The Torsion Subgroup of $ E(\mathbb{Q})$ and the Rank

For any abelian group $ G$ , let $ G_{\tor }$ be the subgroup of elements of finite order. If $ E$ is an elliptic curve over $ \mathbb {Q}$ , then $ E(\mathbb{Q})_{\tor }$ is a subgroup of $ E(\mathbb{Q})$ , which must be finite because of Theorem 6.5.1 (see Exercise 6.6). One can also prove that $ E(\mathbb{Q})_{\tor }$ is finite by showing that there is a prime $ p$ and an injective reduction homomorphism $ E(\mathbb{Q})_{\tor } \hookrightarrow
E(\mathbb{Z}/p\mathbb{Z})$ , then noting that $ E(\mathbb{Z}/p\mathbb{Z})$ is finite. For example, if $ E$ is $ y^2=x^3-5x+4$ , then $ E(\mathbb{Q})_{\tor } = \{\O, (1,0)\} \cong \mathbb{Z}/2\mathbb{Z}{}.$

The possibilities for $ E(\mathbb{Q})_{\tor }$ are known.

Theorem 6.5 (Mazur, 1976)   Let $ E$ be an elliptic curve over  $ \mathbb {Q}$ . Then $ E(\mathbb{Q})_{\tor }$ is isomorphic to one of the following 15 groups:

$\displaystyle \mathbb{Z}/n\mathbb{Z}{}$     for $\displaystyle n\leq 10$    or $\displaystyle n=12,$    
$\displaystyle \mathbb{Z}/2\times \mathbb{Z}/2n$     for $\displaystyle n \leq 4.$    

The quotient $ E(\mathbb{Q})/E(\mathbb{Q})_{\tor }$ is a finitely generated free abelian group, so it is isomorphism to $ \mathbb{Z}^r$ for some integer $ r$ , called the rank of $ E(\mathbb{Q})$ . For example, using descent one finds that if $ E$ is $ y^2=x^3-5x+4$ , then $ E(\mathbb{Q})/E(\mathbb{Q})_{\tor }$ is generated by the point $ (0,2)$ . Thus $ E(\mathbb{Q}) \cong \mathbb{Z}\times (\mathbb{Z}/2\mathbb{Z})$ .

The following is a folklore conjecture, not associated to any particular mathematician:

Conjecture 6.5   There are elliptic curves over  $ \mathbb {Q}$ of arbitrarily large rank.

The world record is the following curve, whose rank is at least $ 28$ :

$\displaystyle y^2 +$ $\displaystyle xy + y = x^3 - x^2 -$    
  $\displaystyle 20067762415575526585033208209338542750930230312178956502x +$    
  $\displaystyle 344816117950305564670329856903907203748559443593191803612\ldots$    
  $\displaystyle \ldots 66008296291939448732243429$    

It was discovered in May 2006 by Noam Elkies of Harvard University.

William 2007-06-01