
48 CHAPTER 3. MODULAR FORMS OF WEIGHT TWO

3.3.2 Manin symbols

As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Consider
formal symbols [ri]

′ for i = 0, . . . , m. Let [ri] be the modular symbol ri{0,∞} =
{ri(0), ri(∞)}. We equip the symbols [r0]

′, . . . , [rm]′ with a right action of
SL2(Z), which is given by [ri]

′.g = [rj]
′, where Γ0(N)rj = Γ0(N)rig. We extend

the notation by writing [γ]′ = [Γ0(N)γ]′ = [ri]
′, where γ ∈ Γ0(N)ri. Then the

right action of Γ0(N) is simply [γ]′.g = [γg]′.
Theorem 1.1.2 implies that SL2(Z) is generated by the two matrices σ =

(

0 −1

1 0

)

and τ =
(

1 −1

1 0

)

. Note that σ = S from Theorem 1.1.2 and τ = TS, so
T = τσ ∈ 〈σ, τ〉.

The following theorem provides us with a finite presentation for the space
M2(Γ0(N)) of modular symbols.

Theorem 3.3.4 (Manin). Consider the quotient M of the free abelian group
on Manin symbols [r0]

′, . . . , [rm]′ modulo the subgroup generated by the elements
(for all i):

[ri]
′ + [ri]

′σ and [ri]
′ + [ri]

′τ + [ri]
′τ2,

and modulo any torsion. Then there is an isomorphism Ψ : M
∼
−→ M2(Γ0(N))

given by [ri]
′ 7→ [ri] = ri{0,∞}.

Proof. We will only prove that Ψ is surjective; the proof that Ψ is injective
requires much more work and will be omitted from this book (see [Man72, §1.7]
for a complete proof). [[Todo: And reference my book with Ribet, or
Wiese’s work?]]

Proposition 3.3.2 implies that Ψ is surjective, assuming that Ψ is well defined.
We next verify that Ψ is well defined, i.e. that the listed two and three term
relations hold in the image. To see that the first relation holds, note that

[ri] + [ri]σ = {ri(0), ri(∞)} + {riσ(0), riσ(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(0)}

= 0.

For the second relation we have

[ri] + [ri]τ + [ri]τ
2 = {ri(0), ri(∞)} + {riτ(0), riτ(∞)} + {riτ

2(0), riτ
2(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(1)} + {ri(1), ri(0)}

= 0

Example 3.3.5. By default SAGE computes modular symbols spaces over Q,
i.e., M2(Γ0(N); Q) ∼= M2(Γ0(N)) ⊗ Q. SAGE represents (weight 2) Manin
symbols as pairs (c, d). Here c, d are integers that satisfy 0 ≤ c, d < N ; they
define a point (c : d) ∈ P1(Z/NZ), hence a right coset of Γ0(N) in SL2(Z) (see
Proposition 3.3.1).

3.3. COMPUTING WITH MODULAR SYMBOLS 49

Create M2(Γ0(N); Q) in SAGE by typing ModularSymbols(N, 2). We then
use the SAGE command manin generators to enumerate a list of generators
[r0], . . . , [rn] as in Theorem 3.3.4 for several spaces of modular symbols.

sage: M = ModularSymbols(2,2)

sage: M

Full Modular Symbols space for Gamma_0(2) of weight 2 with

sign 0 and dimension 1 over Rational Field

sage: M.manin_generators()

[(0,1), (1,0), (1,1)]

sage: M = ModularSymbols(3,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2)]

sage: M = ModularSymbols(6,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1),

(2,3), (2,5), (3,1), (3,2)]

Given x=(c,d), the command x.lift to sl2z(N) finds an element [a,b,c’,d’]
of SL2(Z) whose lower two entries are congruent to (c, d) modulo N .

sage: M = ModularSymbols(2,2)

sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]

[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]

sage: M = ModularSymbols(6,2)

sage: x = M.manin_generators()[9]

sage: x

(2,5)

sage: x.lift_to_sl2z(6)

[1, 2, 2, 5]

The manin basis command returns a list of indices into the Manin generator
list such that the corresponding symbols form a basis for the quotient of the
Q-vector space spanned by Manin symbols modulo the 2 and 3-term relations
of Theorem 3.3.4.

50 CHAPTER 3. MODULAR FORMS OF WEIGHT TWO

sage: M = ModularSymbols(2,2)

sage: M.manin_basis()

[1]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0)]

sage: M = ModularSymbols(6,2)

sage: M.manin_basis()

[1, 10, 11]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0), (3,1), (3,2)]

Thus, e.g., every element of M2(Γ0(6)) is a Q-linear combination of the 3 symbols
[(1, 0)], [(3, 1)], and [(3, 2)]. We can write each of these as a modular symbol
using the modular symbol rep function.

sage: M.basis()

((1,0), (3,1), (3,2))

sage: [x.modular_symbol_rep() for x in M.basis()]

[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]

The manin gens to basis function returns a matrix whose rows express
each Manin symbol generator in terms of the subset of Manin symbols that
forms a basis (as returned by manin basis.

sage: M = ModularSymbols(2,2)

sage: M.manin_gens_to_basis()

[-1]

[1]

[0]

Since the basis is (1, 0) this means that in M2(Γ0(2); Q), we have [(0, 1)] =
−[(1, 0)] and [(1, 1)] = 0. (Since no denominators are involved, we have in fact
computed a presentation of M2(Γ0(2); Z).)

Convert a Manin symbol x = (c, d) to an element of a modular symbols
space M , use M(xx):

sage: M = ModularSymbols(2,2)

sage: x = (1,0); M(x)

(1,0)

sage: M((3,1)) # entries are reduced modulo 2 first

0

sage: M((10,19))

-(1,0)

Next consider M2(Γ0(6); Q):

3.4. HECKE OPERATORS 51

sage: M = ModularSymbols(6,2)

sage: M.manin_gens_to_basis()

[-1 0 0]

[1 0 0]

[0 0 0]

[0 -1 1]

[0 -1 0]

[0 -1 1]

[0 0 0]

[0 1 -1]

[0 0 -1]

[0 1 -1]

[0 1 0]

[0 0 1]

Recalling that our choice of basis for M2(Γ0(6); Q) is [(1, 0)], [(3, 1)], [(3, 2)].
Thus, e.g., first row of this matrix says that [(0, 1)] = −[(1, 0)], and the fourth
row asserts that [(1, 2)] = −[(3, 1)] + [(3, 2)].

sage: M = ModularSymbols(6,2)

sage: M((0,1))

-(1,0)

sage: M((1,2))

-(3,1) + (3,2)

3.4 Hecke Operators

3.4.1 Hecke Operators on Modular Symbols

When p is a prime not dividing N , define

Tp{α, β} =

(

p 0
0 1

)

{α, β} +
∑

r mod p

(

1 r
0 p

)

{α, β}.

As mentioned before, this definition is compatible with the integration pairing
〈 , 〉 of Section 3.1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the
definition is the same, except that the matrix

(

p 0

0 1

)

is not included in the sum.
(There is a similar definition of Tn for n composite; see Section 8.3.1 for the
general definition.)

Example 3.4.1. For example, when N = 11 we have

T2{0, 1/5} = {0, 2/5}+ {0, 1/10}+ {1/2, 3/5}

= −2{0, 1/5}.

52 CHAPTER 3. MODULAR FORMS OF WEIGHT TWO

3.4.2 Hecke Operators on Manin Symbols

In [Mer94], L. Merel gives a description of the action of Tp directly on Manin
symbols [ri] (see Section 8.3.2 for details). For example, when p = 2 and N is
odd, we have

T2([ri]) = [ri]

(

1 0
0 2

)

+ [ri]

(

2 0
0 1

)

+ [ri]

(

2 1
0 1

)

+ [ri]

(

1 0
1 2

)

. (3.4.1)

For any prime, let Sp be the set of matrices constructed using the following
algorithm (see [Cre97a, §2.4]):

Algorithm 3.4.2 (Cremona’s Matrices). Given a prime p, this algorithm outputs
a list of 2× 2 matrices of determinant p that can be used to compute the Hecke
operator Tp.

1. Output

(

1 0
0 p

)

.

2. For r =
⌈

−
p

2

⌉

, . . . ,
⌊p

2

⌋

:

(a) Let x1 = p, x2 = −r, y1 = 0, y2 = 1, a = −p, b = r.

(b) Output

(

x1 x2

y1 y2

)

.

(c) As long as b 6= 0, do the following:

i. Let q be the integer closest to a/b (if a/b is a half integer round
away from 0).

ii. Let c = a − bq, a = −b, b = c.

iii. Set x3 = qx2 − x1, x1 = x2, x2 = x3, and
y3 = qy2 − y1, y1 = y2, y2 = y3,

iv. Output

(

x1 x2

y1 y2

)

.

Proposition 3.4.3 (Cremona, Merel). Let Sp be as above. Then for p ∤ N and
[x] ∈ M2(Γ0(N)) a Manin symbol, we have

Tp([x]) =
∑

g∈Sp

[xg].

Proof. See Proposition 2.4.1 of [Cre97a].

There are other lists of matrices, due to Merel, that work even when p | N
(see Section 8.3.2).

The command HeilbronnCremonaList(p), for p prime, gives a list of matrices
that computes Tp on Manin symbols for p ∤ N .

3.4. HECKE OPERATORS 53

sage: HeilbronnCremonaList(2)

[[1, 0, 0, 2], [2, 0, 0, 1], [2, 1, 0, 1], [1, 0, 1, 2]]

sage: HeilbronnCremonaList(3)

[[1, 0, 0, 3], [3, 1, 0, 1], [1, 0, 1, 3], [3, 0, 0, 1],

[3, -1, 0, 1], [-1, 0, 1, -3]]

sage: HeilbronnCremonaList(5)

[[1, 0, 0, 5], [5, 2, 0, 1], [2, 1, 1, 3], [1, 0, 3, 5],

[5, 1, 0, 1], [1, 0, 1, 5], [5, 0, 0, 1], [5, -1, 0, 1],

[-1, 0, 1, -5], [5, -2, 0, 1], [-2, 1, 1, -3], [1, 0, -3, 5]]

sage: len(HeilbronnCremonaList(97))

392

Example 3.4.4. Using SAGE we compute the matrix of T2 on M2(Γ0(2)):

sage: M = ModularSymbols(2,2)

sage: M.T(2).matrix()

[1]

Example 3.4.5. We use SAGE to compute Hecke operators on M2(Γ0(6)):

sage: M = ModularSymbols(6, 2)

sage: M.T(2).matrix()

[2 1 -1]

[-1 0 1]

[-1 -1 2]

sage: M.T(3).matrix()

[3 2 0]

[0 1 0]

[2 2 1]

In fact for p ≥ 5 we have Tp = p + 1, since M2(Γ0(6)) is spanned by generalized
Eisenstein series (see Chapter 5).

Example 3.4.6. We use SAGE to compute Hecke operators on M2(Γ0(39)):

54 CHAPTER 3. MODULAR FORMS OF WEIGHT TWO

sage: M = ModularSymbols(39, 2)

sage: T2 = M.T(2)

sage: T2.matrix()

[3 0 -1 0 0 1 1 -1 0]

[0 0 2 0 -1 1 0 1 -1]

[0 1 0 -1 1 1 0 1 -1]

[0 0 1 0 0 1 0 1 -1]

[0 -1 2 0 0 1 0 1 -1]

[0 0 1 1 0 1 1 -1 0]

[0 0 0 -1 0 1 1 2 0]

[0 0 0 1 0 0 2 0 1]

[0 0 -1 0 0 0 1 0 2]

sage: factor(T2.charpoly())

(x - 3)^3 * (x - 1)^2 * (x^2 + 2*x - 1)^2

Notice that the Hecke operators commute, so their eigenspace structure is
similar.

sage: T2 = M.T(2).matrix()

sage: T5 = M.T(5).matrix()

sage: T2*T5 - T5*T2 == 0

True

sage: T5.charpoly().factor()

(x - 6)^3 * (x - 2)^2 * (x^2 - 8)^2

The rational decomposition of T2 is a list of the kernels of (fe)(T2), where f
runs through the irreducible factors of the characteristic polynomial of T2 and
fe exactly divides this characteristic polynomial. Using SAGE we find them:

sage: M = ModularSymbols(39, 2)

sage: M.T(2).decomposition()

[Dimension 3 subspace of a modular symbols space of level 39,

Dimension 2 subspace of a modular symbols space of level 39,

Dimension 4 subspace of a modular symbols space of level 39]

3.5 Computing the boundary map

In Section 3.2 we defined a map M2(Γ0(N)) → B2(Γ0(N)) whose kernel S2(Γ0(N))
is called the space of cuspidal modular symbols. This kernel will be important
in computing cuspforms in Section 3.7 below.

To compute the boundary map on Manin symbols, note that [γ] = {γ(0), γ(∞)},
so if γ =

(

a b
c d

)

, then

δ([γ]) = {γ(∞)} − {γ(0)} = {a/c} − {b/d}.

3.5. COMPUTING THE BOUNDARY MAP 55

Computing this boundary map would appear to first require an algorithm
to compute the set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). In fact, there
is a trick to compute the set of cusps in the course of running the algorithm.
First, give an algorithm for deciding whether or not two elements of P1(Q) are
equivalent modulo the action of Γ0(N). Then simply construct C(Γ0(N)) in the
course of computing the boundary map, i.e., keep a list of cusps found so far,
and whenever a new cusp class is discovered add it to the list. The following
proposition, which is proved in [Cre97a, Prop. 2.2.3], explains how to determine
whether two cusps are equivalent.

Proposition 3.5.1 (Cremona). Let (ci, di), i = 1, 2 be pairs of integers with
gcd(ci, di) = 1, and possibly di = 0. There exists g ∈ Γ0(N) such that g(c1/d1) =
c2/d2 in P1(Q) if and only if

s1d2 ≡ s2d1 (mod gcd(d1d2, N))

where sj satisfies cjsj ≡ 1 (mod dj).

In SAGE the command boundary map() computes the boundary map from
M2(Γ0(N)) to B2(Γ0(N)), and the cuspidal submodule() command computes
its kernel. For example, for level 2 the boundary map is given by the matrix
[1 − 1], and its kernel is the 0 space.

sage: M = ModularSymbols(2, 2)

sage: M.boundary_map()

Hecke module morphism boundary map defined by the matrix

[1 -1]

Domain: Full Modular Symbols space for Gamma_0(2) of weight 2 with sign ...

Codomain: Space of Boundary Modular Symbols for Gamma0(2) of weight 2 and ...

sage: M.cuspidal_submodule()

Dimension 0 subspace of a modular symbols space of level 2

The smallest level for which the boundary map has nontrivial kernel, i.e.,
for which S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11, 2)

sage: M.boundary_map().matrix()

[1 -1]

[0 0]

[0 0]

sage: M.cuspidal_submodule()

Dimension 2 subspace of a modular symbols space of level 11

sage: S = M.cuspidal_submodule(); S

Dimension 2 subspace of a modular symbols space of level 11

sage: S.basis()

((1,8), (1,9))

The following illustrates that the Hecke operators preserve S2(Γ0(N)):

56 CHAPTER 3. MODULAR FORMS OF WEIGHT TWO

sage: S.T(2).matrix()

[-2 0]

[0 -2]

sage: S.T(3).matrix()

[-1 0]

[0 -1]

sage: S.T(5).matrix()

[1 0]

[0 1]

A nontrivial fact (the Eichler-Shimura relation, etc.) is that for p prime the
eigenvalue of each of these matrices is the same as p + 1 − #E(Fp), where E is
the elliptic curve X0(11) given by the equation

y2 + y = x3 − x2 − 10x− 20.

sage: E = EllipticCurve([0,-1,1,-10,-20])

sage: 2 + 1 - E.Np(2)

-2

sage: 3 + 1 - E.Np(3)

-1

sage: 5 + 1 - E.Np(5)

1

sage: print [S.T(p).matrix()[0,0] - (p+1-E.Np(p)) for p in primes(100)]

[0, 0]

