Proof of Quadratic Reciprocity

We are now ready to prove Theorem 4.1.7 using Gauss sums.

Proof. Let $ q$ be an odd prime with $ q\neq p$ . Set $ p^* = (-1)^{(p-1)/2}p$ and recall that Proposition 4.4.5 asserts that $ p^*
= g^2$ , where $ g = g_1 = \sum_{n=0}^{p-1} \left(\frac{n}{p}\right)\zeta^n$ .

Proposition 4.2.1 implies that

$\displaystyle (p^*)^{(q-1)/2} \equiv \left(\frac{p^*}{q}\right) \pmod{q}.
$

We have $ g^{q-1} = (g^2)^{(q-1)/2} = (p^*)^{(q-1)/2}$ , so multiplying both sides of the displayed equation by $ g$ yields a congruence

$\displaystyle g^q \equiv g \left(\frac{p^*}{q}\right) \pmod{q}.$ (4.4.3)

But wait, what does this congruence mean, given that $ g^q$ is not an integer? It means that the difference $ g^q - g \left(\frac{p^*}{q}\right)$ lies in the ideal $ (q)$ in the ring $ \mathbb{Z}[\zeta]$ of all polynomials in $ \zeta$ with coefficients in  $ \mathbb {Z}$ .

The ring $ \mathbb{Z}[\zeta]/(q)$ has characteristic $ q$ , so if  $ x, y\in\mathbb{Z}[\zeta]$ , then $ (x+y)^q \equiv x^q + y^q \pmod{q}$ . Applying this to (4.4.3), we see that

$\displaystyle g^q = \left(\sum_{n=0}^{p-1} \left(\frac{n}{p}\right)\zeta^n \rig...
...equiv \sum_{n=0}^{p-1} \left(\frac{n}{p}\right) \zeta^{nq} \equiv g_q\pmod{q}.
$

By Lemma 4.4.10,

$\displaystyle g^q \equiv g_q \equiv \left(\frac{q}{p}\right) g\pmod{q}.
$

Combining this with (4.4.3) yields

$\displaystyle \left(\frac{q}{p}\right) g \equiv \left(\frac{p^*}{q}\right)g \pmod{q}.
$

Since $ g^2 = p^*$ and $ p\neq q$ , we can cancel $ g$ from both sides to find that $ \left(\frac{q}{p}\right) \equiv \left(\frac{p^*}{q}\right) \pmod{q}$ . Since both residue symbols are $ \pm 1$ and $ q$ is odd, it follows that $ \left(\frac{q}{p}\right)
= \left(\frac{p^*}{q}\right)$ . Finally, we note using Proposition 4.2.1 that

$\displaystyle \left(\frac{p^*}{q}\right)$ $\displaystyle = \left(\frac{(-1)^{(p-1)/2}p}{q}\right) = \left(\frac{-1}{q}\rig...
...ft(-1\right)^{\frac{q-1}{2}\cdot \frac{p-1}{2}} \cdot \left(\frac{p}{q}\right).$    

$ \qedsymbol$

William 2007-06-01