous with each other. The ruse works, but when Birko�
[Section One's master hacker] accidentally discovers encrypted
messages between Michael and Nikita sent with Walter's help,
Birko� is forced to tell Madeline. Suspecting that Michael and
Nikita may be planning a coup d'�etat, Operations and Madeline
use a second team of operatives to track Michael and Nikita's
next secret rendezvous... killing them if necessary.
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FIGURE 3.1. Di�e and Hellman (photos from [Sin99])

What sort of encryption might Walter have helped them to use? I let my
imagination run free, and this is what I came up with. After being captured
at the base camp, Nikita is given a phone by her captors, in hopes that she'll
use it and they'll be able to �gure out what she is really up to. Everyone
is eagerly listening in on her calls.

Remark 3.0.1. In this book we will assume available a method for producing
random integers. Methods for generating random integers are involved and
interesting, but we will not discuss them in this book. For an in depth
treatment of random numbers, see [Knu98, Ch. 3].

Nikita remembers a conversation with Walter about a public-key cryp-
tosystem called the \Di�e-Hellman key exchange". She remembers that it
allows two people to agree on a secret key in the presence of eavesdrop-
pers. Moreover, Walter mentioned that though Di�e-Hellman was the �rst
ever public-key exchange system, it is still in common use today (e.g., in
OpenSSH protocol version 2, seehttp://www.openssh.com/ ).

Nikita pulls out her handheld computer and phone, calls up Michael, and
they do the following, which is wrong (try to �gure out what is wrong as
you read it).

1. Together they choose a big prime numberp and a number g with
1 < g < p .

2. Nikita secretly chooses an integern.

3. Michael secretly chooses an integerm.

4. Nikita tells Michael ng (mod p).

5. Michael tells mg (mod p) to Nikita.

6. The \secret key" is s = nmg (mod p), which both Nikita and Michael
can easily compute.
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Nikita

Michael

Nikita's captors

Section One

Here's a very simple example with small numbers that illustrates what
Michael and Nikita do. (They really used much larger numbers.)

1. p = 97, g = 5

2. n = 31

3. m = 95

4. ng � 58 (mod 97)

5. mg � 87 (mod 97)

6. s = nmg = 78 (mod 97)

Nikita and Michael are foiled because everyone easily �gures outs:

1. Everyone knowsp, g, ng (mod p), and mg (mod p).

2. Using Algorithm 2.3.7, anyone can easily �nd a; b 2 Z such that
ag + bp= 1, which exist because gcd(g; p) = 1.

3. Then ang � n (mod p), so everyone knows Nikita's secret keyn, and
hence can easily compute the shared secrets.

To taunt her, Nikita's captors give her a paragraph from a review of Di�e
and Hellman's 1976 paper \New Directions in Cryptography" [DH76]:

\The authors discuss some recent results in communications
theory [...] The �rst [method] has the feature that an unautho-
rized `eavesdropper' will �nd it computationally infeasible to de-
cipher the message [...] They propose a couple of techniques for
implementing the system, but the reviewer was unconvinced."
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3.1 The Di�e-Hellman Key Exchange

As night darkens Nikita's cell, she re
ects on what has happened. Upon re-
alizing that she mis-remembered how the system works, she phones Michael
and they do the following:

1. Together Michael and Nikita choose a 200-digit integerp that is likely
to be prime (see Section 2.4), and choose a numberg with 1 < g < p .

2. Nikita secretly chooses an integern.

3. Michael secretly chooses an integerm.

4. Nikita computes gn (mod p) on her handheld computer and tells
Michael the resulting number over the phone.

5. Michael tells Nikita gm (mod p).

6. The shared secret key is then

s � (gn )m � (gm )n � gnm (mod p);

which both Nikita and Michael can compute.

Here is a simpli�ed example that illustrates what they did, that involves
only relatively simple arithmetic.

1. p = 97, g = 5

2. n = 31

3. m = 95

4. gn � 7 (mod p)

5. gm � 39 (mod p)

6. s � (gn )m � 14 (mod p)

3.1.1 The Discrete Log Problem

Nikita communicates with Michael by encrypting everything using their
agreed upon secret key. In order to understand the conversation, the eaves-
dropper needss, but it takes a long time to compute s given only p, g, gn ,
and gm . One way would be to computen from knowledge ofg and gn ; this
is possible, but appears to be \computationally infeasible", in the sense
that it would take too long to be practical.
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Let a, b, and n be real numbers with a; b > 0 and n � 0. Recall that the
\log to the base b" function characterized by

logb(a) = n if and only if a = bn :

We use the logb function in algebra to solve the following problem: Given
a baseb and a powera of b, �nd an exponent n such that

a = bn :

That is, given a = bn and b, �nd n.

SAGE Example 3.1.1. The number a = 19683 is the nth power of b = 3
for somen. With a SAGE we quickly �nd that

n = log 3(19683) = log(19683)=log(3) = 9 :

sage: log(19683.0)
9.88751059801299
sage: log(3.0)
1.09861228866811
sage: log(19683.0) / log(3.0)
9.00000000000000

SAGE can quickly compute a numerical approximation for log(x), for
any x, by computing a partial sum of an appropriate rapidly-converging
in�nite series (at least for x in a certain range).

The discrete log problem is the analogue of computing logb(a) but where
both b and a are elements of a �nite group.

Problem 3.1.2 (Discrete Log Problem). Let G be a �nite group, e.g.,
G = ( Z=pZ) � . Given b 2 G and a power a of b, �nd a positive integer n
such that bn = a.

As far as we know, �nding discrete logarithms in (Z=pZ) � when p is
large is \very di�cult" in practice. Over the years, many people have been
very motivated to try. For example, if Nikita's captors could e�ciently
solve Problem 3.1.2, then they could read the messages she exchanges with
Michael. Unfortunately, we have no formal proof that computing discrete
logarithms on a classical computer is di�cult. Also, Peter Shor [Sho97]
showed that if one could build a su�ciently complicated quantum com-
puter, it could solve the discrete logarithm problem in time bounded by a
polynomial function of the number of digits of # G.

It is easy to give an ine�cient algorithm that solves the discrete log
problem. Simply try b1, b2, b3, etc., until we �nd an exponent n such that
bn = a. For example, supposea = 18, b = 5, and p = 23. Working modulo
23 we have

b1 = 5 ; b2 = 2 ; b3 = 10; : : : ; b12 = 18;
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so n = 12. When p is large, computing the discrete log this way soon be-
comes impractical, because increasing the number of digits of the modulus
makes the computation take vastly longer.

SAGE Example 3.1.3. Perhaps part of the reason that computing discrete
logarithms is di�cult, is that the logarithm in the real numbers is continu-
ous, but the (minimum) logarithm of a number mod n bounces around at
random. We illustrate this exotic behavior in Figure 3.2.

This draws the continuous plot.

sage.: show(plot(log, 0.1,10, rgbcolor=(0,0,1)))
This draws the discrete plot.

sage: p = 53
sage: R = Integers(p)
sage: a = R.multiplicative_generator()
sage: v = [(a^n, n) for n in range(p-1)]
sage: v.sort()
sage: G = plot(point(v,pointsize=50,rgbcolor=(0,0,1)))
sage: H = plot(line(v,rgbcolor=(0.5,0.5,0.5)))
sage.: show(G + H)

3.1.2 Realistic Di�e-Hellman Example

In this section we present an example that uses bigger numbers. First we
prove a proposition that we can use to choose a primep in such a way that
it is easy to �nd a g 2 (Z=pZ) � with order p � 1. We have already seen in
Section 2.5 that for every primep there exists an elementg of order p � 1,
and we gave Algorithm 2.5.16 for �nding a primitive root for any prime.
The signi�cance of the proposition below is that it suggests an algorithm
for �nding a primitive root that is easier to use in practice when p is large,
because it does not require factoringp� 1. Of course, one could also just use
a random g for Di�e-Hellman; it is not essential that g generates (Z=pZ) � .

Proposition 3.1.4. Supposep is a prime such that(p� 1)=2 is also prime.
Then the elements of(Z=pZ) � have order either1, 2, (p � 1)=2, or p � 1.

Proof. Sincep is prime, the group (Z=pZ) � has orderp� 1. By assumption,
the prime factorization of p � 1 is 2� ((p � 1)=2). Let a 2 (Z=pZ) � . Then
by Theorem 2.1.19,ap� 1 = 1, so the order of a is a divisor of p � 1, which
proves the proposition.

Given a prime p with ( p � 1)=2 prime, �nd an element of order p � 1 as
follows. If 2 has orderp � 1 we are done. If not, 2 has order (p � 1)=2 since
2 doesn't have order either 1 or 2. Then� 2 has orderp � 1.

Let p = 93450983094850938450983409611. Thenp is prime, but (p �
1)=2 is not. So we keep adding 2 top and testing pseudoprimality using



3.1 The Di�e-Hellman Key Exchange 57

� � � � � � � � �

�

� � �

�

�

�

� � �

�

�

�

� � �

� � �

�

� � �

�

� � �

� � 	 � 
 � � � � �

� �

	 �


 �

� �

� �

FIGURE 3.2. Graphs of the continuous log and of the discrete log modulo 53.
Which looks easier to compute?
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algorithms from Section 2.4 until we �nd that the next pseudoprime after p
is

q = 93450983094850938450983409623:

It turns out that q pseudoprime and (q� 1)=2 is also pseudoprime. We �nd
that 2 has order (q � 1)=2, so g = � 2 has order q � 1 modulo q, and is
hence a generator of (Z=qZ) � , at least assuming that q is really prime.

The secret random numbers generated by Nikita and Michael are

n = 18319922375531859171613379181

and

m = 82335836243866695680141440300:

Nikita sends

gn = 454167762704853697913759449982 (Z=pZ) �

to Michael, and Michael sends

gm = 150480741517708842718242253932 (Z=pZ) �

to Nikita. They agree on the secret key

gnm = 857714094707705212123467395402 (Z=pZ) � :

SAGE Example 3.1.5. We illustrate the above computations using SAGE.

sage: q = 93450983094850938450983409623
sage: q.is_prime()
True
sage: is_prime((q-1)//2)
True
sage: g = Mod(-2, q)
sage: g.multiplicative_order()
93450983094850938450983409622
sage: n = 18319922375531859171613379181; m = 82335836243866695680141440300
sage: g^n
45416776270485369791375944998
sage: g^m
15048074151770884271824225393
sage: (g^n)^m
85771409470770521212346739540
sage: (g^m)^n
85771409470770521212346739540
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gmt (mod p)

FIGURE 3.3. The Man in the Middle Attack

3.1.3 The Man in the Middle Attack

After their �rst system was broken, instead of talking on the phone, Michael
and Nikita can now only communicate via text messages. One of her cap-
tors, The Man, is watching each of the transmissions; moreover, he can
intercept messages and send false messages. When Nikita sends a mes-
sage to Michael announcinggn (mod p), The Man intercepts this message,
and sends his own numbergt (mod p) to Michael. Eventually, Michael and
The Man agree on the secret keygtm (mod p), and Nikita and The Man
agree on the keygtn (mod p). When Nikita sends a message to Michael she
unwittingly uses the secret key gtn (mod p); The Man then intercepts it,
decrypts it, changes it, and re-encrypts it using the keygtm (mod p), and
sends it on to Michael. This is bad because now The Man can read every
message sent between Michael and Nikita, and moreover, he can change
them in transmission in subtle ways.

One way to get around this attack is to use a digital signature scheme
based on the RSA cryptosystem. We will not discuss digital signatures
further in this book, but will discuss RSA in the next section.
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3.2 The RSA Cryptosystem

The Di�e-Hellman key exchange has drawbacks. As discussed in Section
3.1.3, it is susceptible to the man in the middle attack. This section is
about the RSA public-key cryptosystem of Rivest, Shamir, and Adleman
[RSA78], which is an alternative to Di�e-Hellman that is more 
exible in
some ways.

We �rst describe the RSA cryptosystem, then discuss several ways to
attack it. It is important to be aware of such weaknesses, in order to avoid
foolish mistakes when implementing RSA. We barely scratched the surface
here of the many possible attacks on speci�c implementations of RSA or
other cryptosystems.

3.2.1 How RSA works

The fundamental idea behind RSA is to try to construct a trap-door or
one-way function on a setX , that is, an invertible function

E : X ! X

such that it is easy for Nikita to compute E � 1, but extremely di�cult for
anybody else to do so.

Here is how Nikita makes a one-way functionE on the set of integers
modulo n.

1. Using a method hinted at in Section 2.4, Nikita picks two large
primes p and q, and lets n = pq.

2. It is then easy for Nikita to compute

' (n) = ' (p) � ' (q) = ( p � 1) � (q � 1):

3. Nikita next chooses a random integere with

1 < e < ' (n) and gcd(e; ' (n)) = 1 :

4. Nikita uses the algorithm from Section 2.3.2 to �nd a solution x = d
to the equation

ex � 1 (mod ' (n)) :

5. Finally, Nikita de�nes a function E : Z=nZ ! Z=nZ by

E(x) = xe 2 Z=nZ:

Anybody can compute E fairly quickly using the repeated-squaring
algorithm from Section 2.3.2.
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Nikita's public key is the pair of integers (n; e), which is just enough
information for people to easily computeE . Nikita knows a number d such
that ed � 1 (mod ' (n)), so, as we will see, she can quickly computeE � 1.

To send Nikita a message, proceed as follows. Encode your message, in
some way, as a sequence of numbers modulon (see Section 3.2.2)

m1; : : : ; mr 2 Z=nZ;

then send
E(m1); : : : ; E (mr )

to Nikita. (Recall that E (m) = me for m 2 Z=nZ.)
When Nikita receives E(mi ), she �nds eachmi by using that E � 1(m) =

md; a fact that follows from the following proposition.

Proposition 3.2.1 (Decryption key) . Let n be an integer that is a product
of distinct primes and let d; e 2 N be such thatp� 1 j de� 1 for each prime
p j n. Then ade � a (mod n) for all a 2 Z.

Proof. Since n j ade � a if and only if p j ade � a for each prime divisor p
of n, it su�ces to prove that ade � a (mod p) for each prime divisor p of n.
If gcd(a; p) 6= 1, then a � 0 (mod p), so ade � a (mod p). If gcd(a; p) = 1,
then Theorem 2.1.19 asserts thatap� 1 � 1 (mod p). Since p � 1 j de � 1,
we haveade� 1 � 1 (mod p) as well. Multiplying both sides by a shows that
ade � a (mod p).

Thus to decrypt E(mi ) Nikita computes

E(mi )d = ( me
i )d = mi :

SAGE Example 3.2.2. We implement the RSA cryptosystem using SAGE.
The function rsa below creates a key with (at most) the given number of
bits, i.e., if bits is 20, it creates a keyn = pq wheren is approximately 220.
Typical real-life cryptosystems would choose 512, 1024, or 2048 bit keys
(try generating large keys yourself using SAGE|how long does it take?).

sage: def rsa(bits):
... # only prove correctness up to 1024 bits
... proof = (bits <= 1024)
... p = next_prime(ZZ.random_element(2**(bits//2 +1)),
... proof=proof)
... q = next_prime(ZZ.random_element(2**(bits//2 +1)),
... proof=proof)
... n = p * q
... phi_n = (p-1) * (q-1)
... while True:
... e = ZZ.random_element(1,phi_n)
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... if gcd(e,phi_n) == 1: break

... d = lift(Mod(e,phi_n)^(-1))

... return e, d, n

...
sage: def encrypt(m,e,n):
... return lift(Mod(m,n)^e)
...
sage: def decrypt(c,d,n):
... return lift(Mod(c,n)^d)
...
sage: e,d,n = rsa(20)
sage: c = encrypt(123, e, n)
sage: decrypt(c, d, n)
123

3.2.2 Encoding a Phrase in a Number

In order to use the RSA cryptosystem to encrypt messages, it is necessary
to encode them as a sequence of numbers of size less thann = pq. We
now describe a simple way to do this. Note that in any actual deployed
implementation it is crucial that you add extra random characters (\salt")
at the beginning of each block of the message, so that the same plain text
encodes di�erently each time. This helps thwart chosen plain text attacks.

Supposes is a sequence of capital letters and spaces, and thats does not
begin with a space. We encodes as a number in base 27 as follows: a single
space corresponds to 0, the letterA to 1, B to 2, : : :, Z to 26. Thus \RUN
NIKITA" is a number written in base 27:

RUN NIKITA $ 279 � 18 + 278 � 21 + 277 � 14 + 276 � 0 + 275 � 14

+ 274 � 9 + 273 � 11 + 272 � 9 + 27 � 20 + 1

= 143338425831991 (in decimal):

To recover the letters from the decimal number, repeatedly divide by 27
and read o� the letter corresponding to each remainder:

143338425831991 = 5308830586370� 27 + 1 \A"
5308830586370 = 196623355050� 27 + 20 \T"
196623355050 = 7282346483� 27 + 9 \I"

7282346483 = 269716536� 27 + 11 \K"
269716536 = 9989501� 27 + 9 \I"

9989501 = 369981� 27 + 14 \N"
369981 = 13703� 27 + 0 \ "
13703 = 507� 27 + 14 \N"

507 = 18 � 27 + 21 \U"
18 = 0 � 27 + 18 \R"
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If 27k � n, then any sequence ofk letters can be encoded as above using
a positive integer � n. Thus if we can encrypt integers of size at mostn,
then we must break our message up into blocks of size at most log27(n).

SAGE Example 3.2.3. We use SAGE to implement conversion between a
string and a number. The input string s on a computer is stored in a format
called ASCII, so each \letter" corresponds to an integer between 0 and 255,
inclusive. This number is obtained from the letter using the ord command.

sage: def encode(s):
... s = str(s) # make input a string
... return sum(ord(s[i])*256^i for i in range(len(s)))
sage: def decode(n):
... n = Integer(n) # make input an integer
... v = []
... while n != 0:
... v.append(chr(n % 256))
... n //= 256 # this replaces n by floor(n/256).
... return ''.join(v)
sage: m = encode('Run Nikita!'); m
40354769014714649421968722
sage: decode(m)
'Run Nikita!'

3.2.3 Some Complete Examples

So the arithmetic is easy to follow, we use small primesp and q and encrypt
the single letter \X" using the RSA cryptosystem.

1. Choosep and q: Let p = 17, q = 19, so n = pq = 323.

2. Compute ' (n):

' (n) = ' (p � q) = ' (p) � ' (q) = ( p � 1)(q � 1)

= pq� p � q + 1 = 323 � 17� 19 + 1 = 288:

3. Randomly choose ane < 288: We choosee = 95.

4. Solve
95x � 1 (mod 288):

Using the GCD algorithm, we �nd that d = 191 solves the equation.

The public key is (323; 95), so the encryption function is

E(x) = x95;

and the decryption function is D(x) = x191.
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Next, we encrypt the letter \X". It is encoded as the number 24, since X
is the 24th letter of the alphabet. We have

E(24) = 2495 = 294 2 Z=323Z:

To decrypt, we compute E � 1:

E � 1(294) = 294191 = 24 2 Z=323Z:

This next example illustrates RSA but with bigger numbers. Let

p = 738873402423833494183027176953; q = 3787776806865662882378273:

Then

n = p � q = 2798687536910915970127263606347911460948554197853542169

and

' (n) = ( p � 1)(q � 1)

= 2798687536910915970127262867470721260308194351943986944:

Using a pseudo-random number generator on a computer, the author ran-
domly chose the integer

e = 1483959194866204179348536010284716655442139024915720699:

Then

d = 2113367928496305469541348387088632973457802358781610803

Since log27(n) � 38:04, we can encode then encrypt single blocks of
up to 38 letters. Let's encrypt \RUN NIKITA", which encodes as m =
143338425831991. We have

E(m) = me

= 1504554432996568133393088878600948101773726800878873990:

Remark 3.2.4. In practice one usually chosese to be small, since that does
not seem to reduce the security of RSA, and makes the key size smaller. For
example, in the OpenSSL documentation (seehttp://www.openssl.org/ )
about their implementation of RSA it states that \The exponent is an odd
number, typically 3, 17 or 65537."

3.3 Attacking RSA

Suppose Nikita's public key is (n; e) and her decryption key is d, so ed � 1
(mod ' (n)). If somehow we compute the factorizationn = pq, then we can
compute ' (n) = ( p� 1)(q� 1) and hence computed. Thus if we can factor n
then we can break the corresponding RSA public-key cryptosystem.



3.3 Attacking RSA 65

3.3.1 Factoring n Given ' (n)

Supposen = pq. Given ' (n), it is very easy to compute p and q. We have

' (n) = ( p � 1)(q � 1) = pq� (p + q) + 1 ;

so we know both pq = n and p + q = n + 1 � ' (n). Thus we know the
polynomial

x2 � (p + q)x + pq = ( x � p)(x � q)

whose roots arep and q. These roots can be found using the quadratic
formula.

Example 3.3.1. The number n = pq = 31615577110997599711 is a product
of two primes, and ' (n) = 31615577098574867424. We have

f = x2 � (n + 1 � ' (n))x + n

= x2 � 12422732288x + 31615577110997599711

= ( x � 3572144239)(x � 8850588049);

where the factorization step is easily accomplished using the quadratic
formula:

� b+
p

b2 � 4ac
2a

=
12422732288 +

p
124227322882 � 4 � 31615577110997599711

2
= 8850588049:

We conclude that n = 3572144239� 8850588049.

SAGE Example 3.3.2. The following SAGE function factors n = pq given
n and ' (n).

sage: def crack_rsa(n, phi_n):
... R.<x> = PolynomialRing(QQ)
... f = x^2 - (n+1 -phi_n)*x + n
... return [b for b, _ in f.roots()]
sage: crack_rsa(31615577110997599711, 31615577098574867424)
[8850588049, 3572144239]

3.3.2 Whenp and q are Close

Suppose thatp and q are \close" to each other. Then it is easy to factorn
using a factorization method of Fermat called the Fermat factorization
method.

Supposen = pq with p > q, say. Then

n =
�

p + q
2

� 2

�
�

p � q
2

� 2

:
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Sincep and q are \close",

s =
p � q

2
is small,

t =
p + q

2

is only slightly larger than
p

n, and t2 � n = s2 is a perfect square. So we
just try

t = d
p

ne; t = d
p

ne+ 1 ; t = d
p

ne+ 2 ; : : :

until t2 � n is a perfect squares2. (Here dxedenotes the least integern � x.)
Then

p = t + s; q = t � s:

Example 3.3.3. Supposen = 23360947609. Then
p

n = 152842:88: : : :

If t = 152843, then
p

t2 � n = 187:18: : :.
If t = 152844, then

p
t2 � n = 583:71: : :.

If t = 152845, then
p

t2 � n = 804 2 Z.
Thus s = 804. We �nd that p = t + s = 153649 andq = t � s = 152041.

SAGE Example 3.3.4. We implement the above algorithm for factoring an
RSA modulus n = pq, when one ofp and q is close to

p
n.

sage: def crack_when_pq_close(n):
... t = Integer(ceil(sqrt(n)))
... while True:
... k = t^2 - n
... if k > 0:
... s = Integer(int(round(sqrt(t^2 - n))))
... if s^2 + n == t^2:
... return t+s, t-s
...
... t += 1
...
sage: crack_when_pq_close(23360947609)
(153649, 152041)

For example, you might think that choosing a random prime, and the
next prime after would be a good idea, but instead it creates an easy-to-
crack crpytosystem.

sage: p = next_prime(2^128); p
340282366920938463463374607431768211507
sage: q = next_prime(p)
sage: crack_when_pq_close(p*q)
(340282366920938463463374607431768211537,

340282366920938463463374607431768211507)
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3.3.3 Factoring n Given d

In this section, we show that �nding the decryption key d for an RSA
cryptosystem is, in practice, at least as di�cult as factoring n. We give a
probabilistic algorithm that given a decryption key determines the factor-
ization of n.

Consider an RSA cryptosystem with modulusn and encryption key e.
Suppose we somehow �nding an integerd such that

aed � a (mod n)

for all a. Then m = ed � 1 satis�es am � 1 (mod n) for all a that are
coprime to n. As we saw in Section 3.3.1, knowing' (n) leads directly to a
factorization of n. Unfortunately, knowing d does not seem to lead easily to
a factorization of n. However, there is a probabilistic procedure that, given
an m such that am � 1 (mod n), will �nd a factorization of n with \high
probability" (we will not analyze the probability here).

Algorithm 3.3.5 (Probabilistic Algorithm to Factor n). Let n = pq be
the product of two distinct odd primes, and supposem is an integer such that
am � 1 (mod n) for all a coprime ton. This probabilistic algorithm factorsn
with \high probability". In the steps below,a always denotes an integer coprime
to n = pq.

1. [Divide out powers of 2] Ifm is even andam= 2 � 1 (mod n) for several
randomly chosena, set m = m=2, and go to step 1, otherwise leta be
such thatam= 2 6� 1 (mod n).

2. [Compute GCD] Choose a randoma and computeg = gcd(am= 2 � 1; n).

3. [Terminate?] Ifg is a proper divisor ofn, output g and terminate. Oth-
erwise go to step 2.

Before giving the proof we introduce some more terminology from alge-
bra.

De�nition 3.3.6 (Group Homomorphism). Let G and H be groups. A
map ' : G ! H is agroup homomorphismif for all a; b2 G we have' (ab) =
' (a)' (b). A group homomorphism is called surjective if for every c 2 H
there is a 2 G such that ' (a) = c. The kernel of a group homomorphism
' : G ! H is the set ker(' ) of elementsa 2 G such that ' (a) = 1. A group
homomorphism is injective if ker( ' ) = f 1g.

De�nition 3.3.7 (Subgroup). If G is a group andH is a subset ofG, then
H is a subgroupif H is a group under the group operation onG.

For example, if ' : G ! H is a group homomorphism, then ker(' ) is a
subgroup of G (see Exercise 2.21).

We now return to discussing Algorithm 3.3.5. In step 1, note that m is
even since (� 1)m � 1 (mod n), so it makes sense to considerm=2. It is not
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practical to determine whether or not am= 2 � 1 (mod n) for all a, because
it would require doing a computation for too many a. Instead, we try a
few random a; if am= 2 � 1 (mod n) for the a we check, we dividem by 2.
Also note that if there exists even a singlea such that am= 2 6� 1 (mod n),
then half the a have this property, since then a 7! am= 2 is a surjective
homomorphism (Z=nZ) � ! f� 1g and the kernel has index 2.

Proposition 2.5.3 implies that if x2 � 1 (mod p) then x = � 1 (mod p).
In step 2, since (am= 2)2 � 1 (mod n), we also have (am= 2)2 � 1 (mod p)
and (am= 2)2 � 1 (mod q), so am= 2 � � 1 (mod p) and am= 2 � � 1 (mod q).
Sinceam= 2 6� 1 (mod n), there are three possibilities for these signs, so with
probability 2 =3, one of the following two possibilities occurs:

1. am= 2 � +1 (mod p) and am= 2 � � 1 (mod q)

2. am= 2 � � 1 (mod p) and am= 2 � +1 (mod q):

The only other possibility is that both signs are � 1. In the �rst case,

p j am= 2 � 1 but q - am= 2 � 1;

so gcd(am= 2 � 1; pq) = p; and we have factoredn. Similarly, in the second
case, gcd(am= 2 � 1; pq) = q; and we again factorn.

Example 3.3.8. Somehow we discover that the RSA cryptosystem with

n = 32295194023343 and e = 29468811804857

has decryption key d = 11127763319273. We use this information and Al-
gorithm 3.3.5 to factor n. If

m = ed� 1 = 327921963064646896263108960;

then ' (pq) j m, so am � 1 (mod n) for all a coprime to n. For eacha � 20
we �nd that am= 2 � 1 (mod n), so we replacem by

m
2

= 163960981532323448131554480:

Again, we �nd with this new m that for each a � 20, am= 2 � 1 (mod n), so
we replacem by 81980490766161724065777240. Yet again, for eacha � 20,
am= 2 � 1 (mod n), so we replacem by 40990245383080862032888620. This
is enough, since 2m= 2 � 4015382800099 (modn). Then

gcd(2m= 2 � 1; n) = gcd(4015382800098; 32295194023343) = 737531;

and we have found a factor ofn. Dividing, we �nd that

n = 737531� 43788253:

SAGE Example 3.3.9. We implement Algorithm 3.3.5 in SAGE.
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sage: def crack_given_decrypt(n, m):
... n = Integer(n); m = Integer(m); # some type checking
... # Step 1: divide out powers of 2
... while True:
... if is_odd(m): break
... divide_out = True
... for i in range(5):
... a = randrange(1,n)
... if gcd(a,n) == 1:
... if Mod(a,n)^(m//2) != 1:
... divide_out = False
... break
... if divide_out:
... m = m//2
... else:
... break
... # Step 2: Compute GCD
... while True:
... a = randrange(1,n)
... g = gcd(lift(Mod(a, n)^(m//2)) - 1, n)
... if g != 1 and g != n:
... return g
...

We show how to verify Example 3.3.8 using SAGE.
sage: n=32295194023343; e=29468811804857; d=11127763319273
sage: crack_given_decrypt(n, e*d - 1)
737531
sage: factor(n)
737531 * 43788253

We try a much larger example.
sage: e = 22601762315966221465875845336488389513
sage: d = 31940292321834506197902778067109010093
sage: n = 268494924039590992469444675130990465673
sage: p = crack_given_decrypt(n, e*d - 1)
sage: p # random output (could be other prime divisor)
13432418150982799907
sage: n % p
0

3.3.4 Further Remarks

If one were to implement an actual RSA cryptosystem, there are many ad-
ditional tricks and ideas to keep in mind. For example, one can add some
extra random letters to each block of text, so that a given string will en-
crypt di�erently each time it is encrypted. This makes it more di�cult for
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an attacker who knows the encrypted and plaintext versions of one message
to gain information about subsequent encrypted messages. In any partic-
ular implementation, there might be attacks that would be devastating in
practice, but which wouldn't require factoring the RSA modulus.

RSA is in common use, e.g., it is used in OpenSSH protocol version 1
(seehttp://www.openssh.com/ ).

We will consider the ElGamal cryptosystem in Sections 6.4.2. It has a
similar 
avor to RSA, but is more 
exible in some ways.

Probably the best general purpose attack on RSA is the number �eld
sieve, which is a general algorithm for factoring integers of the formpq. A
description of the sieve is beyond the scope of this book.

SAGE Example 3.3.10. Here is a simple example of using a variant of the
number �eld sieve in SAGE to factor an RSA key with about 192 bits:

sage: n = next_prime(randrange(2^96))*next_prime(randr ange(2^97))
sage: v = qsieve(n) # takes a long time (less than a minute)
sage.: v # random output
([9198565782803667323524291559, 103444690435104030848257111301], '')

3.4 Exercises

3.1 This problem concerns encoding phrases using numbers using the
encoding of Section 3.2.2. What is the longest that an arbitrary se-
quence of letters (no spaces) can be if it must �t in a number that is
less than 1020?

3.2 Suppose Michael creates an RSA cryptosystem with a very large mod-
ulus n for which the factorization of n cannot be found in a reasonable
amount of time. Suppose that Nikita sends messages to Michael by
representing each alphabetic character as an integer between 0 and 26
(A corresponds to 1,B to 2, etc., and a space to 0), then encrypts
each number separately using Michael's RSA cryptosystem. Is this
method secure? Explain your answer.

3.3 For any n 2 N , let � (n) be the sum of the divisors ofn; for example,
� (6) = 1 + 2 + 3 + 6 = 12 and � (10) = 1 + 2 + 5 + 10 = 18. Suppose
that n = pqr with p, q, and r distinct primes. Devise an \e�cient"
algorithm that given n, ' (n) and � (n), computes the factorization
of n. For example, if n = 105, then p = 3, q = 5, and r = 7, so the
input to the algorithm would be

n = 105; ' (n) = 48 ; and � (n) = 192;

and the output would be 3, 5, and 7.
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3.4 You and Nikita wish to agree on a secret key using the Di�e-Hellman
key exchange. Nikita announces thatp = 3793 and g = 7. Nikita
secretly chooses a numbern < p and tells you that gn � 454 (mod p).
You choose the random numberm = 1208. What is the secret key?

3.5 You see Michael and Nikita agree on a secret key using the Di�e-
Hellman key exchange. Michael and Nikita choosep = 97 and g = 5.
Nikita chooses a random numbern and tells Michael that gn � 3
(mod 97), and Michael chooses a random numberm and tells Nikita
that gm � 7 (mod 97). Brute force crack their code: What is the
secret key that Nikita and Michael agree upon? What isn? What
is m?

3.6 In this problem, you will \crack" an RSA cryptosystem. What is the
secret decoding numberd for the RSA cryptosystem with public key
(n; e) = (5352381469067; 4240501142039)?

3.7 Nikita creates an RSA cryptosystem with public key

(n; e) = (1433811615146881; 329222149569169):

In the following two problems, show the steps you take to factorn.
(Don't simply factor n directly using a computer.)

(a) Somehow you discover thatd = 116439879930113. Show how
to use the probabilistic algorithm of Section 3.3.3 to used to
factor n.

(b) In part (a) you found that the factors p and q of n are very
close. Show how to use the Fermat factorization method of Sec-
tion 3.3.2 to factor n.
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4
Quadratic Reciprocity

It is straightforward to decide whether or not the linear equation

ax � b (mod n)

has a solution | it has a solution if and only if gcd( a; n) divides b (see
Proposition 2.1.14). This chapter is about some amazing mathematics mo-
tivated by the search for a criterion for whether or not a given quadratic
equation

ax2 + bx + c � 0 (mod n)

has a solution. In many cases, the Chinese Remainder Theorem and the
quadratic formula reduce this to the key question of whether a given integer
a is a perfect square modulo a primep.

The quadratic reciprocity law of Gauss provides a precise answer to the
following question: For which primes p is the image of a in (Z=pZ) � a
perfect square? Amazingly, the answer depends only on the reduction ofp
modulo 4a.

There are over a hundred proofs of the quadratic reciprocity law (see
[Lem] for a long list). In this chapter we give two proofs. The �rst, which
we give in Section 4.3, is completely elementary and involves keeping track
of integer points in intervals. It is satisfying because one can understand
every detail without much abstraction, but it is unsatisfying because it is
di�cult to conceptualize what is going on. In sharp contrast, our second
proof, which we give in Section 4.4, in more abstract and uses a conceptual
development of properties of Gauss sums. You should read Sections 4.1 and
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4.2, then at least one of Section 4.3 or Section 4.4, depending on your taste
and how much abstract algebra you know.

In Section 4.5, we return to the computational question of actually �nd-
ing square roots and solving quadratic equations in practice.

4.1 Statement of the Quadratic Reciprocity Law

In this section we state the quadratic reciprocity law.

De�nition 4.1.1 (Quadratic Residue). Fix a prime p. An integer a not
divisible by p is a quadratic residue modulo p if a is a square modulop;
otherwise, a is a quadratic nonresidue.

For example, the squares modulo 5 are

12 = 1 ; 22 = 4 ; 32 = 4 ; 42 = 1 ; (mod 5)

so 1 and 4 are both quadratic residues and 2 and 3 are quadratic non-
residues.

The quadratic reciprocity theorem is the deepest theorem that we will
prove in this book. It connects the question of whether or not a is a
quadratic residue modulo p to the question of whether p is a quadratic
residue modulo each of the prime divisors ofa. To express it precisely, we
introduce some new notation.

De�nition 4.1.2 (Legendre Symbol). Let p be an odd prime and leta be
an integer coprime to p. Set

�
a
p

�
=

(
+1 if a is a quadratic residue, and
� 1 otherwise:

We call this symbol the Legendre Symbol.

For example, we have
�

1
5

�
= 1 ;

�
2
5

�
= � 1;

�
3
5

�
= � 1;

�
4
5

�
= 1 :

This notation is well entrenched in the literature even though it is also
the notation for \ a divided by p"; be careful not to confuse the two.

SAGE Example 4.1.3. Use the commandlegendre symbol to compute the
Legendre symbol in SAGE.

sage: legendre_symbol(2,3)
-1
sage: legendre_symbol(1,3)
1
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sage: legendre_symbol(3,5)
-1
sage: legendre_symbol(Mod(3,5), 5)
-1

Since
�

a
p

�
only depends ona (mod p), it makes sense to de�ne

�
a
p

�
for

a 2 Z=pZ to be
�

~a
p

�
for any lift ~a of a to Z.

Recall (see De�nition 3.3.6) that a group homomorphism ' : G ! H is
a map such that for every a; b 2 G we have ' (ab) = ' (a)' (b). Moreover,
we say that ' is surjective if for every c 2 H there is an a 2 G with
' (a) = c. The next lemma explains how the quadratic residue symbol
de�nes a surjective group homomorphism.

Lemma 4.1.4. The map  : (Z=pZ) � ! f� 1g given by  (a) =
�

a
p

�
is a

surjective group homomorphism.

Proof. By Theorem 2.5.8, primitive roots exist, so there isg 2 (Z=pZ) �

such that the elements of (Z=pZ) � are

g; g2; : : : ; g(p� 1)=2; g(p+1) =2; : : : ; gp� 1 = 1 :

Sincep � 1 is even, the squares of elements of (Z=pZ) � are

g2; g4; : : : ; g(p� 1)=2�2 = 1 ; gp+1 = g2; : : : ; g2(p� 1) :

Note that the powers of g starting with gp+1 = g2 all appeared earlier
on the list. Thus the perfect squares in (Z=pZ) � are exactly the powers
gn with n = 2 ; 4; : : : ; p � 1, even, and the nonsquares the powersgn with
n = 1 ; 3; : : : ; p � 2, odd. It follows that  is a homomorphism since an odd
plus an odd is even, the sum of two evens is even, and and odd plus an even
is odd. Moreover, sinceg is not a square, (g) = � 1, so is surjective.

Remark 4.1.5. We rephrase the above proof in the language of group theory.
The group G = ( Z=pZ) � of order p � 1 is a cyclic group. Sincep is odd,
p � 1 is even, so the subgroupH of squares of elements ofG has index 2
in G. (See Exercise 4.2 for whyH is a subgroup.) Since

�
a
p

�
= 1 if and

only if a 2 H , we see that is the composition G ! G=H �= f� 1g, where
we identify the nontrivial element of G=H with � 1.

Remark 4.1.6. We can alternatively prove that  is surjective without using
that ( Z=pZ) � is cyclic, as follows. If a 2 (Z=pZ) � is a square, saya � b2

(mod p), then a(p� 1)=2 = bp� 1 � 1 (mod p), so a is a root of f = x (p� 1)=2 �
1. By Proposition 2.5.3, the polynomial f has at most (p� 1)=2 roots. Thus
there must be an a 2 (Z=pZ) � that is not a root of f , and for that a, we

have  (a) =
�

a
p

�
= � 1, and trivially  (1) = 1, so the map  is surjective.

Note that this argument does not prove that  is a homomorphism.
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TABLE 4.1. When is 5 a square modulo p?

p
�

5
p

�
p mod 5

7 � 1 2
11 1 1
13 � 1 3
17 � 1 2
19 1 4
23 � 1 3

p
�

5
p

�
p mod 5

29 1 4
31 1 1
37 � 1 2
41 1 1
43 � 1 3
47 � 1 2

The symbol
�

a
p

�
only depends on the residue class ofa modulo p, so

making a table of values
�

a
5

�
for many values ofa would be easy. Would it

be easy to make a table of
�

5
p

�
for many p? Perhaps, since thereappears

to be a simple pattern in Table 4.1. It seems that
�

5
p

�
depends only on

the congruence class ofp modulo 5. More precisely,
�

5
p

�
= 1 if and only if

p � 1; 4 (mod 5), i.e.,
�

5
p

�
= 1 if and only if p is a square modulo 5.

Based on similar observations, in the 18th century various mathemati-
cians found a conjectural explanation for the mystery suggested by Ta-
ble 4.1. Finally, on April 8, 1796, at the age of 19, Gauss proved the fol-
lowing theorem.

Theorem 4.1.7 (Gauss's Quadratic Reciprocity Law). Supposep and q
are distinct odd primes. Then

�
p
q

�
= ( � 1)

p � 1
2 � q � 1

2

�
q
p

�
:

Also
�

� 1
p

�
= ( � 1)(p� 1)=2 and

�
2
p

�
=

(
1 if p � � 1 (mod 8)

� 1 if p � � 3 (mod 8):

We will give two proofs of Gauss's formula relating
�

p
q

�
to

�
q
p

�
. The �rst

elementary proof is in Section 4.3, and the second more algebraic proof is
in Section 4.4.

In our example Gauss's theorem implies that

�
5
p

�
= ( � 1)2� p � 1

2

� p
5

�
=

� p
5

�
=

(
+1 if p � 1; 4 (mod 5)
� 1 if p � 2; 3 (mod 5):

As an application, the following example illustrates how to answer ques-
tions like \is a a square modulob" using Theorem 4.1.7.
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Example 4.1.8. Is 69 a square modulo the prime 389? We have
�

69
389

�
=

�
3 � 23
389

�
=

�
3

389

�
�
�

23
389

�
= ( � 1) � (� 1) = 1 :

Here �
3

389

�
=

�
389
3

�
=

�
2
3

�
= � 1;

and
�

23
389

�
=

�
389
23

�
=

�
21
23

�
=

�
� 2
23

�

=
�

� 1
23

� �
2
23

�
= ( � 1)

23 � 1
2 � 1 = � 1:

Thus 69 is a square modulo 389.

SAGE Example 4.1.9. We could also do this computation in SAGE as
follows:

sage: legendre_symbol(69,389)
1

Though we know that 69 is a square modulo 389, we don't know an
explicit x such that x2 � 69 (mod 389)! This is reminiscent of how we could
prove using Theorem 2.1.19 that certain numbers are composite without
knowing a factorization.

Remark 4.1.10. The Jacobi symbol is an extension of the Legendre symbol
to composite moduli. For more details, see Exercise 4.9.

4.2 Euler's Criterion

Let p be an odd prime and a an integer not divisible by p. Euler used
the existence of primitive roots to show that

�
a
p

�
is congruent to a(p� 1)=2

modulo p. We will use this fact repeatedly below in both proofs of Theo-
rem 4.1.7.

Proposition 4.2.1 (Euler's Criterion) . We have
�

a
p

�
= 1 if and only if

a(p� 1)=2 � 1 (mod p):

Proof. The map ' : (Z=pZ) � ! (Z=pZ) � given by ' (a) = a(p� 1)=2 is a
group homomorphism, since powering is a group homomorphism of any
abelian group (see Exercise 4.2). Let : (Z=pZ) � ! f� 1g be the homo-

morphism  (a) =
�

a
p

�
of Lemma 4.1.4. Ifa 2 ker( ), then a = b2 for some

b 2 (Z=pZ) � , so

' (a) = a(p� 1)=2 = ( b2)(p� 1)=2 = bp� 1 = 1 :
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Thus ker( ) � ker(' ). By Lemma 4.1.4, ker( ) has index 2 in (Z=pZ) � ,
i.e., #( Z=pZ) � = 2 � # ker(  ). Since the kernel of a homomorphism is a
group, and the order of a subgroup divides the order of the group, we have
either ker(' ) = ker(  ) or ' = 1. If ' = 1, the polynomial x (p� 1)=2 � 1 has
p � 1 roots in the �eld Z=pZ, which contradicts Proposition 2.5.3. Thus
ker(' ) = ker(  ), which proves the proposition.

SAGE Example 4.2.2. From a computational point of view, Corollary 4.2.3
provides a convenient way to compute

�
a
p

�
, which we illustrate in SAGE:

sage: def kr(a, p):
... if Mod(a,p)^((p-1)//2) == 1:
... return 1
... else:
... return -1
sage: for a in range(1,5):
... print a, kr(a,5)
1 1
2 -1
3 -1
4 1

Corollary 4.2.3. The equation x2 � a (mod p) has no solution if and

only if a(p� 1)=2 � � 1 (mod p). Thus
�

a
p

�
� a(p� 1)=2 (mod p).

Proof. This follows from Proposition 4.2.1 and the fact that the polyno-
mial x2 � 1 has no roots besides +1 and� 1 (which follows from Proposi-
tion 2.5.5).

As additional computational motivation for the value of Corollary 4.2 .3,
note that to evaluate

�
a
p

�
using Theorem 4.1.7 would not be practical ifa

and p are both very large, because it would require factoringa. However,
Corollary 4.2.3 provides a method for evaluating

�
a
p

�
without factoring a.

Example 4.2.4. Supposep = 11. By squaring each element of (Z=11Z) � , we
see that the squares modulo 11 aref 1; 3; 4; 5; 9g. We computea(p� 1)=2 = a5

for each a 2 (Z=11Z) � and get

15 = 1 ; 25 = � 1; 35 = 1 ; 45 = 1 ; 55 = 1 ;

65 = � 1; 75 = � 1; 85 = � 1; 95 = 1 ; 105 = � 1:

Thus the a with a5 = 1 are f 1; 3; 4; 5; 9g, just as Proposition 4.2.1 predicts.

Example 4.2.5. We determine whether or not 3 is a square modulo the
prime p = 726377359. Using SAGE we �nd that

sage: p = 726377359
sage: Mod(3, p)^((p-1)//2)
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726377358
so

3(p� 1)=2 � � 1 (mod 726377359):

Thus 3 is not a square modulop. This computation wasn't di�cult, but
it would have been tedious by hand. Since 3 is small, the law of quadratic
reciprocity provides a way to answer this question, which could easily be
carried out by hand:

�
3

726377359

�
= ( � 1)(3 � 1)=2�(726377359 � 1)=2

�
726377359

3

�

= ( � 1) �
�

1
3

�
= � 1:

4.3 First Proof of Quadratic Reciprocity

Our �rst proof of quadratic reciprocity is elementary. The proof involves
keeping track of integer points in intervals. Proving Gauss's lemma is the
�rst step; this lemma computes

�
a
p

�
in terms of the number of integers of

a certain type that lie in a certain interval. Next we prove Lemma 4.3.3,
which controls how the parity of the number of integer points in an interval
changes when an endpoint of the interval is changed. Then we prove that�

a
p

�
depends only onp modulo 4a by applying Gauss's lemma and keep-

ing careful track of intervals as they are rescaled and their endpoints are
changed. Finally, in Section 4.3.2 we use some basic algebra to deduce the
quadratic reciprocity law using the tools we've just developed. Our proof
follows the one given in [Dav99] closely.

Lemma 4.3.1 (Gauss's Lemma). Let p be an odd prime and leta be an
integer 6� 0 (mod p). Form the numbers

a; 2a; 3a; : : : ;
p � 1

2
a

and reduce them modulop to lie in the interval (� p
2 ; p

2 ), i.e., for each of the
above numberska �nd a number in the interval (� p

2 ; p
2 ) that is congruent

to ka modulo p. Let � be the number of negative numbers in the resulting
set. Then �

a
p

�
= ( � 1)� :

Proof. In de�ning � , we expressed each number in

S =
�

a;2a; : : : ;
p � 1

2
a
�
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as congruent to a number in the set
�

1; � 1; 2; � 2; : : : ;
p � 1

2
; �

p � 1
2

�
:

No number 1; 2; : : : ; p� 1
2 appears more than once, with either choice of

sign, because if it did then either two elements ofS are congruent modulop
or 0 is the sum of two elements ofS, and both events are impossible (the
former case cannot occur because of cancellation modulop, and in the latter
case we would have thatka + ja � 0 (mod p) for 1 � k; j � (p � 1)=2, so
k + j � 0 (mod p), a contradiction). Thus the resulting set must be of the
form

T =
�

"1 � 1; "2 � 2; : : : ; " (p� 1)=2 �
p � 1

2

�
;

where each" i is either +1 or � 1. Multiplying together the elements of S
and of T, we see that

(1a) � (2a) � (3a) � � �
�

p � 1
2

a
�

�

("1 � 1) � ("2 � 2) � � �
�

" (p� 1)=2 �
p � 1

2

�
(mod p);

so
a(p� 1)=2 � "1 � "2 � � � " (p� 1)=2 (mod p):

The lemma then follows from Proposition 4.2.1, since
�

a
p

�
= a(p� 1)=2.

SAGE Example 4.3.2. We illustrate Gauss's lemma using SAGE. The func-
tion gauss below prints out a list of the normalized numbers appearing in
the statement of Gauss's lemma, and returns (� 1)� . In each case below,

(� 1)� =
�

a
p

�
.

sage: def gauss(a, p):
... # make the list of numbers reduced modulo p
... v = [(n*a)%p for n in range(1, (p-1)//2 + 1)]
... # normalize them to be in the range -p/2 to p/2
... v = [(x if (x < p/2) else x - p) for x in v]
... # sort and print the resulting numbers
... v.sort()
... print v
... # count the number that are negative
... num_neg = len([x for x in v if x < 0])
... return (-1)^num_neg
sage: gauss(2, 13)
[-5, -3, -1, 2, 4, 6]
-1
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sage: legendre_symbol(2,13)
-1
sage: gauss(4, 13)
[-6, -5, -2, -1, 3, 4]
1
sage: legendre_symbol(4,13)
1
sage: gauss(2,31)
[-15, -13, -11, -9, -7, -5, -3, -1, 2, 4, 6, 8, 10, 12, 14]
1
sage: legendre_symbol(2,31)
1

4.3.1 Euler's Proposition

For rational numbers a; b2 Q, let

(a; b) \ Z = f x 2 Z : a � x � bg

be the set of integers betweena and b. The following lemma will help us to
keep track of how many integers lie in certain intervals.

Lemma 4.3.3. Let a; b2 Q. Then for any integer n,

# (( a; b) \ Z) � # (( a; b+ 2n) \ Z) (mod 2)

and
# (( a; b) \ Z) � # (( a � 2n; b) \ Z) (mod 2);

provided that each interval involved in the congruence is nonempty.

Note that if one of the intervals is empty, then the statement may be
false; e.g., if (a; b) = ( � 1=2; 1=2) and n = � 1 then #(( a; b) \ Z) = 1 but
#( a; b� 2) \ Z = 0.

Proof. Let dxe denotes the least integer� x. Sincen > 0,

(a; b+ 2n) = ( a; b) [ [b; b+ 2n);

where the union is disjoint. There are 2n integers,

dbe; dbe+ 1 ; : : : ; dbe+ 2n � 1;

in the interval [ b; b+ 2n), so the �rst congruence of the lemma is true in
this case. We also have

(a; b� 2n) = ( a; b) minus [b� 2n; b)

and [b� 2n; b) contains exactly 2n integers, so the lemma is also true whenn
is negative. The statement about # (( a � 2n; b) \ Z) is proved in a similar
manner.
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Once we have proved the following proposition, it will be easy to deduce
the quadratic reciprocity law.

Proposition 4.3.4 (Euler) . Let p be an odd prime and leta be a positive

integer with p - a. If q is a prime with q � � p (mod 4a), then
�

a
p

�
=

�
a
q

�
.

Proof. We will apply Lemma 4.3.1 to compute
�

a
p

�
. Let

S =
�

a;2a;3a; : : : ;
p � 1

2
a
�

and

I =
�

1
2

p; p
�

[
�

3
2

p;2p
�

[ � � � [
��

b�
1
2

�
p; bp

�
;

where b = 1
2 a or 1

2 (a � 1), whichever is an integer.
We check that every element ofS that is equivalent modulo p to some-

thing in the interval ( � p
2 ; 0) lies in I . First suppose that b = 1

2 a. Then

bp=
1
2

ap =
p
2

a >
p � 1

2
a;

so each element ofS that is equivalent modulo p to an element of (� p
2 ; 0)

lies in I . Next suppose that b = 1
2 (a � 1). Then

bp+
p
2

=
a � 1

2
p +

p
2

=
p � 1 + a

2
>

p � 1
2

a;

so ((b� 1
2 )p; bp) is the last interval that could contain an element of S that

reduces to (� p
2 ; 0). Note that the integer endpoints of I are not in S, since

those endpoints are divisible byp, but no element of S is divisible by p.
Thus, by Lemma 4.3.1,

�
a
p

�
= ( � 1)#( S\ I ) :

To compute #( S \ I ), �rst rescale by a to see that

#( S \ I ) = #
�

1
a

S \
1
a

I
�

= #
�

Z \
1
a

I
�

;

where

1
a

I =
� � p

2a
;

p
a

�
[

�
3p
2a

;
2p
a

�
[ � � � [

�
(2b� 1)p

2a
;

bp
a

��
;

1
a S = f 1; 2; 3; 4; : : : ; (p � 1)=2g, and the second equality is because1a I �
(0; (p � 1)=2 + 1=2], since

pb
a

�
pa

2

a
=

p
2

=
p � 1

2
+

1
2

:
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Write p = 4ac+ r , and let

J =
� � r

2a
;

r
a

�
[

�
3r
2a

;
2r
a

�
[ � � � [

�
(2b� 1)r

2a
;

br
a

��
:

The only di�erence between 1
a I and J is that the endpoints of intervals are

changed by addition of an even integer, since

r
2a

�
p
2a

=
p
2a

� 2c �
p
2a

= � 2c:

By Lemma 4.3.3,

� = #
�

Z \
1
a

I
�

� #( Z \ J ) (mod 2):

Thus
�

a
p

�
= ( � 1)� depends only onr and a, i.e., only on p modulo 4a.

Thus if q � p (mod 4a), then
�

a
p

�
=

�
a
q

�
.

If q � � p (mod 4a), then the only change in the above computation is
that r is replaced by 4a � r . This changesJ into

K =
�

2 �
r
2a

; 4 �
r
a

�
[

�
6 �

3r
2a

; 8 �
2r
a

�
[ � � �

[
�

4b� 2 �
(2b� 1)r

2a
; 4b�

br
a

�
:

Thus K is the same as� J , except even integers have been added to the
endpoints. By Lemma 4.3.3,

#( K \ Z) � #
�

1
a

I \ Z
�

(mod 2);

so
�

a
p

�
=

�
a
q

�
again, which completes the proof.

The following more careful analysis in the special case whena = 2 helps
illustrate the proof of the above lemma, and the result is frequently useful in
computations. For an alternative proof of the proposition, see Exercise 4.6.

Proposition 4.3.5 (Legendre symbol of 2). Let p be an odd prime. Then

�
2
p

�
=

(
1 if p � � 1 (mod 8)

� 1 if p � � 3 (mod 8):

Proof. When a = 2, the set S = f a;2a; : : : ; 2 � p� 1
2 g is

f 2; 4; 6; : : : ; p � 1g:
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We must count the parity of the number of elements of S that lie in the
interval I = ( p

2 ; p). Writing p = 8c + r , we have

# ( I \ S) = #
�

1
2

I \ Z
�

= #
�� p

4
;

p
2

�
\ Z

�

= #
��

2c +
r
4

; 4c +
r
2

�
\ Z

�
� #

�� r
4

;
r
2

�
\ Z

�
(mod 2);

where the last equality comes from Lemma 4.3.3. The possibilities forr are
1; 3; 5; 7. When r = 1, the cardinality is 0, when r = 3 ; 5 it is 1, and when
r = 7 it is 2.

4.3.2 Proof of Quadratic Reciprocity

It is now straightforward to deduce the quadratic reciprocity law.

First Proof of Theorem 4.1.7. First suppose that p � q (mod 4). By swap-
ping p and q if necessary, we may assume thatp > q, and write p� q = 4a.
Sincep = 4a + q,

�
p
q

�
=

�
4a + q

q

�
=

�
4a
q

�
=

�
4
q

� �
a
q

�
=

�
a
q

�
;

and �
q
p

�
=

�
p � 4a

p

�
=

�
� 4a

p

�
=

�
� 1
p

�
�
�

a
p

�
:

Proposition 4.3.4 implies that
�

a
q

�
=

�
a
p

�
, sincep � q (mod 4a). Thus

�
p
q

�
�
�

q
p

�
=

�
� 1
p

�
= ( � 1)

p � 1
2 = ( � 1)

p � 1
2 � q � 1

2 ;

where the last equality is becausep� 1
2 is even if and only if q� 1

2 is even.
Next suppose thatp 6� q (mod 4), sop � � q (mod 4). Write p+ q = 4a.

We have
�

p
q

�
=

�
4a � q

q

�
=

�
a
q

�
; and

�
q
p

�
=

�
4a � p

p

�
=

�
a
p

�
:

Sincep � � q (mod 4a), Proposition 4.3.4 implies that
�

a
q

�
=

�
a
p

�
. Since

(� 1)
p � 1

2 � q � 1
2 = 1, the proof is complete.
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4.4 A Proof of Quadratic Reciprocity Using Gauss
Sums

In this section we present a beautiful proof of Theorem 4.1.7 using algebraic
identities satis�ed by sums of \roots of unity". The objects we introduce
in the proof are of independent interest, and provide a powerful tool to
prove higher-degree analogues of quadratic reciprocity. (For more on higher
reciprocity see [IR90]. See also Section 6 of [IR90] on which the proof below
is modeled.)

De�nition 4.4.1 (Root of Unity) . An nth root of unity is a complex
number � such that � n = 1. A root of unity � is a primitive nth root of
unity if n is the smallest positive integer such that� n = 1.

For example, � 1 is a primitive second root of unity, and � =
p

� 3� 1
2 is

a primitive cube root of unity. More generally, for any n 2 N the complex
number

� n = cos(2�=n ) + i sin(2�=n )

is a primitive nth root of unity (this follows from the identity ei� = cos(� )+
i sin(� )). For the rest of this section, we �x an odd prime p and the primitive
pth root � = � p of unity.

SAGE Example 4.4.2. In SAGE use the CyclotomicField command to
create an exactpth root of � unity. Expressions in � are always re-expressed
as polynomials in � of degree at mostp � 1.

sage: K.<zeta> = CyclotomicField(5)
sage: zeta^5
1
sage: 1/zeta
-zeta^3 - zeta^2 - zeta - 1

De�nition 4.4.3 (Gauss Sum). Fix an odd prime p. The Gauss sumas-
sociated to an integera is

ga =
p� 1X

n =0

�
n
p

�
� an ;

where � = � p = cos(2�=p ) + i sin(2�=p ).

Note that p is implicit in the de�nition of ga . If we were to changep,
then the Gauss sumga associated toa would be di�erent. The de�nition
of ga also depends on our choice of� ; we've chosen� = � p, but could have
chosen a di�erent � and then ga could be di�erent.

SAGE Example 4.4.4. We de�ne in SAGE a function gauss sumand com-
pute the Gauss sumg2 for p = 5:

sage: def gauss_sum(a,p):
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� 1
+1

+1
� 1

� = e2�i= 5

� 2

� 3

� 4

g2 =
�

0
5

�
+

�
1
5

�
� 2 +

�
2
5

�
� 4 +

�
3
5

�
� +

�
4
5

�
� 3 = �

p
5

g2
2 = 5

1 2 3 4 5� 3 � 2

FIGURE 4.1. Gauss sum g2 for p = 5

... K.<zeta> = CyclotomicField(p)

... return sum(legendre_symbol(n,p) * zeta^(a*n) for n in r ange(p))
sage: g2 = gauss_sum(2,5); g2
2*zeta^3 + 2*zeta^2 + 1
sage: g2.complex_embedding()
-2.23606797749979 + 0.000000000000000333066907387547*I
sage: g2^2
5

Here g2 is initially output as a polynomial in � 5, so there is no loss of
precision. The complex embeddingcommand shows some embedding ofg2

into the complex numbers, which is only correct to about the �rst 15 digits.
Note that g2

2 = 5, so g2 = �
p

5.

Figure 4.1 illustrates the Gauss sumg2 for p = 5. The Gauss sum is
obtained by adding the points on the unit circle, with signs as indicated,
to obtain the real number �

p
5. This suggests the following proposition,

whose proof will require some work.

Proposition 4.4.5 (Gauss sum). For any a not divisible by p,

g2
a = ( � 1)(p� 1)=2p:

SAGE Example 4.4.6. We illustrate using SAGE that the proposition is
correct for p = 7 and p = 13:

sage: [gauss_sum(a, 7)^2 for a in range(1,7)]
[-7, -7, -7, -7, -7, -7]
sage: [gauss_sum(a, 13)^2 for a in range(1,13)]
[13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13]

In order to prove the proposition, we introduce a few lemmas.

Lemma 4.4.7. For any integer a,

p� 1X

n =0

� an =

(
p if a � 0 (mod p),
0 otherwise.
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Proof. If a � 0 (mod p), then � a = 1, so the sum equals the number of
summands, which isp. If a 6� 0 (mod p), then we use then identity

xp � 1 = ( x � 1)(xp� 1 + � � � + x + 1)

with x = � a . We have � a 6= 1, so � a � 1 6= 0 and

p� 1X

n =0

� an =
� ap � 1
� a � 1

=
1 � 1
� a � 1

= 0 :

Lemma 4.4.8. If x and y are arbitrary integers, then

p� 1X

n =0

� (x � y )n =

(
p if x � y (mod p);
0 otherwise:

Proof. This follows from Lemma 4.4.7 by settinga = x � y.

Lemma 4.4.9. We haveg0 = 0 .

Proof. By de�nition

g0 =
p� 1X

n =0

�
n
p

�
: (4.4.1)

By Lemma 4.1.4, the map
�

�
p

�
: (Z=pZ) � ! f� 1g

is a surjective homomorphism of groups. Thus half the elements of (Z=pZ) �

map to +1 and half map to � 1 (the subgroup that maps to +1 has index

2). Since
�

0
p

�
= 0, the sum (4.4.1) is 0.

Lemma 4.4.10. For any integer a,

ga =
�

a
p

�
g1:

Proof. When a � 0 (mod p) the lemma follows from Lemma 4.4.9, so sup-
pose that a 6� 0 (mod p). Then

�
a
p

�
ga =

�
a
p

� p� 1X

n =0

�
n
p

�
� an =

p� 1X

n =0

�
an
p

�
� an =

p� 1X

m =0

�
m
p

�
� m = g1:

Here we use that multiplication by a is an automorphism ofZ=pZ. Finally,

multiply both sides by
�

a
p

�
and use that

�
a
p

� 2
= 1.
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We have enough lemmas to prove Proposition 4.4.5.

Proof of Proposition 4.4.5. We evaluate the sum
P p� 1

a=0 gag� a in two dif-
ferent ways. By Lemma 4.4.10, sincea 6� 0 (mod p) we have

gag� a =
�

a
p

�
g1

�
� a
p

�
g1 =

�
� 1
p

� �
a
p

� 2

g2
1 = ( � 1)(p� 1)=2g2

1 ;

where the last step follows from Proposition 4.2.1 and that
�

a
p

�
2 f� 1g.

Thus
p� 1X

a=0

gag� a = ( p � 1)(� 1)(p� 1)=2g2
1 : (4.4.2)

On the other hand, by de�nition

gag� a =
p� 1X

n =0

�
n
p

�
� an �

p� 1X

m =0

�
m
p

�
� � am

=
p� 1X

n =0

p� 1X

m =0

�
n
p

� �
m
p

�
� an � � am

=
p� 1X

n =0

p� 1X

m =0

�
n
p

� �
m
p

�
� an � am :

Let � (n; m) = 1 if n � m (mod p) and 0 otherwise. By Lemma 4.4.8,

p� 1X

a=0

gag� a =
p� 1X

a=0

p� 1X

n =0

p� 1X

m =0

�
n
p

� �
m
p

�
� an � am

=
p� 1X

n =0

p� 1X

m =0

�
n
p

� �
m
p

� p� 1X

a=0

� an � am

=
p� 1X

n =0

p� 1X

m =0

�
n
p

� �
m
p

�
p� (n; m)

=
p� 1X

n =0

�
n
p

� 2

p

= p(p � 1):

Equate (4.4.2) and the above equality, then cancel (p � 1) to see that

g2
1 = ( � 1)(p� 1)=2p:

Sincea 6� 0 (mod p), we have
�

a
p

� 2
= 1, so by Lemma 4.4.10,

g2
a =

�
a
p

� 2

g2
1 = g2

1 ;
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and the proposition is proved.

4.4.1 Proof of Quadratic Reciprocity

We are now ready to prove Theorem 4.1.7 using Gauss sums.

Proof. Let q be an odd prime with q 6= p. Set p� = ( � 1)(p� 1)=2p and recall

that Proposition 4.4.5 asserts that p� = g2, where g = g1 =
P p� 1

n =0

�
n
p

�
� n .

Proposition 4.2.1 implies that

(p� )(q� 1)=2 �
�

p�

q

�
(mod q):

We have gq� 1 = ( g2)(q� 1)=2 = ( p� )(q� 1)=2, so multiplying both sides of the
displayed equation by g yields a congruence

gq � g
�

p�

q

�
(mod q): (4.4.3)

But wait, what does this congruence mean, given thatgq is not an in-
teger? It means that the di�erence gq � g

�
p�

q

�
lies in the ideal (q) in the

ring Z[� ] of all polynomials in � with coe�cients in Z.
The ring Z[� ]=(q) has characteristic q, so if x; y 2 Z[� ], then (x + y)q �

xq + yq (mod q). Applying this to (4.4.3), we see that

gq =

 
p� 1X

n =0

�
n
p

�
� n

! q

�
p� 1X

n =0

�
n
p

� q

� nq �
p� 1X

n =0

�
n
p

�
� nq � gq (mod q):

By Lemma 4.4.10,

gq � gq �
�

q
p

�
g (mod q):

Combining this with (4.4.3) yields
�

q
p

�
g �

�
p�

q

�
g (mod q):

Since g2 = p� and p 6= q, we can cancelg from both sides to �nd that�
q
p

�
�

�
p�

q

�
(mod q). Since both residue symbols are� 1 and q is odd, it

follows that
�

q
p

�
=

�
p�

q

�
. Finally, we note using Proposition 4.2.1 that

�
p�

q

�
=

�
(� 1)(p� 1)=2p

q

�
=

�
� 1
q

� (p� 1)=2 �
p
q

�
= ( � 1)

q � 1
2 � p � 1

2 �
�

p
q

�
:
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4.5 Finding Square Roots

We return in this section to the question of computing square roots. IfK
is a �eld in which 2 6= 0, and a; b; c2 K , with a 6= 0, then the solutions to
the quadratic equation ax2 + bx + c = 0 are

x =
� b�

p
b2 � 4ac

2a
:

Now assumeK = Z=pZ, with p an odd prime. Using Theorem 4.1.7, we
can decide whether or notb2 � 4ac is a perfect square inZ=pZ, and hence
whether or not ax2 + bx + c = 0 has a solution in Z=pZ. However Theo-
rem 4.1.7 says nothing about how to actually �nd a solution when there is
one. Also, note that for this problem we donot need the full quadratic reci-
procity law; in practice to decide whether an element ofZ=pZ is a perfect
square Proposition 4.2.1 is quite fast, in view of Section 2.3.

Supposea 2 Z=pZ is a nonzero quadratic residue. Ifp � 3 (mod 4) then
b = a

p +1
4 is a square root ofa because

b2 = a
p +1

2 = a
p � 1

2 +1 = a
p � 1

2 � a =
�

a
p

�
� a = a:

We can computeb in time polynomial in the number of digits of p using
the powering algorithm of Section 2.3.

Suppose next that p � 1 (mod 4). Unfortunately, we do not know a
deterministic algorithm that takes as input a and p, outputs a square root
of a modulo p when one exists, and is polynomial-time in log(p).

Remark 4.5.1. There is an algorithm due to Schoof [Sch85] that computes
the square root of a in time O((

p
(jaj)1=2+ " � log(p))9). This beautiful al-

gorithm (which makes use of elliptic curves) is not polynomial time in the
sense described above since for largea it takes exponentially longer than
for small a.

We next describe a probabilistic algorithm to compute a square root ofa
modulo p, which is very quick in practice. Recall the de�nition of ring from
De�nition 2.1.3. We will also need the notion of ring homomorphism and
isomorphism.

De�nition 4.5.2 (Homomorphism of Rings). Let R and S be rings. A
homomorphism of rings ' : R ! S is a map such that for all a; b 2 R we
have

� ' (ab) = ' (a)' (b),

� ' (a + b) = ' (a) + ' (b), and

� ' (1) = 1.
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An isomorphism ' : R ! S of rings is a ring homomorphism that is
bijective.

Consider the (quotient) ring

R = ( Z=pZ)[x]=(x2 � a)

de�ned as follows. We have

R = f u + v� : u; v 2 Z=pZg

with multiplication de�ned by

(u + v� )(z + w� ) = ( uz + awv) + ( uw + vz)�:

Here � corresponds to the class ofx in the quotient ring.

SAGE Example 4.5.3. We de�ne and work with the quotient ring R above
in SAGE as follows (for p = 13):

sage: S.<x> = PolynomialRing(GF(13))
sage: R.<alpha> = S.quotient(x^2 - 3)
sage: (2+3*alpha)*(1+2*alpha)
7*alpha + 7

Let b and c be the square roots ofa in Z=pZ (though we cannot easily
compute b and c yet, we can consider them in order to deduce an algorithm
to �nd them). We have ring homomorphisms f : R ! Z=pZ and g : R !
Z=pZ given by f (u + v� ) = u + vb and g(u + v� ) = u + vc. Together these
de�ne a ring isomorphism

' : R �! Z=pZ � Z=pZ

given by ' (u + v� ) = ( u + vb; u + vc). Choose in some way a random
element z of (Z=pZ) � , and de�ne u; v 2 Z=pZ by

u + v� = (1 + z� )
p � 1

2 ;

where we compute (1 +z� )
p � 1

2 quickly using an analogue of the binary
powering algorithm of Section 2.3.2. If v = 0 we try again with another
random z. If v 6= 0 we can quickly �nd the desired square roots b and c
as follows. The quantity u + vb is a (p � 1)=2 power in Z=pZ, so it equals
either 0, 1, or � 1, sob = � u=v, (1 � u)=v, or (� 1� u)=v, respectively. Since
we know u and v we can try each of� u=v, (1 � u)=v, and (� 1 � u)=v and
see which is a square root ofa.

Example 4.5.4. Continuing Example 4.1.8, we �nd a square root of 69
modulo 389. We apply the algorithm described above in the casep � 1
(mod 4). We �rst choose the random z = 24 and �nd that (1 + 24 � )194 =
� 1: The coe�cient of � in the power is 0, and we try again with z = 51.
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This time we have (1 + 51� )194 = 239� = u + v� . The inverse of 239 in
Z=389Z is 153, so we consider the following three possibilities for a square
root of 69:

�
u
v

= 0
1 � u

v
= 153 �

1 � u
v

= � 153:

Thus 153 and� 153 are the square roots of 69 inZ=389Z.

SAGE Example 4.5.5. We implement the above algorithm in SAGE and
illustrate it with some examples.

sage: def find_sqrt(a, p):
... assert (p-1)%4 == 0
... assert legendre_symbol(a,p) == 1
... S.<x> = PolynomialRing(GF(p))
... R.<alpha> = S.quotient(x^2 - a)
... while True:
... z = GF(p).random_element()
... w = (1 + z*alpha)^((p-1)//2)
... (u, v) = (w[0], w[1])
... if v != 0: break
... if (-u/v)^2 == a: return -u/v
... if ((1-u)/v)^2 == a: return (1-u)/v
... if ((-1-u)/v)^2 == a: return (-1-u)/v
...
sage: b = find_sqrt(3,13)
sage: b # random: either 9 or 3
9
sage: b^2
3
sage: b = find_sqrt(3,13)
sage: b # see, it's random
4
sage: find_sqrt(5,389) # random: either 303 or 86
303
sage: find_sqrt(5,389) # see, it's random
86

4.6 Exercises

4.1 Calculate the following by hand:
�

3
97

�
,

�
3

389

�
,

�
22
11

�
, and

�
5!
7

�
.

4.2 Let G be an abelian group and letn be a positive integer.

(a) Prove that the map ' : G ! G given by ' (x) = xn is a group
homomorphism.
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(b) Prove that the subset H of G of squares of elements ofG is a
subgroup.

4.3 Use Theorem 4.1.7 to show that forp � 5 prime,

�
3
p

�
=

(
1 if p � 1; 11 (mod 12);

� 1 if p � 5; 7 (mod 12):

4.4 (*) Use that ( Z=pZ) � is cyclic to give a direct proof that
�

� 3
p

�
= 1

when p � 1 (mod 3). (Hint: There is an c 2 (Z=pZ) � of order 3. Show
that (2 c + 1) 2 = � 3.)

4.5 (*) If p � 1 (mod 5), show directly that
�

5
p

�
= 1 by the method of

Exercise 4.4. (Hint: Let c 2 (Z=pZ) � be an element of order 5. Show
that ( c + c4)2 + ( c + c4) � 1 = 0, etc.)

4.6 (*) Let p be an odd prime. In this exercise you will prove that
�

2
p

�
= 1

if and only if p � � 1 (mod 8).

(a) Prove that

x =
1 � t2

1 + t2 ; y =
2t

1 + t2

is a parameterization of the set of solutions tox2 + y2 � 1
(mod p), in the sense that the solutions (x; y) 2 Z=pZ are in
bijection with the t 2 Z=pZ [f1g such that 1+ t2 6� 0 (mod p).
Here t = 1 corresponds to the point (� 1; 0). (Hint: if ( x1; y1)
is a solution, consider the liney = t(x + 1) through ( x1; y1) and
(� 1; 0), and solve forx1; y1 in terms of t.)

(b) Prove that the number of solutions to x2 + y2 � 1 (mod p) is
p + 1 if p � 3 (mod 4) and p � 1 if p � 1 (mod 4).

(c) Consider the setS of pairs (a; b) 2 (Z=pZ) � � (Z=pZ) � such that

a + b = 1 and
�

a
p

�
=

�
b
p

�
= 1. Prove that # S = ( p + 1 � 4)=4

if p � 3 (mod 4) and # S = ( p � 1 � 4)=4 if p � 1 (mod 4).
Conclude that # S is odd if and only if p � � 1 (mod 8)

(d) The map � (a; b) = ( b; a) that swaps coordinates is a bijection of
the set S. It has exactly one �xed point if and only if there is
an a 2 Z=pZ such that 2a = 1 and

�
a
p

�
= 1. Also, prove that

2a = 1 has a solution a 2 Z=pZ with
�

a
p

�
= 1 if and only if

�
2
p

�
= 1.

(e) Finish by showing that � has exactly one �xed point if and only
if # S is odd, i.e., if and only if p � � 1 (mod 8).
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Remark: The method of proof of this exercise can be generalized to
give a proof of the full quadratic reciprocity law.

4.7 How many natural numbersx < 213 satisfy the equation

x2 � 5 (mod 213 � 1)?

You may assume that 213 � 1 is prime.

4.8 Find the natural number x < 97 such that x � 448 (mod 97). Note
that 97 is prime.

4.9 In this problem we will formulate an analogue of quadratic reciprocity
for a symbol like

�
a
q

�
, but without the restriction that q be a prime.

Supposen is a positive integer, which we factor as
Q k

i =1 pei
i . We de�ne

the Jacobi symbol
�

a
n

�
as follows:

� a
n

�
=

kY

i =1

�
a
pi

� ei

:

(a) Give an example to show that
�

a
n

�
= 1 need not imply that a is

a perfect square modulon.

(b) (*) Let n be odd anda and bbe integers. Prove that the following
holds:

i.
�

a
n

� �
b
n

�
=

�
ab
n

�
. (Thus a 7!

�
a
n

�
induces a homomorphism

from (Z=nZ) � to f� 1g.)
ii.

�
� 1
n

�
� n (mod 4).

iii.
�

2
n

�
= 1 if n � � 1 (mod 8) and � 1 otherwise.

iv.
�

a
n

�
= ( � 1)

a � 1
2 � n � 1

2
�

n
a

�

4.10 (*) Prove that for any n 2 Z the integer n2 + n + 1 does not have any
divisors of the form 6k � 1.
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5
Continued Fractions

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + � � � :

In this book we will assume that the ai are real numbers andai > 0 for
i � 1, and the expression may or may not go on inde�nitely. More general
notions of continued fractions have been extensively studied, but they are
beyond the scope of this book. We will be most interested in the case when
the ai are all integers.

We denote the continued fraction displayed above by

[a0; a1; a2; : : :]:

For example,

[1; 2] = 1 +
1
2

=
3
2

;

[3; 7; 15; 1; 292] = 3 +
1

7 +
1

15 +
1

1 +
1

292

=
103993
33102

= 3 :14159265301190260407: : : ;



96 5. Continued Fractions

and

[2; 1; 2; 1; 1; 4; 1; 1; 6] = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1
6

=
1264
465

= 2 :7182795698924731182795698: : :

The second two examples were chosen to foreshadow that continued frac-
tions can be used to obtain good rational approximations to irrational
numbers. Note that the �rst approximates � and the seconde.

Continued fractions have many applications. For example, they provide
an algorithmic way to recognize a decimal approximation to a rational
number. Continued fractions also suggest a sense in whiche might be \less
complicated" than � (see Example 5.2.4 and Section 5.3).

In Section 5.1 we study continued fractions [a0; a1; : : : ; an ] of �nite length
and lay the foundations for our later investigations. In Section 5.2 we give
the continued fraction procedure, which associates to a real numberx a
sequencea0; a1; : : : of integers such that x = lim n !1 [a0; a1; : : : ; an ]. We
also prove that if a0; a1; : : : is any in�nite sequence of positive integers, then
the sequencecn = [ a0; a1; : : : ; an ] converges; more generally, we prove that
if the an are arbitrary positive real numbers and

P 1
n =0 an diverges then (cn )

converges. In Section 5.4, we prove that a continued fraction withai 2 N
is (eventually) periodic if and only if its value is a non-rational root of a
quadratic polynomial, then discuss open questions concerning continued
fractions of roots of irreducible polynomials of degree greater than 2. We
conclude the chapter with applications of continued fractions to recognizing
approximations to rational numbers (Section 5.5) and writing integers as
sums of two squares (Section 5.6).

The reader is encouraged to read more about continued fractions in
[HW79, Ch. X], [Khi63], [Bur89, x13.3], and [NZM91, Ch. 7].

5.1 Finite Continued Fractions

This section is about continued fractions of the form [a0; a1; : : : ; am ] for
somem � 0. We give an inductive de�nition of numbers pn and qn such
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that for all n � m
[a0; a1; : : : ; an ] =

pn

qn
: (5.1.1)

We then give related formulas for the determinants of the 2� 2 matrices� pn pn � 1
qn qn � 1

�
and

� pn pn � 2
qn qn � 2

�
. which we will repeatedly use to deduce prop-

erties of the sequence of partial convergents [a0; : : : ; ak ]. We will use Al-
gorithm 1.1.13 to prove that every rational number is represented by a
continued fraction, as in (5.1.1).

De�nition 5.1.1 (Finite Continued Fraction) . A �nite continued fraction
is an expression

a0 +
1

a1 +
1

a2 +
1

� � � + 1
an

;

where eacham is a real number andam > 0 for all m � 1.

De�nition 5.1.2 (Simple Continued Fraction). A simple continued frac-
tion is a �nite or in�nite continued fraction in which the ai are all integers.

To get a feeling for continued fractions, observe that

[a0] = a0;

[a0; a1] = a0 +
1
a1

=
a0a1 + 1

a1
;

[a0; a1; a2] = a0 +
1

a1 +
1
a2

=
a0a1a2 + a0 + a2

a1a2 + 1
:

Also,

[a0; a1; : : : ; an � 1; an ] =
�
a0; a1; : : : ; an � 2; an � 1 +

1
an

�

= a0 +
1

[a1; : : : ; an ]

= [ a0; [a1; : : : ; an ]]:

SAGE Example 5.1.3. The SAGE command continued fraction com-
putes continued fractions:

sage: continued_fraction(17/23)
[0, 1, 2, 1, 5]
sage: continued_fraction(e)
[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 11]

Use the optional second argumentbits = n to determine the precision
(in bits) of the input number that is used to compute the continued fraction.
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sage: continued_fraction(e, bits=20)
[2, 1, 2, 1, 1, 4, 1, 1, 6]
sage: continued_fraction(e, bits=30)
[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1]

You can obtain the value of a continued fraction and even do arithmetic
with continued fractions:

sage: a = continued_fraction(17/23); a
[0, 1, 2, 1, 5]
sage: a.value()
17/23
sage: b = continued_fraction(6/23); b
[0, 3, 1, 5]
sage: a + b
[1]

5.1.1 Partial Convergents

Fix a �nite continued fraction [ a0; : : : ; am ]. We do not assume at this point
that the ai are integers.

De�nition 5.1.4 (Partial convergents). For 0 � n � m, the nth conver-
gentof the continued fraction [a0; : : : ; am ] is [a0; : : : ; an ]. These convergents
for n < m are also calledpartial convergents.

For each n with � 2 � n � m, de�ne real numbers pn and qn as follows:

p� 2 = 0 ; p� 1 = 1 ; p0 = a0; � � � pn = an pn � 1 + pn � 2 � � � ;
q� 2 = 1 ; q� 1 = 0 ; q0 = 1 ; � � � qn = an qn � 1 + qn � 2 � � � :

Proposition 5.1.5 (Partial Convergents). For n � 0 with n � m we have

[a0; : : : ; an ] =
pn

qn
:
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Proof. We use induction. The assertion is obvious whenn = 0 ; 1. Suppose
the proposition is true for all continued fractions of length n � 1. Then

[a0; : : : ; an ] = [ a0; : : : ; an � 2; an � 1 +
1

an
]

=

�
an � 1 + 1

an

�
pn � 2 + pn � 3

�
an � 1 + 1

an

�
qn � 2 + qn � 3

=
(an � 1an + 1) pn � 2 + an pn � 3

(an � 1an + 1) qn � 2 + an qn � 3

=
an (an � 1pn � 2 + pn � 3) + pn � 2

an (an � 1qn � 2 + qn � 3) + qn � 2

=
an pn � 1 + pn � 2

an qn � 1 + qn � 2

=
pn

qn
:

SAGE Example5.1.6. If c is a continued fraction in SAGE, usec.convergents()
to compute a list of the partial convergents of c.

sage: c = continued_fraction(pi,bits=33); c
[3, 7, 15, 1, 292, 2]
sage: c.convergents()
[3, 22/7, 333/106, 355/113, 103993/33102, 208341/66317]

As we will see, the convergents of a continued fraction are the best ratio-
nal approximations to the value of the continued fraction. In the example
above, the listed convergents are the best rational approximations of� with
given denominator size.

Proposition 5.1.7. For n � 0 with n � m we have

pn qn � 1 � qn pn � 1 = ( � 1)n � 1 (5.1.2)

and
pn qn � 2 � qn pn � 2 = ( � 1)n an : (5.1.3)

Equivalently,
pn

qn
�

pn � 1

qn � 1
= ( � 1)n � 1 �

1
qn qn � 1

and
pn

qn
�

pn � 2

qn � 2
= ( � 1)n �

an

qn qn � 2
:
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Proof. The case forn = 0 is obvious from the de�nitions. Now suppose
n > 0 and the statement is true for n � 1. Then

pn qn � 1 � qn pn � 1 = ( an pn � 1 + pn � 2)qn � 1 � (an qn � 1 + qn � 2)pn � 1

= pn � 2qn � 1 � qn � 2pn � 1

= � (pn � 1qn � 2 � pn � 2qn � 1)

= � (� 1)n � 2 = ( � 1)n � 1:

This completes the proof of (5.1.2). For (5.1.3), we have

pn qn � 2 � pn � 2qn = ( an pn � 1 + pn � 2)qn � 2 � pn � 2(an qn � 1 + qn � 2)

= an (pn � 1qn � 2 � pn � 2qn � 1)

= ( � 1)n an :

Remark 5.1.8. Expressed in terms of matrices, the proposition asserts that
the determinant of

� pn pn � 1
qn qn � 1

�
is (� 1)n � 1, and of

� pn pn � 2
qn qn � 2

�
is (� 1)n an .

SAGE Example 5.1.9. We use SAGE to verify Proposition 5.1.7 for the
�rst few terms of the continued fraction of � .

sage: c = continued_fraction(pi); c
[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3]
sage: for n in range(-1, len(c)):
... print c.pn(n)*c.qn(n-1) - c.qn(n)*c.pn(n-1),
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
sage: for n in range(len(c)):
... print c.pn(n)*c.qn(n-2) - c.qn(n)*c.pn(n-2),
3 -7 15 -1 292 -1 1 -1 2 -1 3 -1 14 -3

Corollary 5.1.10 (Convergents in lowest terms). If [a0; a1; : : : ; am ] is a
simple continued fraction, so eachai is an integer, then thepn and qn are
integers and the fraction pn =qn is in lowest terms.

Proof. It is clear that the pn and qn are integers, from the formula that
de�nes them. If d is a positive divisor of both pn and qn , then d j (� 1)n � 1,
so d = 1.

SAGE Example 5.1.11. We illustrate Corollary 5.1.10 using SAGE.

sage: c = continued_fraction([1,2,3,4,5])
sage: c.convergents()
[1, 3/2, 10/7, 43/30, 225/157]
sage: [c.pn(n) for n in range(len(c))]
[1, 3, 10, 43, 225]
sage: [c.qn(n) for n in range(len(c))]
[1, 2, 7, 30, 157]
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5.1.2 The Sequence of Partial Convergents

Let [a0; : : : ; am ] be a continued fraction and for n � m let

cn = [ a0; : : : ; an ] =
pn

qn

denote the nth convergent. Recall that by de�nition of continued frac-
tion, an > 0 for n > 0, which gives the partial convergents of a contin-
ued fraction additional structure. For example, the partial convergents of
[2; 1; 2; 1; 1; 4; 1; 1; 6] are

2; 3; 8=3; 11=4; 19=7; 87=32; 106=39; 193=71; 1264=465:

To make the size of these numbers clearer, we approximate them using
decimals. We also underline every other number, to illustrate some extra
structure.

2; 3; 2:66667; 2:75000; 2:71429; 2:71875; 2:71795; 2:71831; 2:71828

The underlined numbers are smaller than all of the non-underlined num-
bers, and the sequence of underlined numbers is strictly increasing, whereas
the non-underlined numbers strictly decrease.

SAGE Example 5.1.12. We graphically illustrate the above pattern on an-
other continued fraction using SAGE.

sage: c = continued_fraction([1,1,1,1,1,1,1,1])
sage: v = [(i, c.pn(i)/c.qn(i)) for i in range(len(c))]
sage: P = point(v, rgbcolor=(0,0,1), pointsize=40)
sage: L = line(v, rgbcolor=(0.5,0.5,0.5))
sage: L2 = line([(0,c.value()),(len(c)-1,c.value())], \
... thickness=0.5, rgbcolor=(0.7,0,0))
sage.:(L+L2+P).show(ymin=1)

� � �

� � �

�
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We next prove that this extra structure is a general phenomenon.

Proposition 5.1.13 (How convergents converge). The even indexed con-
vergentsc2n increase strictly with n, and the odd indexed convergentsc2n +1

decrease strictly withn. Also, the odd indexed convergentsc2n +1 are greater
than all of the even indexed convergentsc2m .

Proof. The an are positive for n � 1, so the qn are positive. By Proposi-
tion 5.1.7, for n � 2,

cn � cn � 2 = ( � 1)n �
an

qn qn � 2
;

which proves the �rst claim.
Suppose for the sake of contradiction that there exist integersr; m such

that c2m +1 < c 2r . Proposition 5.1.7 implies that for n � 1,

cn � cn � 1 = ( � 1)n � 1 �
1

qn qn � 1

has sign (� 1)n � 1, so for all s � 0 we havec2s+1 > c 2s. Thus it is impossible
that r = m. If r < m , then by what we proved in the �rst paragraph,
c2m +1 < c 2r < c 2m , a contradiction (with s = m). If r > m , then c2r +1 <
c2m +1 < c 2r , which is also a contradiction (with s = r ).

5.1.3 Every Rational Number is Represented

Proposition 5.1.14 (Rational continued fractions). Every nonzero ratio-
nal number can be represented by a simple continued fraction.

Proof. Without loss of generality we may assume that the rational number
is a=b, with b � 1 and gcd(a; b) = 1. Algorithm 1.1.13 gives:

a = b� a0 + r 1; 0 < r 1 < b

b = r 1 � a1 + r 2; 0 < r 2 < r 1

� � �

r n � 2 = r n � 1 � an � 1 + r n ; 0 < r n < r n � 1

r n � 1 = r n � an + 0 :

Note that ai > 0 for i > 0 (also r n = 1 since gcd(a; b) = 1). Rewrite the
equations as follows:

a=b= a0 + r 1=b= a0 + 1=(b=r1);

b=r1 = a1 + r 2=r1 = a1 + 1=(r 1=r2);

r 1=r2 = a2 + r 3=r2 = a2 + 1=(r 2=r3);

� � �

r n � 1=rn = an :
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It follows that a
b

= [ a0; a1; : : : ; an ]:

The proof of Proposition 5.1.14 leads to an algorithm for computing the
continued fraction of a rational number.

A nonzero rational number can be represented in exactly two ways; for
example, 2 = [1; 1] = [2] (see Exercise 5.2).

5.2 In�nite Continued Fractions

This section begins with the continued fraction procedure, which associates
to a real number x a sequencea0; a1; : : : of integers. After giving several
examples, we prove thatx = lim n !1 [a0; a1; : : : ; an ] by proving that the
odd and even partial convergents become arbitrarily close to each other.
We also show that if a0; a1; : : : is any in�nite sequence of positive integers,
then the sequence ofcn = [ a0; a1; : : : ; an ] converges, and, more generally,
if an is an arbitrary sequence of positive reals such that

P 1
n =0 an diverges

then (cn ) converges.

5.2.1 The Continued Fraction Procedure

Let x 2 R and write
x = a0 + t0

with a0 2 Z and 0 � t0 < 1. We call the number a0 the 
oor of x, and we
also sometimes writea0 = bxc. If t0 6= 0, write

1
t0

= a1 + t1

with a1 2 N and 0 � t1 < 1. Thus t0 = 1
a1 + t 1

= [0 ; a1 + t1], which is a
(non-simple) continued fraction expansion oft0. Continue in this manner
so long astn 6= 0 writing

1
tn

= an +1 + tn +1

with an +1 2 N and 0 � tn +1 < 1. We call this procedure, which associates
to a real number x the sequence of integersa0; a1; a2; : : :, the continued
fraction process.

Example 5.2.1. Let x = 8
3 . Then x = 2 + 2

3 , so a0 = 2 and t0 = 2
3 . Then

1
t 0

= 3
2 = 1 + 1

2 , so a1 = 1 and t1 = 1
2 . Then 1

t 1
= 2, so a2 = 2, t2 = 0, and

the sequence terminates. Notice that

8
3

= [2 ; 1; 2];
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so the continued fraction procedure produces the continued fraction of83 .

Example 5.2.2. Let x = 1+
p

5
2 : Then

x = 1 +
� 1 +

p
5

2
;

so a0 = 1 and t0 = � 1+
p

5
2 . We have

1
t0

=
2

� 1 +
p

5
=

� 2 � 2
p

5
� 4

=
1 +

p
5

2

so againa1 = 1 and t1 = � 1+
p

5
2 . Likewise, an = 1 for all n. As we will see

below, the following exciting equality makes sense.

1 +
p

5
2

= 1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 + � � �

SAGE Example 5.2.3. The equality of Example 5.2.2 is consistent with the
following SAGE calculation:

sage: def cf(bits):
... x = (1 + sqrt(RealField(bits)(5))) / 2
... return continued_fraction(x)
sage: cf(10)
[1, 1, 1, 1, 1, 1, 1, 3]
sage: cf(30)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
sage: cf(50)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Example 5.2.4. Supposex = e = 2 :71828182: : :. Using the continued frac-
tion procedure, we �nd that

a0; a1; a2; : : : = 2 ; 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; 1; 10; : : :

For example, a0 = 2 is the 
oor of 2. Subtracting 2 and inverting, we
obtain 1=0:718: : : = 1 :3922: : :, so a1 = 1. Subtracting 1 and inverting
yields 1=0:3922: : : = 2 :5496: : :, so a2 = 2. We will prove in Section 5.3
that the continued fraction of e obeys a simple pattern.

The 5th partial convergent of the continued fraction of e is

[a0; a1; a2; a3; a4; a5] =
87
32

= 2 :71875;
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which is a good rational approximation to e, in the sense that
�
�
�
�
87
32

� e

�
�
�
� = 0 :000468: : : :

Note that 0:000468: : : < 1=322 = 0 :000976: : :, which illustrates the bound
in Corollary 5.2.11 below.

Let's do the same thing with � = 3 :14159265358979: : :: Applying the
continued fraction procedure, we �nd that the continued fraction of � is

a0; a1; a2; : : : = 3 ; 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1; 14; : : :

The �rst few partial convergents are

3;
22
7

;
333
106

;
355
113

;
103993
33102

; � � �

These are good rational approximations to� ; for example,

103993
33102

= 3 :14159265301: : : :

Notice that the continued fraction of e exhibits a nice pattern (see Sec-
tion 5.3 for a proof), whereas the continued fraction of� exhibits no pattern
that is obvious to the author. The continued fraction of � has been exten-
sively studied, and over 20 million terms have been computed. The data
suggests that every integers appears in�nitely often as a partial convergent.
For much more about the continued fraction of � or of any other sequence
in this book, type the �rst few terms of the sequence into [Slo].

5.2.2 Convergence of In�nite Continued Fractions

Lemma 5.2.5. For every n such that an is de�ned, we have

x = [ a0; a1; : : : ; an + tn ];

and if tn 6= 0 then x = [ a0; a1; : : : ; an ; 1
t n

]:

Proof. We use induction. The statements are both true whenn = 0. If the
second statement is true forn � 1, then

x =
�
a0; a1; : : : ; an � 1;

1
tn � 1

�

= [ a0; a1; : : : ; an � 1; an + tn ]

=
�
a0; a1; : : : ; an � 1; an ;

1
tn

�
:

Similarly, the �rst statement is true for n if it is true for n � 1.
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Theorem 5.2.6 (Continued Fraction Limit) . Let a0; a1; : : : be a sequence
of integers such thatan > 0 for all n � 1, and for each n � 0, set cn =
[a0; a1; : : : an ]: Then lim

n !1
cn exists.

Proof. For any m � n, the number cn is a partial convergent of [a0; : : : ; am ].
By Proposition 5.1.13 the even convergentsc2n form a strictly increasing
sequence and the odd convergentsc2n +1 form a strictly decreasingsequence.
Moreover, the even convergents are all� c1 and the odd convergents are
all � c0. Hence� 0 = lim n !1 c2n and � 1 = lim n !1 c2n +1 both exist and
� 0 � � 1. Finally, by Proposition 5.1.7

jc2n � c2n � 1j =
1

q2n � q2n � 1
�

1
2n(2n � 1)

! 0;

so � 0 = � 1.

We de�ne
[a0; a1; : : :] = lim

n !1
cn :

Example 5.2.7. We illustrate the theorem with x = � . As in the proof of
Theorem 5.2.6, let cn be the nth partial convergent to � . The cn with n
odd converge down to�

c1 = 3 :1428571: : : ; c3 = 3 :1415929: : : ; c5 = 3 :1415926: : :

whereas thecn with n even converge up to�

c2 = 3 :1415094: : : ; c4 = 3 :1415926: : : ; c6 = 3 :1415926: : : :

Theorem 5.2.8. Let a0; a1; a2; : : : be a sequence of real numbers such that
an > 0 for all n � 1, and for each n � 0, set cn = [ a0; a1; : : : an ]: Then
lim

n !1
cn exists if and only if the sum

P 1
n =0 an diverges.

Proof. We only prove that if
P

an diverges then limn !1 cn exists. A proof
of the converse can be found in [Wal48, Ch. 2, Thm. 6.1].

Let qn be the sequence of \denominators" of the partial convergents, as
de�ned in Section 5.1.1, soq� 2 = 1, q� 1 = 0, and for n � 0,

qn = an qn � 1 + qn � 2:

As we saw in the proof of Theorem 5.2.6, the limit limn !1 cn exists pro-
vided that the sequencef qn qn � 1g diverges to positive in�nity.

For n even,

qn = an qn � 1 + qn � 2

= an qn � 1 + an � 2qn � 3 + qn � 4

= an qn � 1 + an � 2qn � 3 + an � 4qn � 5 + qn � 6

= an qn � 1 + an � 2qn � 3 + � � � + a2q1 + q0
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and for n odd,

qn = an qn � 1 + an � 2qn � 3 + � � � + a1q0 + q� 1:

Since an > 0 for n > 0, the sequencef qn g is increasing, soqi � 1 for all
i � 0. Applying this fact to the above expressions forqn , we see that forn
even

qn � an + an � 2 + � � � + a2;

and for n odd

qn � an + an � 2 + � � � + a1:

If
P

an diverges, then at least one of
P

a2n or
P

a2n +1 must diverge.
The above inequalities then imply that at least one of the sequencesf q2n g
or f q2n +1 g diverge to in�nity. Since f qn g is an increasing sequence, it follows
that f qn qn � 1g diverges to in�nity.

Example 5.2.9. Let an = 1
n log( n ) for n � 2 and a0 = a1 = 0. By the

integral test,
P

an diverges, so by Theorem 5.2.8 the continued fraction
[a0; a1; a2; : : :] converges. This convergence is very slow, since, e.g.

[a0; a1; : : : ; a9999 ] = 0 :5750039671012225425930: : :

yet

[a0; a1; : : : ; a10000 ] = 0 :7169153932917378550424: : : :

Theorem 5.2.10. Let x 2 R be a real number. Thenx is the value of the
(possibly in�nite) simple continued fraction [a0; a1; a2; : : :] produced by the
continued fraction procedure.

Proof. If the sequence is �nite then sometn = 0 and the result follows by
Lemma 5.2.5. Suppose the sequence is in�nite. By Lemma 5.2.5,

x = [ a0; a1; : : : ; an ;
1
tn

]:

By Proposition 5.1.5 (which we apply in a case when the partial quotients
of the continued fraction are not integers!), we have

x =

1
tn

� pn + pn � 1

1
tn

� qn + qn � 1

:
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Thus if cn = [ a0; a1; : : : ; an ], then

x � cn = x �
pn

qn

=
1

t n
pn qn + pn � 1qn � 1

t n
pn qn � pn qn � 1

qn

�
1

t n
qn + qn � 1

� :

=
pn � 1qn � pn qn � 1

qn

�
1

t n
qn + qn � 1

�

=
(� 1)n

qn

�
1

t n
qn + qn � 1

� :

Thus

jx � cn j =
1

qn

�
1

t n
qn + qn � 1

�

<
1

qn (an +1 qn + qn � 1)

=
1

qn � qn +1
�

1
n(n + 1)

! 0:

In the inequality we use that an +1 is the integer part of 1
t n

, and is hence
� 1

t n
< 1, sincetn < 1.

This corollary follows from the proof of the above theorem.

Corollary 5.2.11 (Convergence of continued fraction). Let a0; a1; : : : de-
�ne a simple continued fraction, and let x = [ a0; a1; : : :] 2 R be its value.
Then for all m, �

�
�
�x �

pm

qm

�
�
�
� <

1
qm � qm +1

:

Proposition 5.2.12. If x is a rational number then the sequencea0; a1; : : :
produced by the continued fraction procedure terminates.

Proof. Let [b0; b1; : : : ; bm ] be the continued fraction representation ofx that
we obtain using Algorithm 1.1.13, so thebi are the partial quotients at each
step. If m = 0, then x is an integer, so we may assumem > 0. Then

x = b0 + 1=[b1; : : : ; bm ]:

If [b1; : : : ; bm ] = 1 then m = 1 and b1 = 1, which will not happen using
Algorithm 1.1.13, since it would give [b0+1] for the continued fraction of the
integer b0 + 1. Thus [ b1; : : : ; bm ] > 1, so in the continued fraction algorithm
we choosea0 = b0 and t0 = 1=[b1; : : : ; bm ]. Repeating this argument enough
times proves the claim.
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5.3 The Continued Fraction ofe

The continued fraction expansion ofe begins [2; 1; 2; 1; 1; 4; 1; 1; 6; : : :]. The
obvious pattern in fact does continue, as Euler proved in 1737 (see [Eul85]),
and we will prove in this section. As an application, Euler gave a proof
that e is irrational by noting that its continued fraction is in�nite.

The proof we give below draws heavily on the proof in [Coh], which
describes a slight variant of a proof of Hermite (see [Old70]). The continued
fraction representation of e is also treated in the German book [Per57], but
the proof requires substantial background from elsewhere in that text.

5.3.1 Preliminaries

First, we write the continued fraction of e in a slightly di�erent form.
Instead of [2; 1; 2; 1; 1; 4; : : :]; we can start the sequence of coe�cients

[1; 0; 1; 1; 2; 1; 1; 4; : : :]

to make the pattern the same throughout. (Everywhere else in this chap-
ter we assume that the partial quotients an for n � 1 are positive, but
temporarily relax that condition here and allow a1 = 0.) The numerators
and denominators of the convergents given by this new sequence satisfy a
simple recurrence. Usingr i as a stand-in for pi or qi , we have

r 3n = r 3n � 1 + r 3n � 2

r 3n � 1 = r 3n � 2 + r 3n � 3

r 3n � 2 = 2( n � 1)r 3n � 3 + r 3n � 4:

Our �rst goal is to collapse these three recurrences into one recurrence
that only makes mention of r 3n , r 3n � 3, and r 3n � 6. We have

r 3n = r 3n � 1 + r 3n � 2

= ( r 3n � 2 + r 3n � 3) + (2( n � 1)r 3n � 3 + r 3n � 4)

= (4 n � 3)r 3n � 3 + 2 r 3n � 4:

This same method of simpli�cation also shows us that

r 3n � 3 = 2 r 3n � 7 + (4 n � 7)r 3n � 6:

To get rid of 2r 3n � 4 in the �rst equation, we make the substitutions

2r 3n � 4 = 2( r 3n � 5 + r 3n � 6)

= 2((2( n � 2)r 3n � 6 + r 3n � 7) + r 3n � 6)

= (4 n � 6)r 3n � 6 + 2 r 3n � 7:

Substituting for 2 r 3n � 4 and then 2r 3n � 7, we �nally have the needed col-
lapsed recurrence,

r 3n = 2(2n � 1)r 3n � 3 + r 3n � 6:
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TABLE 5.1. Convergents
n 0 1 2 3 4 � � �
xn 1 3 19 193 2721 � � �
yn 1 1 7 71 1001 � � �

xn =yn 1 3 2:714: : : 2:71830: : : 2:7182817: : : � � �

5.3.2 Two Integral Sequences

We de�ne the sequencesxn = p3n , yn = q3n . Since the 3n-convergents will
converge to the same real number that then-convergents do,xn =yn also
converges to the limit of the continued fraction. Each sequencef xn g, f yn g
will obey the recurrence relation derived in the previous section (wherezn

is a stand-in for xn or yn ):

zn = 2(2n � 1)zn � 1 + zn � 2, for all n � 2: (5.3.1)

The two sequences can be found in Table 5.1. (The initial conditions
x0 = 1, x1 = 3, y0 = y1 = 1 are taken straight from the �rst few convergents
of the original continued fraction.) Notice that since we are skipping several
convergents at each step, the ratioxn =yn converges toe very quickly.

5.3.3 A Related Sequence of Integrals

Now, we de�ne a sequence of real numbersT0; T1; T2; : : : by the following
integrals:

Tn =
Z 1

0

tn (t � 1)n

n!
et dt:

Below, we compute the �rst two terms of this sequence explicitly. (When
we computeT1, we are doing the integration by partsu = t(t � 1), dv = et dt.
Since the integral runs from 0 to 1, the boundary condition is 0 when
evaluated at each of the endpoints. This vanishing will be helpful when we
do the integral in the general case.)

T0 =
Z 1

0
et dt = e � 1;

T1 =
Z 1

0
t(t � 1)et dt

= �
Z 1

0
(( t � 1) + t)et dt

= � (t � 1)et

�
�
�
�
�

1

0

� tet

�
�
�
�
�

1

0

+ 2
Z 1

0
et dt

= � 1 � e+ 2( e � 1) = e � 3:
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The reason that we de�ned this series now becomes apparent:T0 =
y0e� x0 and that T1 = y1e� x1. In general, it will be true that Tn = yn e� xn .
We will now prove this fact.

It is clear that if the Tn were to satisfy the same recurrence that thex i

and yi do, in equation (5.3.1), then the above statement holds by induc-
tion. (The initial conditions are correct, as needed.) So we simplifyTn by
integrating by parts twice in succession:

Tn =
Z 1

0

tn (t � 1)n

n!
et dt

= �
Z 1

0

tn � 1(t � 1)n + tn (t � 1)n � 1

(n � 1)!
et dt

=
Z 1

0

� tn � 2(t � 1)n

(n � 2)!
+ n

tn � 1(t � 1)n � 1

(n � 1)!

+ n
tn � 1(t � 1)n � 1

(n � 1)!
+

tn (t � 1)n � 2

(n � 2)!

�
et dt

= 2nTn � 1 +
Z 1

0

tn � 2(t � 1)n � 2

n � 2!
(2t2 � 2t + 1) et dt

= 2nTn � 1 + 2
Z 1

0

tn � 1(t � 1)n � 1

n � 2!
et dt +

Z 1

0

tn � 2(t � 1)n � 2

n � 2!
et dt

= 2nTn � 1 + 2( n � 1)Tn � 1 + Tn � 2

= 2(2n � 1)Tn � 1 + Tn � 2;

which is the desired recurrence.
Therefore Tn = yn e � xn . To conclude the proof, we consider the limit

as n approaches in�nity:

lim
n !1

Z 1

0

tn (t � 1)n

n!
et dt = 0 ;

by inspection, and therefore

lim
n !1

xn

yn
= lim

n !1
(e �

Tn

yn
) = e:

Therefore, the ratio xn =yn approachese, and the continued fraction expan-
sion [2; 1; 2; 1; 1; 4; 1; 1; : : :] does in fact converge toe.

5.3.4 Extensions of the Argument

The method of proof of this section generalizes to show that the continued
fraction expansion of e1=n is

[1; (n � 1); 1; 1; (3n � 1); 1; 1; (5n � 1); 1; 1; (7n � 1); : : :]

for all n 2 N (see Exercise 5.6).
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5.4 Quadratic Irrationals

The main result of this section is that the continued fraction expansion of
a number is eventually repeating if and only if the number is a quadratic
irrational. This can be viewed as an analogue for continued fractions of
the familiar fact that the decimal expansion of x is eventually repeating if
and only if x is rational. The proof that continued fractions of quadratic
irrationals eventually repeats is surprisingly di�cult and involves an int er-
esting �niteness argument. Section 5.4.2 emphasizes our striking ignorance
about continued fractions of real roots of irreducible polynomials overQ
of degree bigger than 2.

De�nition 5.4.1 (Quadratic Irrational) . A real number � 2 R is aquadratic
irrational if it is irrational and satis�es a quadratic polynomial with coef-
�cients in Q.

Thus, e.g., (1 +
p

5)=2 is a quadratic irrational. Recall that

1 +
p

5
2

= [1 ; 1; 1; : : :]:

The continued fraction of
p

2 is [1; 2; 2; 2; 2; 2; : : :], and the continued frac-
tion of

p
389 is

[19; 1; 2; 1; 1; 1; 1; 2; 1; 38; 1; 2; 1; 1; 1; 1; 2; 1; 38; : : :]:

Does the [1; 2; 1; 1; 1; 1; 2; 1; 38] pattern repeat over and over again?

SAGE Example 5.4.2. We compute more terms of the continued fraction
expansion of

p
389 using SAGE:

sage: def cf_sqrt_d(d, bits):
... x = sqrt(RealField(bits)(d))
... return continued_fraction(x)
sage: cf_sqrt_d(389,50)
[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38]
sage: cf_sqrt_d(389,100)
[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, \
1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1]

5.4.1 Periodic Continued Fractions

De�nition 5.4.3 (Periodic Continued Fraction) . A periodic continued
fraction is a continued fraction [a0; a1; : : : ; an ; : : :] such that

an = an + h

for some �xed positive integer h and all su�ciently large n. We call the
minimal such h the period of the continued fraction.



5.4 Quadratic Irrationals 113

Example 5.4.4. Consider the periodic continued fraction [1; 2; 1; 2; : : :] =
[1; 2]. What does it converge to? We have

[1; 2] = 1 +
1

2 +
1

1 +
1

2 +
1

1 + � � �

;

so if � = [ 1; 2] then

� = 1 +
1

2 +
1
�

= 1 +
1

2� + 1
�

= 1 +
�

2� + 1
=

3� + 1
2� + 1

:

Thus 2� 2 � 2� � 1 = 0, so

� =
1 +

p
3

2
:

Theorem 5.4.5 (Periodic Characterization). An in�nite simple continued
fraction is periodic if and only if it represents a quadratic irrational.

Proof. (=) ) First suppose that

[a0; a1; : : : ; an ; an +1 ; : : : ; an + h ]

is a periodic continued fraction. Set� = [ an +1 ; an +2 ; : : :]. Then

� = [ an +1 ; : : : ; an + h ; � ];

so by Proposition 5.1.5

� =
�p n + h + pn + h� 1

�q n + h + qn + h� 1
:

Here we use that� is the last partial quotient. Thus, � satis�es a quadratic
equation with coe�cients in Q. Computing as in Example 5.4.4 and ratio-
nalizing the denominators, and using that the ai are all integers, shows
that

[a0; a1; : : :] = [ a0; a1; : : : ; an ; � ]

= a0 +
1

a1 +
1

a2 + � � � +
1
�

is of the form c+ d� , with c; d 2 Q, so [a0; a1; : : :] also satis�es a quadratic
polynomial over Q.
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The continued fraction procedure applied to the value of an in�nite sim-
ple continued fraction yields that continued fraction back, so by Proposi-
tion 5.2.12, � 62Q because it is the value of an in�nite continued fraction.

(( =) Suppose � 2 R is an irrational number that satis�es a quadratic
equation

a� 2 + b� + c = 0 (5.4.1)

with a; b; c2 Z and a 6= 0. Let [ a0; a1; : : :] be the continued fraction expan-
sion of � . For each n, let

r n = [ an ; an +1 ; : : :];

so
� = [ a0; a1; : : : ; an � 1; r n ]:

We will prove periodicity by showing that the set of r n 's is �nite. If we
have shown �niteness, then there existsn; h > 0 such that r n = r n + h , so

[a0; : : : ; an � 1; r n ] = [ a0; : : : ; an � 1; an ; : : : ; an + h� 1; r n + h ]

= [ a0; : : : ; an � 1; an ; : : : ; an + h� 1; r n ]

= [ a0; : : : ; an � 1; an ; : : : ; an + h� 1; an ; : : : ; an + h� 1; r n + h ]

= [ a0; : : : ; an � 1; an ; : : : ; an + h� 1]:

It remains to show there are only �nitely many distinct r n . We have

� =
pn

qn
=

r n pn � 1 + pn � 2

r n qn � 1 + qn � 2
:

Substituting this expression for � into the quadratic equation (5.4.1), we
see that

An r 2
n + Bn r n + Cn = 0 ;

where

An = ap2
n � 1 + bpn � 1qn � 1 + cq2

n � 1;

Bn = 2apn � 1pn � 2 + b(pn � 1qn � 2 + pn � 2qn � 1) + 2 cqn � 1qn � 2; and

Cn = ap2
n � 2 + bpn � 2qn � 2 + cp2

n � 2:

Note that An ; Bn ; Cn 2 Z, that Cn = An � 1, and that

B 2
n � 4An Cn = ( b2 � 4ac)(pn � 1qn � 2 � qn � 1pn � 2)2 = b2 � 4ac:

Recall from the proof of Theorem 5.2.10 that
�
�
�
� � �

pn � 1

qn � 1

�
�
�
� <

1
qn qn � 1

:
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Thus

j�q n � 1 � pn � 1j <
1
qn

<
1

qn � 1
;

so

pn � 1 = �q n � 1 +
�

qn � 1
with j� j < 1:

Hence

An = a
�

�q n � 1 +
�

qn � 1

� 2

+ b
�

�q n � 1 +
�

qn � 1

�
qn � 1 + cq2

n � 1

= ( a� 2 + b� + c)q2
n � 1 + 2a�� + a

� 2

q2
n � 1

+ b�

= 2a�� + a
� 2

q2
n � 1

+ b�:

Thus

jAn j =

�
�
�
�2a�� + a

� 2

q2
n � 1

+ b�

�
�
�
� < 2ja� j + jaj + jbj:

Thus there are only �nitely many possibilities for the integer An . Also,

jCn j = jAn � 1j and jBn j =
p

b2 � 4(ac � An Cn );

so there are only �nitely many triples ( An ; Bn ; Cn ), and hence only �nitely
many possibilities for r n asn varies, which completes the proof. (The proof
above closely follows [HW79, Thm. 177, pg.144{145].)

5.4.2 Continued Fractions of Algebraic Numbers of Higher
Degree

De�nition 5.4.6 (Algebraic Number). An algebraic numberis a root of a
polynomial f 2 Q[x].

Open Problem 5.4.7. Give a simple description of the complete contin-
ued fractions expansion of the algebraic number3

p
2. It begins

[1; 3; 1; 5; 1; 1; 4; 1; 1; 8; 1; 14; 1; 10; 2; 1; 4; 12; 2; 3; 2; 1; 3; 4; 1; 1; 2; 14;

3; 12; 1; 15; 3; 1; 4; 534; 1; 1; 5; 1; 1; : : :]

The author does not see a pattern, and the 534 reduces his con�dence
that he will. Lang and Trotter (see [LT72]) analyzed many terms of the
continued fraction of 3

p
2 statistically, and their work suggests that 3

p
2 has

an \unusual" continued fraction; later work in [LT74] suggests that maybe
it does not.

Khintchine (see [Khi63, pg. 59])
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No properties of the representing continued fractions, analogous
to those which have just been proved, are known for algebraic
numbers of higher degree [as of 1963]. [...] It is of interest to
point out that up till the present time no continued fraction
development of an algebraic number of higher degree than the
second is known[emphasis added]. It is not even known if such
a development has bounded elements. Generally speaking the
problems associated with the continued fraction expansion of al-
gebraic numbers of degree higher than the second are extremely
di�cult and virtually unstudied.

Richard Guy (see [Guy94, pg. 260])

Is there an algebraic number of degree greater than two whose
simple continued fraction has unbounded partial quotients? Does
every such number have unbounded partial quotients?

Baum and Sweet [BS76] answered the analogue of Richard Guy's ques-
tion but with algebraic numbers replaced by elements of a �eld K other
than Q. (The �eld K is F2((1=x)), the �eld of Laurent series in the variable
1=x over the �nite �eld with two elements. An element of K is a polyno-
mial in x plus a formal power series in 1=x.) They found an � of degree
three overK whose continued fraction has all terms of bounded degree, and
other elements of various degrees greater than 2 overK whose continued
fractions have terms of unbounded degree.

5.5 Recognizing Rational Numbers From Their
Decimal Expansion

Suppose that somehow you can compute approximations to some rational
number, and want to �gure what the rational number probably is. Com-
puting the approximation to high enough precision to �nd a period in the
decimal expansion is not a good approach, because the period can be huge
(see below). A much better approach is to compute the simple continued
fraction of the approximation, and truncate it before a large partial quo-
tient an , then compute the value of the truncated continued fraction. This
results in a rational number that has relatively small numerator and de-
nominator, and is close to the approximation of the rational number, since
the tail end of the continued fraction is at most 1=an .

We begin with a contrived example, which illustrates how to recognize a
rational number. Let

x = 9495=3847 = 2:46815700545879906420587470756433584611385: : : :
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The continued fraction of the truncation 2:468157005458799064 is

[2; 2; 7; 2; 1; 5; 1; 1; 1; 1; 1; 1; 328210621945; 2; 1; 1; 1; : : :]

We have
[2; 2; 7; 2; 1; 5; 1; 1; 1; 1; 1; 1] =

9495
3847

:

Notice that no repetition is evident in the digits of x given above, though
we know that the decimal expansion ofx must be eventually periodic, since
all decimal expansions of rational numbers are eventually periodic. In fact,
the length of the period of the decimal expansion of 1=3847 is 3846, which
is the order of 10 modulo 3847 (see Exercise 5.7).

For a slightly less contrived application of this idea, supposef (x) 2 Z[x]
is a polynomial with integer coe�cients, and we know for some reason that
one root of f is a rational number. Then we can �nd that rational num-
ber by using Newton's method to approximate each root, and continued
fractions to decide whether each root is a rational number (we can substi-
tute the value of the continued fraction approximation into f to see if it
is actually a root). One could also use the well-known rational root theo-
rem, which asserts that any rational root n=d of f , with n; d 2 Z coprime,
has the property that n divides the constant term of f and d the leading
coe�cient of f . However, using that theorem to �nd n=d would require
factoring the constant and leading terms off , which could be completely
impractical if they have a few hundred digits (see Section 1.1.3). In con-
trast, Newton's method and continued fractions should quickly �nd n=d,
assuming the degree off isn't too large.

For example, supposef = 3847x2 � 14808904x + 36527265. To apply
Newton's method, let x0 be a guess for a root off . Then iterate using the
recurrence

xn +1 = xn �
f (xn )
f 0(xn )

:

Choosingx0 = 0, approximations of the �rst two iterates are

x1 = 2 :466574501394566404103909378;

and
x2 = 2 :468157004807401923043166846:

The continued fraction of the approximations x1 and x2 are

[2; 2; 6; 1; 47; 2; 1; 4; 3; 1; 5; 8; 2; 3]

and
[2; 2; 7; 2; 1; 5; 1; 1; 1; 1; 1; 1; 103; 8; 1; 2; 3; : : :]:

Truncating the continued fraction of x2 before 103 gives

[2; 2; 7; 2; 1; 5; 1; 1; 1; 1; 1; 1];

which evaluates to 9495=3847, which is a rational root of f .
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SAGE Example 5.5.1. We do the above calculation using SAGE. First we
implement Newton iteration:

sage: def newton_root(f, iterates=2, x0=0, prec=53):
... x = RealField(prec)(x0)
... R = PolynomialRing(ZZ,'x')
... f = R(f)
... g = f.derivative()
... for i in range(iterates):
... x = x - f(x)/g(x)
... return x

Next we run the Newton iteration, and compute the continued fraction of
the result:

sage: a = newton_root(3847*x^2 - 14808904*x + 36527265); a
2.46815700480740
sage: cf = continued_fraction(a); cf
[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 103, 8, 1, 2, 3, 1, 1]

We truncate the continued fraction and compute its value.
sage: c = cf[:12]; c
[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1]
sage: c.value()
9495/3847

Another computational application of continued fractions, which we can
only hint at, is that there are functions in certain parts of advanced number
theory (that are beyond the scope of this book) that take rational values
at certain points, and which can only be computed e�ciently via approx-
imations; using continued fractions as illustrated above to evaluate such
functions is crucial.

5.6 Sums of Two Squares

In this section we apply continued fractions to prove the following theorem.

Theorem 5.6.1. A positive integer n is a sum of two squares if and only
if all prime factors of p j n such that p � 3 (mod 4) have even exponent in
the prime factorization of n.

We �rst consider some examples. Notice that 5 = 12 + 2 2 is a sum of
two squares, but 7 is not a sum of two squares. Since 2001 is divisible
by 3 (because 2 + 1 is divisible by 3), but not by 9 (since 2 + 1 is not),
Theorem 5.6.1 implies that 2001 is not a sum of two squares. The theorem
also implies that 2 � 34 � 5 � 72 � 13 is a sum of two squares.

SAGE Example 5.6.2. We use SAGE to write a short program that naively
determines whether or not an integern is a sum of two squares, and if so
returns a; b such that a2 + b2 = n.
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sage: def sum_of_two_squares_naive(n):
... for i in range(int(sqrt(n))):
... if is_square(n - i^2):
... return i, (Integer(n-i^2)).sqrt()
... return "%s is not a sum of two squares"%n

We next use our function in a couple of cases.
sage: sum_of_two_squares_naive(23)
'23 is not a sum of two squares'
sage: sum_of_two_squares_naive(389)
(10, 17)
sage: sum_of_two_squares_naive(2007)
'2007 is not a sum of two squares'
sage: sum_of_two_squares_naive(2008)
'2008 is not a sum of two squares'
sage: sum_of_two_squares_naive(2009)
(28, 35)
sage: 28^2 + 35^2
2009
sage: sum_of_two_squares_naive(2*3^4*5*7^2*13)
(189, 693)

De�nition 5.6.3 (Primitive) . A representation n = x2 + y2 is primitive
if x and y are coprime.

Lemma 5.6.4. If n is divisible by a prime p � 3 (mod 4), then n has no
primitive representations.

Proof. Supposen has a primitive representation, n = x2 + y2, and let p be
any prime factor of n. Then

p j x2 + y2 and gcd(x; y) = 1 ;

sop - x and p - y. SinceZ=pZ is a �eld we may divide by y2 in the equation
x2 + y2 � 0 (mod p) to see that (x=y)2 � � 1 (mod p): Thus the Legendre

symbol
�

� 1
p

�
equals +1. However, by Proposition 4.2.1,

�
� 1
p

�
= ( � 1)(p� 1)=2

so
�

� 1
p

�
= 1 if and only if ( p� 1)=2 is even, which is to sayp � 1 (mod 4).

Proof of Theorem 5.6.1 (=) ). Suppose that p � 3 (mod 4) is a prime,
that pr j n but pr +1 - n with r odd, and that n = x2 + y2. Letting d =
gcd(x; y), we have

x = dx0; y = dy0; and n = d2n0
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with gcd(x0; y0) = 1 and

(x0)2 + ( y0)2 = n0:

Becauser is odd, p j n0, so Lemma 5.6.4 implies that gcd(x0; y0) > 1, a
contradiction.

To prepare for our proof of (( =), we reduce the problem to the case
when n is prime. Write n = n2

1n2 where n2 has no prime factorsp � 3
(mod 4). It su�ces to show that n2 is a sum of two squares, since

(x2
1 + y2

1)(x2
2 + y2

2) = ( x1x2 � y1y2)2 + ( x1y2 + x2y1)2; (5.6.1)

so a product of two numbers that are sums of two squares is also a sum of
two squares. Since 2 = 12 + 1 2 is a sum of two squares, it su�ces to show
that any prime p � 1 (mod 4) is a sum of two squares.

Lemma 5.6.5. If x 2 R and n 2 N , then there is a fraction
a
b

in lowest

terms such that0 < b � n and
�
�
�x �

a
b

�
�
� �

1
b(n + 1)

:

Proof. Consider the continued fraction [a0; a1; : : :] of x. By Corollary 5.2.11,
for each m �

�
�
�x �

pm

qm

�
�
�
� <

1
qm � qm +1

:

Since qm +1 � qm + 1 and q0 = 1, either there exists an m such that
qm � n < q m +1 , or the continued fraction expansion of x is �nite and n
is larger than the denominator of the rational number x, in which case we
take a

b = x and are done. In the �rst case,
�
�
�
�x �

pm

qm

�
�
�
� <

1
qm � qm +1

�
1

qm � (n + 1)
;

so
a
b

=
pm

qm
satis�es the conclusion of the lemma.

Proof of Theorem 5.6.1 (( =) . As discussed above, it su�ces to prove that
any prime p � 1 (mod 4) is a sum of two squares. Sincep � 1 (mod 4),

(� 1)(p� 1)=2 = 1 ;

so Proposition 4.2.1 implies that � 1 is a square modulop; i.e., there ex-
ists r 2 Z such that r 2 � � 1 (mod p). Lemma 5.6.5, with n = b

p
pc and

x = � r
p , implies that there are integersa; b such that 0 < b <

p
p and

�
�
�
� �

r
p

�
a
b

�
�
�
� �

1
b(n + 1)

<
1

b
p

p
:
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Letting c = rb + pa, we have that

jcj <
pb

b
p

p
=

p
p

p
=

p
p

so
0 < b2 + c2 < 2p:

But c � rb (mod p), so

b2 + c2 � b2 + r 2b2 � b2(1 + r 2) � 0 (mod p):

Thus b2 + c2 = p.

Remark 5.6.6. Our proof of Theorem 5.6.1 leads to an e�cient algorithm
to compute a representation of anyp � 1 (mod 4) as a sum of two squares.

SAGE Example 5.6.7. We next use SAGE and Theorem 5.6.1 to give an
e�cient algorithm for writing a prime p � 1 (mod 4) as a sum of two
squares. First we implement the algorithm that comes out of the proof of
the theorem.

sage: def sum_of_two_squares(p):
... p = Integer(p)
... assert p%4 == 1, "p must be 1 modulo 4"
... r = Mod(-1,p).sqrt().lift()
... v = continued_fraction(-r/p)
... n = floor(sqrt(p))
... for x in v.convergents():
... c = r*x.denominator() + p*x.numerator()
... if -n <= c and c <= n:
... return (abs(x.denominator()),abs(c))

Next we use the algorithm to write the �rst 10-digit prime � 1 (mod 4)
as a sum of two squares:

sage: p = next_prime(next_prime(10^10))
sage: sum_of_two_squares(p)
(55913, 82908)

The above calculation was essentially instantanoues. If instead we use
the naive algorithm from before, it takes several seconds to writep as a
sum of two squares.

sage: sum_of_two_squares_naive(p)
(55913, 82908)

5.7 Exercises

5.1 If cn = pn =qn is the nth convergent of [a0; a1; : : : ; an ] and a0 > 0,
show that

[an ; an � 1; : : : ; a1; a0] =
pn

pn � 1



122 5. Continued Fractions

and
[an ; an � 1; : : : ; a2; a1] =

qn

qn � 1
:

(Hint: In the �rst case, notice that
pn

pn � 1
= an +

pn � 2

pn � 1
= an +

1
pn � 1

pn � 2

:)

5.2 Show that every nonzero rational number can be represented in ex-
actly two ways be a �nite simple continued fraction. (For example, 2
can be represented by [1; 1] and [2], and 1=3 by [0; 3] and [0; 2; 1].)

5.3 Evaluate the in�nite continued fraction [2 ; 1; 2; 1].

5.4 Determine the in�nite continued fraction of 1+
p

13
2 .

5.5 Let a0 2 R and a1; : : : ; an and b be positive real numbers. Prove that

[a0; a1; : : : ; an + b] < [a0; a1; : : : ; an ]

if and only if n is odd.

5.6 (*) Extend the method presented in the text to show that the con-
tinued fraction expansion of e1=k is

[1; (k � 1); 1; 1; (3k � 1); 1; 1; (5k � 1); 1; 1; (7k � 1); : : :]

for all k 2 N .

(a) Compute p0, p3, q0, and q3 for the above continued fraction.
Your answers should be in terms ofk.

(b) Condense three steps of the recurrence for the numerators and
denominators of the above continued fraction. That is, produce
a simple recurrence forr 3n in terms of r 3n � 3 and r 3n � 6 whose
coe�cients are polynomials in n and k.

(c) De�ne a sequence of real numbers by

Tn (k) =
1

kn

Z 1=k

0

(kt )n (kt � 1)n

n!
et dt:

i. Compute T0(k), and verify that it equals q0e1=k � p0.
ii. Compute T1(k), and verify that it equals q3e1=k � p3.

iii. Integrate Tn (k) by parts twice in succession, as in Sec-
tion 5.3, and verify that Tn (k), Tn � 1(k), and Tn � 2(k) satisfy
the recurrence produced in part 6b, forn � 2.

(d) Conclude that the continued fraction

[1; (k � 1); 1; 1; (3k � 1); 1; 1; (5k � 1); 1; 1; (7k � 1); : : :]

representse1=k .
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5.7 Let d be an integer that is coprime to 10. Prove that the decimal
expansion of 1

d has period equal to the order of 10 modulod. (Hint:
For every positive integer r , we have 1

1� 10r =
P

n � 1 10� rn :)

5.8 Find a positive integer that has at least three di�erent representations
as the sum of two squares, disregarding signs and the order of the
summands.

5.9 Show that if a natural number n is the sum of two two rational squares
it is also the sum of two integer squares.

5.10 (*) Let p be an odd prime. Show that p � 1; 3 (mod 8) if and only
if p can be written asp = x2 +2y2 for some choice of integersx and y.

5.11 Prove that of any four consecutive integers, at least one is not repre-
sentable as a sum of two squares.
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6
Elliptic Curves

We introduce elliptic curves and describe how to put a group structure
on the set of points on an elliptic curve. We then apply elliptic curves to
two cryptographic problems|factoring integers and constructing public-
key cryptosystems. Elliptic curves are believed to provide good security
with smaller key sizes, something that is very useful in many applications,
e.g., if we are going to print an encryption key on a postage stamp, it
is helpful if the key is short! Finally, we consider elliptic curves over the
rational numbers, and brie
y survey some of the key ways in which they
arise in number theory.

6.1 The De�nition

De�nition 6.1.1 (Elliptic Curve) . An elliptic curve over a �eld K is a
curve de�ned by an equation of the form

y2 = x3 + ax + b;

where a; b2 K and � 16(4a3 + 27b2) 6= 0.

The condition that � 16(4a3 + 27b2) 6= 0 implies that the curve has no
\singular points", which will be essential for the applications we have in
mind (see Exercise 6.1).
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FIGURE 6.1. The Elliptic Curve y2 = x3 + x over Z=7Z

In Section 6.2 we will put a natural abelian group structure on the set

E(K ) = f (x; y) 2 K � K : y2 = x3 + ax + bg [ fOg

of K -rational points on an elliptic curve E over K . Here O may be thought
of as a point on E \at in�nity". In Figure 6.1 we graph y2 = x3 + x over
the �nite �eld Z=7Z, and in Figure 6.2 we graphy2 = x3 + x over the �eld
K = R of real numbers.

Remark 6.1.2. If K has characteristic 2 (e.g.,K = Z=2Z), then for any
choice ofa; b, the quantity � 16(4a3 + 27b2) 2 K is 0, so according to De�-
nition 6.1.1 there are no elliptic curves overK . There is a similar problem
in characteristic 3. If we instead consider equations of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6;

we obtain a more general de�nition of elliptic curves, which correctly allows
for elliptic curves in characteristic 2 and 3; these elliptic curves are popular
in cryptography because arithmetic on them is often easier to e�ciently
implement on a computer.

6.2 The Group Structure on an Elliptic Curve

Let E be an elliptic curve over a �eld K , given by an equation y2 =
x3 + ax + b. We begin by de�ning a binary operation + on E(K ).

Algorithm 6.2.1 (Elliptic Curve Group Law) . GivenP1; P2 2 E(K ), this
algorithm computes a third pointR = P1 + P2 2 E(K ).
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FIGURE 6.2. The Elliptic Curve y2 = x3 + x over R

1. [Is Pi = O?] If P1 = O set R = P2 or if P2 = O set R = P1 and
terminate. Otherwise write(x i ; yi ) = Pi .

2. [Negatives] Ifx1 = x2 and y1 = � y2, set R = O and terminate.

3. [Compute� ] Set � =

(
(3x2

1 + a)=(2y1) if P1 = P2;
(y1 � y2)=(x1 � x2) otherwise.

4. [Compute Sum] ThenR =
�
� 2 � x1 � x2; � �x 3 � �

�
, where� = y1 �

�x 1 and x3 = � 2 � x1 � x2 is the x-coordinate ofR.

Note that in Step 3 if P1 = P2, then y1 6= 0; otherwise, we would have
terminated in the previous step.

Theorem 6.2.2. The binary operation + de�ned above endows the set
E(K ) with an abelian group structure, in whichO is the identity element.

Before discussing why the theorem is true, we reinterpret + geomet-
rically, so that it will be easier for us to visualize. We obtain the sum
P1 + P2 by �nding the third point P3 of intersection betweenE and the
line L determined by P1 and P2, then re
ecting P3 about the x-axis. (This
description requires suitable interpretation in cases 1 and 2, and when
P1 = P2.) This is illustrated in Figure 6.3, in which (0 ; 2) + (1 ; 0) = (3 ; 4)
on y2 = x3 � 5x + 4. To further clarify this geometric interpretation, we
prove the following proposition.
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FIGURE 6.3. The Group Law: (1 ; 0) + (0 ; 2) = (3 ; 4) on y2 = x3 � 5x + 4

Proposition 6.2.3 (Geometric group law). SupposePi = ( x i ; yi ), i = 1 ; 2
are distinct point on an elliptic curve y2 = x3 + ax + b, and that x1 6= x2.
Let L be the unique line throughP1 and P2. Then L intersects the graph
of E at exactly one other point

Q =
�
� 2 � x1 � x2; �x 3 + �

�
;

where � = ( y1 � y2)=(x1 � x2) and � = y1 � �x 1.

Proof. The line L through P1, P2 is y = y1 + ( x � x1)� . Substituting this
into y2 = x3 + ax + b we get

(y1 + ( x � x1)� )2 = x3 + ax + b:

Simplifying we get f (x) = x3 � � 2x2+ � � � = 0, where we omit the coe�cients
of x and the constant term since they will not be needed. SinceP1 and P2

are in L \ E , the polynomial f hasx1 and x2 as roots. By Proposition 2.5.3,
the polynomial f can have at most three roots. Writing f =

Q
(x � x i ) and

equating terms, we see thatx1 + x2 + x3 = � 2. Thus x3 = � 2 � x1 � x2, as
claimed. Also, from the equation for L we see thaty3 = y1 + ( x3 � x1)� =
�x 3 + � , which completes the proof.

To prove Theorem 6.2.2 means to show that + satis�es the three axioms
of an abelian group with O as identity element: existence of inverses, com-
mutativity, and associativity. The existence of inverses follows immediately
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from the de�nition, since ( x; y) + ( x; � y) = O. Commutativity is also clear
from the de�nition of group law, since in parts 1{3, the recipe is unchanged
if we swap P1 and P2; in part 4 swapping P1 and P2 does not change the
line determined by P1 and P2, so by Proposition 6.2.3 it does not change
the sum P1 + P2.

It is more di�cult to prove that + satis�es the associative axiom, i.e.,
that ( P1 + P2) + P3 = P1 + ( P2 + P3). This fact can be understood from at
least three points of view. One is to reinterpret the group law geometrically
(extending Proposition 6.2.3 to all cases), and thus transfer the problem
to a question in plane geometry. This approach is beautifully explained
with exactly the right level of detail in [ST92, xI.2]. Another approach is to
use the formulas that de�ne + to reduce associativity to checking speci�c
algebraic identities; this is something that would be extremely tedious to do
by hand, but can be done using a computer (also tedious). A third approach
(see e.g. [Sil86] or [Har77]) is to develop a general theory of \divisors on
algebraic curves", from which associativity of the group law falls out as a
natural corollary. The third approach is the best, because it opens up many
new vistas; however we will not pursue it further because it is beyond the
scope of this book.

6.3 Integer Factorization Using Elliptic Curves

In 1987, Hendrik Lenstra published the landmark paper [Len87] that intro-
duces and analyzes the Elliptic Curve Method (ECM), which is a powerful
algorithm for factoring integers using elliptic curves. Lenstra's method is
also described in [ST92,xIV.4], [Dav99, xVIII.5], and [Coh93, x10.3].

Lenstra's algorithm is well suited for �nding
\medium sized" factors of an integer N , which to-
day means between 10 to 40 decimal digits. The
ECM method is not directly used for factoring RSA
challenge numbers (see Section 1.1.3), but it is
used on auxiliary numbers as a crucial step in the
\number �eld sieve", which is the best known al-
gorithm for hunting for such factorizations. Also,
implementation of ECM typically requires little
memory. Lenstra

6.3.1 Pollard's (p � 1)-Method

Lenstra's discovery of ECM was inspired by Pollard's (p� 1)-method, which
we describe in this section.
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De�nition 6.3.1 (Power smooth). Let B be a positive integer. If n is
a positive integer with prime factorization n =

Q
pei

i , then n is B -power
smooth if pei

i � B for all i .

Thus 30 = 2 � 3 � 5 is B power smooth for B = 5 ; 7, but 150 = 2 � 3 � 52 is
not 5-power smooth (it is B = 25-power smooth).

We will use the following algorithm in both the Pollard p� 1 and elliptic
curve factorization methods.

Algorithm 6.3.2 (Least Common Multiple of First B Integers). Given a
positive integerB , this algorithm computes the least common multiple of the
positive integers up toB .

1. [Sieve] Using, e.g., the Sieve of Eratosthenes (Algorithm 1.2.3), compute
a list P of all primesp � B .

2. [Multiply] Compute and output the product
Q

p2 P pblog p (B )c.

Proof. Let m = lcm(1 ; 2; : : : ; B ). Then

ordp(m) = max( f ordp(n) : 1 � n � B g) = ord p(pr );

where pr is the largest power ofp that satis�es pr � B . Since pr � B <
pr +1 , we haver = blogp(B )c.

Let N be a positive integer that we wish to factor. We use the Pollard
(p � 1)-method to look for a nontrivial factor of N as follows. First we
choose a positive integerB , usually with at most six digits. Suppose that
there is a prime divisor p of N such that p � 1 is B -power smooth. We try
to �nd p using the following strategy. If a > 1 is an integer not divisible
by p then by Theorem 2.1.19,

ap� 1 � 1 (mod p):

Let m = lcm(1 ; 2; 3; : : : ; B ), and observe that our assumption that p � 1 is
B -power smooth implies that p � 1 j m, so

am � 1 (mod p):

Thus
p j gcd(am � 1; N ) > 1:

If gcd(am � 1; N ) < N also then gcd(am � 1; N ) is a nontrivial factor of N . If
gcd(am � 1; N ) = N , then am � 1 (mod qr ) for every prime power divisor
qr of N . In this case, repeat the above steps but with a smaller choice ofB
or possibly a di�erent choice of a. Also, it is a good idea to check from
the start whether or not N is not a perfect powerM r , and if so replaceN
by M . We formalize the algorithm as follows:
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Algorithm 6.3.3 (Pollard p � 1 Method). Given a positive integerN and
a boundB , this algorithm attempts to �nd a nontrivial factorm of N . (Each
prime p j m is likely to have the property thatp � 1 is B -power smooth.)

1. [Compute lcm] Use Algorithm 6.3.2 to computem = lcm(1 ; 2; : : : ; B ).

2. [Initialize] Seta = 2 .

3. [Power and gcd] Computex = am � 1 (mod N ) and g = gcd(x; N ).

4. [Finished?] Ifg 6= 1 or N , output g and terminate.

5. [Try Again?] If a < 10 (say), replacea by a + 1 and go to step 3.
Otherwise terminate.

For �xed B , Algorithm 6.3.3 often splits N when N is divisible by a
prime p such that p� 1 is B -power smooth. Approximately 15% of primesp
in the interval from 1015 and 1015 + 10000 are such thatp� 1 is 106 power-
smooth, so the Pollard method with B = 106 already fails nearly 85% of
the time at �nding 15-digit primes in this range (see also Exercise 6.10).
We will not analyze Pollard's method further, since it was mentioned here
only to set the stage for the elliptic curve factorization method.

The following examples illustrate the Pollard (p � 1)-method.

Example 6.3.4. In this example, Pollard works perfectly. Let N = 5917.
We try to use the Pollard p � 1 method with B = 5 to split N . We have
m = lcm(1 ; 2; 3; 4; 5) = 60; taking a = 2 we have

260 � 1 � 3416 (mod 5917)

and
gcd(260 � 1; 5917) = gcd(3416; 5917) = 61;

so 61 is a factor of 5917.

Example 6.3.5. In this example, we replaceB by larger integer. Let N =
779167. With B = 5 and a = 2 we have

260 � 1 � 710980 (mod 779167);

and gcd(260 � 1; 779167) = 1: With B = 15, we have

m = lcm(1 ; 2; : : : ; 15) = 360360;

2360360 � 1 � 584876 (mod 779167);

and
gcd(2360360 � 1; N ) = 2003;

so 2003 is a nontrivial factor of 779167.
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Example 6.3.6. In this example, we replaceB by a smaller integer. Let
N = 4331. SupposeB = 7, so m = lcm(1 ; 2; : : : ; 7) = 420,

2420 � 1 � 0 (mod 4331);

and gcd(2420 � 1; 4331) = 4331, so we do not obtain a factor of 4331. If we
replaceB by 5, Pollard's method works:

260 � 1 � 1464 (mod 4331);

and gcd(260 � 1; 4331) = 61, so we split 4331.

Example 6.3.7. In this example, a = 2 does not work, but a = 3 does. Let
N = 187. SupposeB = 15, so m = lcm(1 ; 2; : : : ; 15) = 360360,

2360360 � 1 � 0 (mod 187);

and gcd(2360360 � 1; 187) = 187, so we do not obtain a factor of 187. If we
replacea = 2 by a = 3, then Pollard's method works:

3360360 � 1 � 66 (mod 187);

and gcd(3360360 � 1; 187) = 11. Thus 187 = 11� 17.

6.3.2 Motivation for the Elliptic Curve Method

Fix a positive integer B . If N = pq with p and q prime and p� 1 and q� 1
are not B -power smooth, then the Pollard (p � 1)-method is unlikely to
work. For example, let B = 20 and suppose thatN = 59 � 101 = 5959. Note
that neither 59 � 1 = 2 � 29 nor 101� 1 = 4 � 25 is B -power smooth. With
m = lcm(1 ; 2; 3; : : : ; 20) = 232792560, we have

2m � 1 � 5944 (modN );

and gcd(2m � 1; N ) = 1, so we do not �nd a factor of N .
As remarked above, the problem is thatp� 1 is not 20-power smooth for

either p = 59 or p = 101. However, notice that p � 2 = 3 � 19 is 20-power
smooth. Lenstra's ECM replaces (Z=pZ) � , which has order p � 1, by the
group of points on an elliptic curve E over Z=pZ. It is a theorem that

# E(Z=pZ) = p + 1 � s

for some nonnegative integers < 2
p

p (see e.g., [Sil86,xV.1] for a proof).
(Also every value of s subject to this bound occurs, as one can see using
\complex multiplication theory".) For example, if E is the elliptic curve

y2 = x3 + x + 54

over Z=59Z then by enumerating points one sees thatE(Z=59Z) is cyclic
of order 57. The set of numbers 59 + 1� s for s � 15 contains 14 numbers
that are B -power smooth for B = 20.Thus working with an elliptic curve
gives us more 
exibility. For example, 60 = 59 + 1 + 0 is 5-power smooth
and 70 = 59 + 1 + 10 is 7-power smooth.
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FIGURE 6.4. Hendrik Lenstra

6.3.3 Lenstra's Elliptic Curve Factorization Method

Algorithm 6.3.8 (Elliptic Curve Factorization Method) . Given a positive
integerN and a boundB , this algorithm attempts to �nd a nontrivial factorm
of N . Carry out the following steps:

1. [Compute lcm] Use Algorithm 6.3.2 to computem = lcm(1 ; 2; : : : ; B ).

2. [Choose Random Elliptic Curve] Choose a randoma 2 Z=NZ such that
4a3 + 27 2 (Z=NZ) � . Then P = (0 ; 1) is a point on the elliptic curve
y2 = x3 + ax + 1 overZ=NZ.

3. [Compute Multiple] Attempt to computemP using an elliptic curve
analogue of Algorithm 2.3.13. If at some point we cannot compute a
sum of points because some denominator in step 3 of Algorithm 6.2.1 is
not coprime toN , we compute thegcd of this denominator withN . If
this gcd is a nontrivial divisor, output it. If every denominator is coprime
to N , output \Fail".

If Algorithm 6.3.8 fails for one random elliptic curve, there is an option
that is unavailable with Pollard's ( p� 1)-method|we may repeat the above
algorithm with a di�erent elliptic curve. With Pollard's method we always
work with the group ( Z=NZ) � , but here we can try many groupsE(Z=NZ)
for many curves E. As mentioned above, the number of points onE over
Z=pZ is of the form p + 1 � t for somet with jt j < 2

p
p; Algorithm 6.3.8

thus has a chance ifp+ 1 � t is B -power-smooth for somet with jt j < 2
p

p.

6.3.4 Examples

For simplicity, we use an elliptic curve of the form

y2 = x3 + ax + 1 ;

which has the point P = (0 ; 1) already on it.
We factor N = 5959 using the elliptic curve method. Let

m = lcm(1 ; 2; : : : ; 20) = 232792560 = 11011110000000100001111100002;
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wherex2 meansx is written in binary. First we choose a = 1201 at random
and consider y2 = x3 + 1201x + 1 over Z=5959Z. Using the formula for
P + P from Algorithm 6.2.1 we compute 2i � P = 2 i � (0; 1) for i 2 B =
f 4; 5; 6; 7; 8; 13; 21; 22; 23; 24; 26; 27g. Then

P
i 2 B 2i P = mP . It turns out

that during no step of this computation does a number not coprime to 5959
appear in any denominator, so we do not splitN using a = 1201. Next we
try a = 389 and at some stage in the computation we addP = (2051; 5273)
and Q = (637; 1292). When computing the group law explicitly we try to
compute � = ( y1 � y2)=(x1 � x2) in ( Z=5959Z) � , but fail since x1 � x2 = 1414
and gcd(1414; 5959) = 101. We thus �nd a nontrivial factor 101 of 5959.

6.3.5 A Heuristic Explanation

Let N be a positive integer and for simplicity of exposition assume that
N = p1 � � � pr with the pi distinct primes. It follows from Lemma 2.2.6 that
there is a natural isomorphism

f : (Z=NZ) � �! (Z=p1Z) � � � � � � (Z=pr Z) � :

When using Pollard's method, we choose ana 2 (Z=NZ) � , compute am ,
then compute gcd(am � 1; N ). This gcd is divisible exactly by the primes pi

such that am � 1 (mod pi ). To reinterpret Pollard's method using the
above isomorphism, let (a1; : : : ; ar ) = f (a). Then (am

1 ; : : : ; am
r ) = f (am ),

and the pi that divide gcd(am � 1; N ) are exactly the pi such that am
i = 1.

By Theorem 2.1.19, thesepi include the primes pj such that pj � 1 is
B -power smooth, wherem = lcm(1 ; : : : ; m).

We will not de�ne E(Z=NZ) when N is composite, since this is not
needed for the algorithm (where we assume thatN is prime and hope for
a contradiction). However, for the remainder of this paragraph, we pretend
that E(Z=NZ) is meaningful and describe a heuristic connection between
Lenstra and Pollard's methods. The signi�cant di�erence between Pollard's
method and the elliptic curve method is that the isomorphism f is replaced
by an isomorphism (in quotes)

\ g : E (Z=NZ) ! E (Z=p1Z) � � � � � E (Z=pr Z)"

where E is y2 = x3 + ax + 1, and the a of Pollard's method is replaced by
P = (0 ; 1). We put the isomorphism in quotes to emphasize that we have
not de�ned E(Z=NZ). When carrying out the elliptic curve factorization
algorithm, we attempt to compute mP and if some components off (Q)
are O, for some point Q that appears during the computation, but others
are nonzero, we �nd a nontrivial factor of N .
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6.4 Elliptic Curve Cryptography

In this section we discuss an analogue of Di�e-Hellman that uses an elliptic
curve instead of (Z=pZ) � . The idea to use elliptic curves in cryptography
was independently proposed by Neil Koblitz and Victor Miller in the mid
1980s. We then discuss the ElGamal elliptic curve cryptosystem.

6.4.1 Elliptic Curve Analogues of Di�e-Hellman

The Di�e-Hellman key exchange from Section 3.1 works well on an elliptic
curve with no serious modi�cation. Michael and Nikita agree on a secret
key as follows:

1. Michael and Nikita agree on a primep, an elliptic curve E over Z=pZ,
and a point P 2 E(Z=pZ).

2. Michael secretly chooses a randomm and sendsmP .

3. Nikita secretly chooses a randomn and sendsnP .

4. The secret key isnmP , which both Michael and Nikita can compute.

Presumably, an adversary can not computenmP without solving the dis-
crete logarithm problem (see Problem 3.1.2 and Section 6.4.3 below) in
E(Z=pZ). For well-chosenE, P, and p experience suggests that the discrete
logarithm problem in E(Z=pZ) is much more di�cult than the discrete log-
arithm problem in ( Z=pZ) � (see Section 6.4.3 for more on the elliptic curve
discrete log problem).

6.4.2 The ElGamal Cryptosystem and Digital Rights
Management

This section is about the ElGamal cryptosystem, which works well on an
elliptic curves. This section draws on a paper by a computer hacker named
Beale Screamer who cracked a \Digital Rights Management" (DRM) sys-
tem.

The elliptic curve used in the DRM is an elliptic curve over the �nite
�eld k = Z=pZ, where

p = 785963102379428822376694789446897396207498568951:

In base 16 the numberp is

89ABCDEF012345672718281831415926141424F7,

which includes counting in hexadecimal, and digits ofe, � , and
p

2. The
elliptic curve E is

y2 = x3 + 317689081251325503476317476413827693272746955927x

+ 79052896607878758718120572025718535432100651934:
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We have

# E(k) = 785963102379428822376693024881714957612686157429;

and the group E(k) is cyclic with generator

B = (771507216262649826170648268565579889907769254176;

390157510246556628525279459266514995562533196655):

Our heroes Nikita and Michael share digital music when they are not
out �ghting terrorists. When Nikita installed the DRM software on her
computer, it generated a private key

n = 670805031139910513517527207693060456300217054473;

which it hides in bits and pieces of �les. In order for Nikita to play Juno
Reactor's latest hit juno.wma, her web browser contacts a web site that
sells music. After Nikita sends her credit card number, that web site allows
Nikita to download a license �le that allows her audio player to unlock and
play juno.wma.

As we will see below, the license �le was created using the ElGamal
public-key cryptosystem in the group E(k). Nikita can now use her license
�le to unlock juno.wma. However, when she shares bothjuno.wma and the
license �le with Michael, he is frustrated because even with the license his
computer still does not play juno.wma. This is because Michael's computer
does not know Nikita's computer's private key (the integer n above), so
Michael's computer can not decrypt the license �le.

We now describe the ElGamal cryptosystem, which lends itself well to
implementation in the group E(Z=pZ). To illustrate ElGamal, we describe
how Nikita would set up an ElGamal cryptosystem that anyone could use
to encrypt messages for her. Nikita chooses a primep, an elliptic curve E
over Z=pZ, and a point B 2 E(Z=pZ), and publishesp, E , and B . She also
chooses a random integern, which she keeps secret, and publishesnB . Her
public key is the four-tuple (p; E; B; nB ).

Suppose Michael wishes to encrypt a message for Nikita. If the message is
encoded as an elementP 2 E(Z=pZ), Michael computes a random integerr
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and the points rB and P + r (nB ) on E(Z=pZ). Then P is encrypted as the
pair ( rB; P + r (nB )). To decrypt the encrypted message, Nikita multiplies
rB by her secret keyn to �nd n(rB ) = r (nB ), then subtracts this from
P + r (nB ) to obtain

P = P + r (nB ) � r (nB ):

Remark 6.4.1. It also make sense to construct an ElGamal cryptosystem
in the group (Z=pZ) � .

Returning out our story, Nikita's license �le is an encrypted message to
her. It contains the pair of points ( rB; P + r (nB )), where

rB = (179671003218315746385026655733086044982194424660;

697834385359686368249301282675141830935176314718)

and

P + r (nB ) = (137851038548264467372645158093004000343639118915;

110848589228676224057229230223580815024224875699):

When Nikita's computer plays juno.wma, it loads the secret key

n = 670805031139910513517527207693060456300217054473

into memory and computes

n(rB ) = (328901393518732637577115650601768681044040715701;

586947838087815993601350565488788846203887988162):

It then subtracts this from P + r (nB ) to obtain

P = (14489646124220757767;

669337780373284096274895136618194604469696830074):

The x-coordinate 14489646124220757767 is the key that unlocksjuno.wma.
If Nikita knew the private key n that her computer generated, she could

compute P herself and unlockjuno.wma and share her music with Michael.
Beale Screamer found a weakness in the implementation of this system that
allows Nikita to detetermine n, which is not a huge surprise sincen is stored
on her computer after all.

6.4.3 The Elliptic Curve Discrete Logarithm Problem

Problem 6.4.2 (Elliptic Curve Discrete Log Problem) . SupposeE is an
elliptic curve over Z=pZ and P 2 E(Z=pZ). Given a multiple Q of P, the
elliptic curve discrete log problemis to �nd n 2 Z such that nP = Q.
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For example, let E be the elliptic curve given by y2 = x3 + x + 1 over
the �eld Z=7Z. We have

E(Z=7Z) = fO ; (2; 2); (0; 1); (0; 6); (2; 5)g:

If P = (2 ; 2) and Q = (0 ; 6), then 3P = Q, so n = 3 is a solution to the
discrete logarithm problem.

If E (Z=pZ) has orderp or p� 1 or is a product of reasonably small primes,
then there are some methods for attacking the discrete log problem onE,
which are beyond the scope of this book. It is thus important to be able to
compute # E(Z=pZ) e�ciently, in order to verify that the elliptic curve one
wishes to use for a cryptosystem doesn't have any obvious vulnerabilities.
The naive algorithm to compute # E(Z=pZ) is to try each value of x 2 Z=pZ
and count how often x3 + ax + b is a perfect square modp, but this is of no
use whenp is large enough to be useful for cryptography. Fortunately, there
is an algorithm due to Schoof, Elkies, and Atkin for computing # E(Z=pZ)
e�ciently (polynomial time in the number of digits of p), but this algorithm
is beyond the scope of this book.

In Section 3.1.1 we discussed the discrete log problem in (Z=pZ) � . There
are general attacks called \index calculus attacks" on the discrete log prob-
lem in (Z=pZ) � that are slow, but still faster than the known algorithms for
solving the discrete log in a \general" group (one with no extra structure).
For most elliptic curves, there is no known analogue of index calculus at-
tacks on the discrete log problem. At present it appears that givenp the
discrete log problem inE(Z=pZ) is much harder than the discrete log prob-
lem in the multiplicative group ( Z=pZ) � . This suggests that by using an
elliptic curve-based cryptosystem instead of one based on (Z=pZ) � one gets
equivalent security with much smaller numbers, which is one reason why
building cryptosystems using elliptic curves is attractive to some cryptog-
raphers. For example, Certicom, a company that strongly supports elliptic
curve cryptography, claims:

\[Elliptic curve crypto] devices require less storage, less power,
less memory, and less bandwidth than other systems. This al-
lows you to implement cryptography in platforms that are con-
strained, such as wireless devices, handheld computers, smart
cards, and thin-clients. It also provides a big win in situations
where e�ciency is important."

For an up-to-date list of elliptic curve discrete log challenge problems
that Certicom sponsors, see [Cer]. For example, in April 2004 a speci�c
cryptosystem was cracked that was based on an elliptic curve overZ=pZ,
where p has 109 bits. The �rst unsolved challenge problem involves an
elliptic curve over Z=pZ, wherep has 131 bits, and the next challenge after
that is one in which p has 163 bits. Certicom claims at [Cer] that the 163-bit
challenge problem is computationally infeasible.
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FIGURE 6.5. Louis J. Mordell

6.5 Elliptic Curves Over the Rational Numbers

Let E be an elliptic curve de�ned over Q. The following is a deep theorem
about the group E(Q).

Theorem 6.5.1 (Mordell) . The group E(Q) is �nitely generated. That is,
there are points P1; : : : ; Ps 2 E(Q) such that every element ofE(Q) is of
the form n1P1 + � � � + nsPs for integers n1; : : : ns 2 Z.

Mordell's theorem implies that it makes sense to ask whether or not
we can compute E(Q), where by \compute" we mean �nd a �nite set
P1; : : : ; Ps of points on E that generate E(Q) as an abelian group. There
is a systematic approach to computingE(Q) called \descent" (see e.g.,
[Cre97, Cre, Sil86]). It is widely believed that the method of descent will
always succeed, but nobody has yet proved that it will. Proving that descent
works for all curves is one of the central open problem in number theory, and
is closely related to the Birch and Swinnerton-Dyer conjecture (one of the
Clay Math Institute's million dollar prize problems). The crucial di�culty
amounts to deciding whether or not certain explicitly given curves have any
rational points on them or not (these are curves that have points overR
and modulo n for all n).

The details of using descent to computingE(Q) are beyond the scope
of this book. In several places below we will simply assert thatE(Q) has
a certain structure or is generated by certain elements. In each case, we
computed E(Q) using a computer implementation of this method.

6.5.1 The Torsion Subgroup ofE(Q) and the Rank

For any abelian group G, let Gtor be the subgroup of elements of �nite
order. If E is an elliptic curve over Q, then E(Q)tor is a subgroup of
E(Q), which must be �nite because of Theorem 6.5.1 (see Exercise 6.6).
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One can also prove thatE(Q)tor is �nite by showing that there is a prime
p and an injective reduction homomorphism E(Q)tor ,! E (Z=pZ), then
noting that E(Z=pZ) is �nite. For example, if E is y2 = x3 � 5x + 4, then
E(Q)tor = fO ; (1; 0)g �= Z=2Z:

The possibilities for E(Q)tor are known.

Theorem 6.5.2 (Mazur, 1976). Let E be an elliptic curve overQ. Then
E(Q)tor is isomorphic to one of the following 15 groups:

Z=nZ for n � 10 or n = 12;

Z=2 � Z=2n for n � 4:

The quotient E(Q)=E(Q)tor is a �nitely generated free abelian group,
so it is isomorphism to Z r for some integer r , called the rank of E(Q).
For example, using descent one �nds that ifE is y2 = x3 � 5x + 4, then
E(Q)=E(Q)tor is generated by the point (0; 2). Thus E(Q) �= Z � (Z=2Z).

The following is a folklore conjecture, not associated to any particular
mathematician:

Conjecture 6.5.3. There are elliptic curves over Q of arbitrarily large
rank.

The world record is the following curve, whose rank is at least 28:

y2+ xy + y = x3 � x2�

20067762415575526585033208209338542750930230312178956502x+

344816117950305564670329856903907203748559443593191803612: : :

: : : 66008296291939448732243429

It was discovered in May 2006 by Noam Elkies of Harvard University.

6.5.2 The Congruent Number Problem

De�nition 6.5.4 (Congruent Number). We call a nonzero rational num-
ber n a congruent numberif � n is the area of a right triangle with rational
side lengths. Equivalently, n is a congruent number if the system of two
equations

a2 + b2 = c2

1
2

ab = n

has a solution with a; b; c2 Q.

For example, 6 is the area of the right triangle with side lengths 3, 4,
and 5, so 6 is a congruent number. Less obvious is that 5 is also a congruent
number; it is the area of the right triangle with side lengths 3=2, 20=3, and
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41=6. It is nontrivial to prove that 1, 2, 3, and 4 are not congruent numbers.
Here is a list of the integer congruent numbers up to 50:

5; 6; 7; 13; 14; 15; 20; 21; 22; 23; 24; 28; 29; 30; 31; 34; 37; 38; 39; 41; 45; 46; 47:

Every congruence class modulo 8 except 3 is represented in this list,
which incorrectly suggests that if n � 3 (mod 8) then n is not a congruent
number. Though no n � 218 with n � 3 (mod 8) is a congruent number,
n = 219 is a congruent number congruent and 219� 3 (mod 8).

Deciding whether an integern is a congruent number can be subtle since
the simplest triangle with area n can be very complicated. For example,
as Zagier pointed out, the number 157 is a congruent number, and the
\simplest" rational right triangle with area 157 has side lengths

a =
6803298487826435051217540
411340519227716149383203

and b =
411340519227716149383203
21666555693714761309610

:

This solution would be di�cult to �nd by a brute force search.
We call congruent numbers \congruent" because of the following proposi-

tion, which asserts that any congruent number is the common \congruence"
between three perfect squares.

Proposition 6.5.5. Supposen is the area of a right triangle with rational
side lengthsa; b; c, with a � b < c. Let A = ( c=2)2. Then

A � n; A; and A + n

are all perfect squares of rational numbers.

Proof. We have

a2 + b2 = c2

1
2

ab = n

Add or subtract 4 times the second equation to the �rst to get

a2 � 2ab+ b2 = c2 � 4n

(a � b)2 = c2 � 4n
�

a � b
2

� 2

=
� c

2

� 2
� n

= A � n

The main motivating open problem related to congruent numbers, is to
give a systematic way to recognize them.
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Open Problem 6.5.6. Give an algorithm which, givenn, outputs whether
or not n is a congruent number.

Fortunately, the vast theory developed about elliptic curves has some-
thing to say about the above problem. In order to understand this connec-
tion, we begin with an elementary algebraic proposition that establishes a
link between elliptic curves and the congruent number problem.

Proposition 6.5.7 (Congruent numbers and elliptic curves). Let n be a
rational number. There is a bijection between

A =
�

(a; b; c) 2 Q3 :
ab
2

= n; a2 + b2 = c2
�

and
B =

�
(x; y) 2 Q2 : y2 = x3 � n2x; with y 6= 0

	

given explicitly by the maps

f (a; b; c) =
�

�
nb

a + c
;

2n2

a + c

�

and

g(x; y) =
�

n2 � x2

y
; �

2xn
y

;
n2 + x2

y

�
:

The proof of this proposition is not deep, but involves substantial (ele-
mentary) algebra and we will not prove it in this book.

For n 6= 0, let En be the elliptic curve y2 = x3 � n2x.

Proposition 6.5.8 (Congruent number criterion) . The rational number n
is a congruent number if and only if there is a pointP = ( x; y) 2 En (Q)
with y 6= 0 .

Proof. The number n is a congruent number if and only if the setA from
Proposition 6.5.7 is nonempty. By the proposition A is nonempty if and
only if B is nonempty.

Example 6.5.9. Let n = 5. Then En is y2 = x3 � 25x, and we notice that
(� 4; � 6) 2 En (Q). We next use the bijection of Proposition 6.5.7 to �nd
the corresponding right traingle:

g(� 4; � 6) =
�

25� 16
� 6

; �
� 40
� 6

;
25 + 16

� 6

�
=

�
�

3
2

; �
20
3

; �
41
6

�
:

Multiplying through by � 1 yields the side lengths of a rational right triangle
with area 5. Are there any others?

Observe that we can applyg to any point in En (Q) with y 6= 0. Using
the group law we �nd that 2( � 4; � 6) = (1681=144; 62279=1728), and

g(2(� 4; � 6)) =
�

�
1519
492

; �
4920
1519

;
3344161
747348

�
:
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Example 6.5.10. Let n = 1, so E1 is de�ned by y2 = x3 � x. Since 1 is not
a congruent number, the elliptic curve E1 has no point with y 6= 0. See
Exercise 6.11.

Example 6.5.9 foreshadows the following theorem.

Theorem 6.5.11 (In�nitely Many Triangles) . If n is a congruent number,
then there are in�nitely many distinct right triangles with rational side
lengths and arean.

We will not prove this theorem, except to note that one proves it by
showing that En (Q)tor = fO ; (0; 0); (n; 0); (� n; 0)g, so the elements of the
set B in Proposition 6.5.7 all have in�nite order, hence B is in�nite so A
is in�nite.

Tunnell has proved that the Birch and Swinnerton-Dyer conjecture (al-
luded to above), implies the existence of an elementary way to decide
whether or not an integer n is a congruent number. We state Tunnell's
elementary way in the form of a conjecture.

Conjecture 6.5.12. Let a; b; cdenote integers. Ifn is an even square-free
integer then n is a congruent number if and only if

#
n

(a; b; c) 2 Z3 : 4a2 + b2 + 8c2 =
n
2

: c is even
o

= #
n

(a; b; c) : 4a2 + b2 + 8c2 =
n
2

: c is odd
o

:

If n is odd and square free thenn is a congruent number if and only if

#
�

(a; b; c) : 2a2 + b2 + 8c2 = n : c is even
	

= #
�

(a; b; c) : 2a2 + b2 + 8c2 = n : c is odd
	

:

Enough of the Birch and Swinnerton-Dyer conjecture is known to prove
one direction of Conjecture 6.5.12. In particular, it is a very deep theorem
that if we do not have equality of the displayed cardinalities, then n is not
a congruent number. For example, whenn = 1,

The even more di�cult (and still open!) part of Conjecture 6.5.12 is the
converse: If one has equality of the displayed cardinalities, prove thatn
is a congruent number. The di�culty in this direction, which appears to
be very deep, is that we must somehow construct (or prove the existence
of) elements of En (Q). This has been accomplished in some cases do to
groundbreaking work of Gross and Zagier ([GZ86]) but much work remains
to be done.

The excellent book [Kob84] is about congruent numbers and Conjec-
ture 6.5.12, and we encourage the reader to consult it. The Birch and
Swinnerton-Dyer conjecture is a Clay Math Institute million dollar millen-
nium prize problem (see [Cla, Wil00]).
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6.6 Exercises

6.1 Write down an equation y2 = x3 + ax + b over a �eld K such that
� 16(4a3+27b2) = 0. Precisely what goes wrong when trying to endow
the set E(K ) = f (x; y) 2 K � K : y2 = x3 + ax + bg [ fOg with a
group structure?

6.2 One rational solution to the equation y2 = x3 � 2 is (3; 5). Find a
rational solution with x 6= 3 by drawing the tangent line to (3 ; 5) and
computing the second point of intersection.

6.3 Let E be the elliptic curve over the �nite �eld K = Z=5Z de�ned by
the equation

y2 = x3 + x + 1 :

(a) List all 9 elements of E(K ).

(b) What is the structure of E(K ), as a product of cyclic groups?

6.4 Let E be the elliptic curve de�ned by the equation y2 = x3 + 1. For
each prime p � 5, let Np be the cardinality of the group E(Z=pZ)
of points on this curve having coordinates inZ=pZ. For example, we
have that N5 = 6 ; N7 = 12; N11 = 12; N13 = 12; N17 = 18; N19 =
12; ; N23 = 24; and N29 = 30 (you do not have to prove this).

(a) For the set of primes satisfying p � 2 (mod 3), can you see a
pattern for the values of Np? Make a general conjecture for the
value of Np when p � 2 (mod 3).

(b) (*) Prove your conjecture.

6.5 Let E be an elliptic curve over the real numbersR . Prove that E(R )
is not a �nitely generated abelian group.

6.6 (*) SupposeG is a �nitely generated abelian group. Prove that the
subgroup Gtor of elements of �nite order in G is �nite.

6.7 Supposey2 = x3 + ax + b with a; b2 Q de�nes an elliptic curve. Show
that there is another equation Y 2 = X 3 + AX + B with A; B 2 Z
whose solutions are in bijection with the solutions toy2 = x3 + ax+ b.

6.8 Supposea, b, c are relatively prime integers with a2 + b2 = c2. Then
there exist integers x and y with x > y such that c = x2 + y2 and
either a = x2 � y2, b = 2xy or a = 2xy, b = x2 � y2.

6.9 (*) Fermat's Last Theorem for exponent 4 asserts that any solution
to the equation x4 + y4 = z4 with x; y; z 2 Z satis�es xyz = 0. Prove
Fermat's Last Theorem for exponent 4, as follows.
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(a) Show that if the equation x2 + y4 = z4 has no integer solutions
with xyz 6= 0, then Fermat's Last Theorem for exponent 4 is
true.

(b) Prove that x2 + y4 = z4 has no integer solutions withxyz 6= 0 as
follows. Supposen2 + k4 = m4 is a solution with m > 0 minimal
amongst all solutions. Show that there exists a solution withm
smaller using Exercise 6.8 (consider two cases).

6.10 This problem requires a computer.

(a) Show that the set of numbers 59 + 1� s for s � 15 contains 14
numbers that are B -power smooth for B = 20.

(b) Find the proportion of primes p in the interval from 1012 and
1012 + 1000 such that p � 1 is B = 105 power-smooth.

6.11 (*) Prove that 1 is not a congruent number by showing that the
elliptic curve y2 = x3 � x has no rational solutions except (0; � 1) and
(0; 0), as follows:

(a) Write y = p
q and x = r

s , where p; q; r; s are all positive integers
and gcd(p; q) = gcd( r; s) = 1. Prove that s j q, so q = sk for
somek 2 Z.

(b) Prove that s = k2, and substitute to see that p2 = r 3 � rk 4.

(c) Prove that r is a perfect square by supposing that there is a
prime ` such that ord` (r ) is odd and analyzing ord̀ of both
sides ofp2 = r 3 � rk 4.

(d) Write r = m2, and substitute to see that p2 = m6 � m2k4. Prove
that m j p.

(e) Divide through by m2 and deduce a contradiction to Exer-
cise 6.9.
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Answers and Hints

1. Prime Numbers

2. They are 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59;
61; 67; 71; 73; 79; 83; 89; 97.

3. Emulate the proof of Proposition 1.2.6.

2. The Ring of Integers Modulo n

2. They are 5, 13, 3, and 8.

3. For examplex = 22, y = � 39.

4. Hint: Use the binomial theorem and prove that if r � 1 then p
divides

� p
r

�
.

7. For example, S1 = f 0; 1; 2; 3; 4; 5; 6g, S2 = f 1; 3; 5; 7; 11; 13; 23g,
S3 = f 0; 2; 4; 6; 8; 10; 12g, and S4 = f 2; 3; 5; 7; 11; 13; 29g: In each
we �nd Si by listing the �rst seven numbers satisfying the i th
condition, then adjusted the last number if necessary so that the
reductions would be distinct modulo 7.

8. An integer is divisible by 5 if and only if the last digits is 0 or 5.
An integer is divisible by 9 if and only if the sum of the digits
is divisible by 9. An integer is divisible by 11 if and only if the
alternating sum of the digits is divisible by 11.

9. Hint for part (a): Use the divisibility rule you found in Exer-
cise 1.8.
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10. 71

11. 8

12. As explained on page 26, we know thatZ=nZ is a ring for any n.
Thus to show that Z=pZ is a �eld it su�ces to show that every
nonzero elementa 2 Z=pZ has an inverse. Lift a to an element
a 2 Z, and set b = p in Proposition 2.3.1. Becausep is prime,
gcd(a; p) = 1, so there existsx; y such that ax+ py = 1. Reducing
this equality modulo p proves that a has an inversex (mod p).
Alternative one could argue just like after De�nition 2.1.15 that
am = 1 for some m, so some power ofa is the inverse ofa.

13. 302

15. Only for n = 1 ; 2. If n > 2, then n is either divisible by an
odd prime p or 4. If 4 j n, then 2e � 2e� 1 divides ' (n) for some
e � 2, so ' (n) is even. If an odd p divides n, then the even
number pe � pe� 1 divides ' (n) for some e � 1.

16. The map  is a homomorphism since both reduction maps

Z=mnZ ! Z=mZ and Z=mnZ ! Z=nZ

are homomorphisms. It is injective because ifa 2 Z is such that
 (a) = 0, then m j a and n j a, so mn j a (since m and n are
coprime), soa � 0 (mod mn). The cardinality of Z=mnZ is mn
and the cardinality of the product Z=mZ � Z=nZ is also mn,
so  must be an isomorphism. The units (Z=mnZ) � are thus in
bijection with the units ( Z=mZ) � � (Z=nZ) � .
For the second part of the exercise, letg = gcd(m; n) and set
a = mn=g. Then a 6� 0 (mod mn), but m j a and n j a, so
aker( ).

17. We express the question as a system of linear equations modulo
various numbers, and use the Chinese remainder theorem. Let
x be the number of books. The problem asserts that

x � 6 (mod 7)

x � 2 (mod 6)

x � 1 (mod 5)

x � 0 (mod 4)

Applying CRT to the �rst pair of equations we �nd that x � 20
(mod 42). Applying CRT to this equation and the third we �nd
that x � 146 (mod 210). Since 146 is not divisible by 4, we add
multiples of 210 to 146 until we �nd the �rst x that is divisible
by 4. The �rst multiple works, and we �nd that the aspiring
mathematicians have 356 math books.
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18. Note that p = 3 works, since 11 = 32 + 2 is prime. Now suppose
p 6= is any prime such that p and p2 +2 are both prime. We must
have p � 1 (mod 3) or p � 2 (mod 3). Then p2 � 1 (mod 3),
so p2 + 2 � 0 (mod 3), which contradicts the fact that p2 + 2 is
prime.

19. For (a) n = 1 ; 2, see solution to Exercise 2.15. For (b), yes there
are many such examples. For example,m = 2, n = 4.

20. By repeated application of multiplicativity and Equation (2.2.2)
on page 34, we see that ifn =

Q
i pei

i is the prime factorization
of n, then

' (n) =
Y

i

(pei
i � pei � 1

i ) =
Y

i

pei � 1
i �

Y

i

(pi � 1):

23. 1, 6, 29, 34

24. Let g = gcd(12n+1 ; 30n+2). Then g j 30n+2 � 2�(12n+1) = 6 n.
For the same reasong also divides 12n+1 � 2�(6n) = 1, so g = 1,
as claimed.

27. There is no primitive root modulo 8, since (Z=8Z) � has order
4, but every element of (Z=8Z) � has order 2. Prove that if � is
a primitive root modulo 2 n , for n � 3, then the reduction of �
mod 8 is a primitive root, a contradiction.

28. 2 is a primitive root modulo 125.

29. Let
Q m

i =1 pei
i be the prime factorization of n. Slightly generaliz-

ing Exercise 16 we see that

(Z=nZ) � �=
Y

(Z=pei
i Z) � :

Thus (Z=nZ) � is cyclic if and only if the product ( Z=pei
i Z) � is

cyclic. If 8 j n, then there is no chance (Z=nZ) � is cyclic, so
assume 8- n. Then by Exercise 2.28 each group (Z=pei

i Z) � is
itself cyclic. A product of cyclic groups is cyclic if and only the
orders of the factors in the product are coprime (this follows from
Exercise 2.16). Thus (Z=nZ) � is cyclic if and only if the numbers
pi (pi � 1), for i = 1 ; : : : ; m are pairwise coprime. Sincepi � 1 is
even, there can be at most one odd prime in the factorization of
n, and we see that (Z=nZ) � is cyclic if and only if n is an odd
prime power, twice an odd prime power, orn = 4.

3. Public-Key Cryptography

1. The best case is that each letter is A. Then the question is to �nd
the largest n such that 1 + 27 + � � � + 27n � 1020. By computing
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log27(1020), we see that 2713 < 1020 and 2714 > 1020. Thus
n � 13, and since 1+27+� � � +27n � 1 < 27n , and 2� 2713 < 1020,
it follows that n = 13.

2. This is not secure, since it is just equivalent to a \Ceaser Ci-
pher", that is a permutation of the letters of the alphabet, which
is well-known to be easily broken using a frequency analysis.

3. If we can compute the polynomial

f = ( x � p)(x � q)(x � r ) = x3 � (p+ q+ r )x2+( pq+ pr+ qr)x � pqr;

then we can factor n by �nding the roots of f , e.g., using New-
ton's method (or Cardona's formula for the roots of a cubic).
Becausep, q, r , are distinct odd primes we have

' (n) = ( p � 1)(q � 1)(r � 1) = pqr � (pq+ pr + qr) + p + q + r;

and
� (n) = 1 + ( p + q + r ) + ( pq+ pr + qr) + pqr:

Since we known, ' (n), and � (n), we know

� (n) � 1 � n = ( p + q + r ) + ( pq+ pr + qr); and

' (n) � n = ( p + q + r ) � (pq+ pr + qr):

We can thus compute both p + q + r and pq + pr + qr, hence
deducef and �nd p; q; r.

4. Quadratic Reciprocity

1. They are all 1, � 1, 0, and 1.

3. By Proposition 4.3.4 the value of
�

3
p

�
depends only on the re-

duction � p (mod 12). List enough primes p such that the � p
reduce to 1; 5; 7; 11 modulo 12 and verify that the asserted for-
mula holds for each of them.

7. Sincep = 2 13 � 1 is prime there are either two solutions or no
solutions to x2 � 5 (mod p), and we can decide which using
quadratic reciprocity. We have

�
5
p

�
= ( � 1)(p� 1)=2�(5 � 1)=2

� p
5

�
=

� p
5

�
;

so there are two solutions if and only ifp = 2 13 � 1 is � 1 mod 5.
In fact p � 1 (mod 5), so there are two solutions.

8. We have 448 = 2 96. By Fermat's Little Theorem 2 96 = 1, so
x = 1.
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9. For (a) take a = 19 and n = 20. We found this example us-
ing the Chinese remainder theorem applied to 4 (mod 5) and 3
(mod 4), and used that

�
19
20

�
=

�
19
5

�
�
�

19
4

�
= ( � 1)(� 1) = 1, yet

19 is not a square modulo either 5 or 4, so is certainly not a
square modulo 20.

10. Hint: First reduce to the case that 6k � 1 is prime, by using
that if p and q are primes not of the form 6k � 1, then neither
is their product. If p = 6k � 1 divides n2 + n + 1, it divides
4n2 + 4n + 4 = (2 n + 1) 2 + 3, so � 3 is a quadratic residue
modulo p. Now use quadratic reciprocity to show that � 3 is not
a quadratic residue modulop.

5. Continued Fractions

9. Supposen = x2 + y2, with x; y 2 Q. Let d be such that dx; dy 2
Z. Then d2n = ( dx)2 + ( dy)2 is a sum of two integer squares, so
by Theorem 5.6.1 if p j d2n and p � 3 (mod 4), then ordp(d2n)
is even. We have ordp(d2n) is even if and only if ordp(n) is even,
so Theorem 5.6.1 implies thatn is also a sum of two squares.

11. The squares modulo 8 are 0; 1; 4, so a sum of two squares reduces
modulo 8 to one of 0; 1; 2; 4 or 5. Four consecutive integers that
are sums of squares would reduce to four consecutive integers in
the set f 0; 1; 2; 4; 5g, which is impossible.

6. Elliptic Curves

2. The second point of intersection is (129=100; 383=1000).

3. The group is cyclic of order 9, generated by (4; 2). The elements
of E(K ) are

fO ; (4; 2); (3; 4); (2; 4); (0; 4); (0; 1); (2; 1); (3; 1); (4; 3)g:

4. In part (a) the pattern is that Np = p + 1. For part (b), a hint
is that when p � 2 (mod 3), the map x 7! x3 on (Z=pZ) � is an
automorphism, sox 7! x3 + 1 is a bijection. Now use what you
learned about squares inZ=pZ from Chapter 4.

5. For all su�ciently large real x, the equation y2 = x3 + ax + b has
a real solution y. Thus the group E(R ) is not countable, sinceR
is not countable. But any �nitely generated group is countable.

6. In a course on abstract algebra one often proves the nontrivial
fact that every subgroup of a �nitely generated abelian group
is �nitely generated. In particular, the torsion subgroup Gtor is
�nitely generated. However, a �nitely generated abelian torsion
group is �nite.
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7. Hint: Multiply both sides of y2 = x3 + ax + b by a power of a
common denominator, and \absorb" powers into x and y.

8. Hint: see Exercise 4.6.
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