Examples

For simplicity, we use an elliptic curve of the form

$\displaystyle y^2 = x^3 + ax + 1,$

which has the point $ P=(0,1)$ already on it.

We factor $ N=5959$ using the elliptic curve method. Let

$\displaystyle m=\lcm (1,2,\ldots,20) = 232792560 = 1101111000000010000111110000_2,
$

where $ x_2$ means $ x$ is written in binary. First we choose $ a=1201$ at random and consider $ y^2 = x^3 + 1201x + 1$ over $ \mathbb{Z}/5959\mathbb{Z}{}$ . Using the formula for $ P+P$ from Algorithm 6.2.1 we compute $ 2^i\cdot P = 2^i\cdot (0,1)$ for $ i\in B=\{4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27 \}$ . Then $ \sum_{i\in B} 2^i P = m P$ . It turns out that during no step of this computation does a number not coprime to $ 5959$ appear in any denominator, so we do not split $ N$ using $ a=1201$ . Next we try $ a=389$ and at some stage in the computation we add $ P=(2051,5273)$ and $ Q=(637,1292)$ . When computing the group law explicitly we try to compute $ \lambda = (y_1-y_2)/(x_1-x_2)$ in $ (\mathbb{Z}/5959\mathbb{Z})^*$ , but fail since $ x_1-x_2 = 1414$ and $ \gcd(1414,5959)=101$ . We thus find a nontrivial factor $ 101$ of $ 5959$ .

William 2007-06-01