3.3.2 Manin symbols

As above, fix coset representatives r_{0}, \ldots, r_{m} for $\Gamma_{0}(N)$ in $\mathrm{SL}_{2}(\mathbb{Z})$. Consider formal symbols $\left[r_{i}\right]^{\prime}$ for $i=0, \ldots, m$. Let $\left[r_{i}\right]$ be the modular symbol $r_{i}\{0, \infty\}=$ $\left\{r_{i}(0), r_{i}(\infty)\right\}$. We equip the symbols $\left[r_{0}\right]^{\prime}, \ldots,\left[r_{m}\right]^{\prime}$ with a right action of $\mathrm{SL}_{2}(\mathbb{Z})$, which is given by $\left[r_{i}\right]^{\prime} . g=\left[r_{j}\right]^{\prime}$, where $\Gamma_{0}(N) r_{j}=\Gamma_{0}(N) r_{i} g$. We extend the notation by writing $[\gamma]^{\prime}=\left[\Gamma_{0}(N) \gamma\right]^{\prime}=\left[r_{i}\right]^{\prime}$, where $\gamma \in \Gamma_{0}(N) r_{i}$. Then the right action of $\Gamma_{0}(N)$ is simply $[\gamma]^{\prime} . g=[\gamma g]^{\prime}$.

Theorem 1.1.2 implies that $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by the two matrices $\sigma=$ $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $\tau=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$. Note that $\sigma=S$ from Theorem 1.1.2 and $\tau=T S$, so $T=\tau \sigma \in\langle\sigma, \tau\rangle$.

The following theorem provides us with a finite presentation for the space $\mathcal{M}_{2}\left(\Gamma_{0}(N)\right)$ of modular symbols.

Theorem 3.3.4 (Manin). Consider the quotient M of the free abelian group on Manin symbols $\left[r_{0}\right]^{\prime}, \ldots,\left[r_{m}\right]^{\prime}$ modulo the subgroup generated by the elements (for all i):

$$
\left[r_{i}\right]^{\prime}+\left[r_{i}\right]^{\prime} \sigma \quad \text { and } \quad\left[r_{i}\right]^{\prime}+\left[r_{i}\right]^{\prime} \tau+\left[r_{i}\right]^{\prime} \tau^{2},
$$

and modulo any torsion. Then there is an isomorphism $\Psi: M \xrightarrow{\sim} \mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$ given by $\left[r_{i}\right]^{\prime} \mapsto\left[r_{i}\right]=r_{i}\{0, \infty\}$.

Proof. We will only prove that Ψ is surjective; the proof that Ψ is injective requires much more work and will be omitted from this book (see [Man72, §1.7] for a complete proof). [[Todo: And reference my book with Ribet, or Wiese's work?]]

Proposition 3.3.2 implies that Ψ is surjective, assuming that Ψ is well defined. We next verify that Ψ is well defined, i.e. that the listed two and three term relations hold in the image. To see that the first relation holds, note that

$$
\begin{aligned}
{\left[r_{i}\right]+\left[r_{i}\right] \sigma } & =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i} \sigma(0), r_{i} \sigma(\infty)\right\} \\
& =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i}(\infty), r_{i}(0)\right\} \\
& =0 .
\end{aligned}
$$

For the second relation we have

$$
\begin{aligned}
{\left[r_{i}\right]+\left[r_{i}\right] \tau+\left[r_{i}\right] \tau^{2} } & =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i} \tau(0), r_{i} \tau(\infty)\right\}+\left\{r_{i} \tau^{2}(0), r_{i} \tau^{2}(\infty)\right\} \\
& =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i}(\infty), r_{i}(1)\right\}+\left\{r_{i}(1), r_{i}(0)\right\} \\
& =0
\end{aligned}
$$

Example 3.3.5. By default SAGE computes modular symbols spaces over \mathbb{Q}, i.e., $\mathbb{M}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right) \cong \mathbb{M}_{2}\left(\Gamma_{0}(N)\right) \otimes \mathbb{Q}$. SAGE represents (weight 2) Manin symbols as pairs (c, d). Here c, d are integers that satisfy $0 \leq c, d<N$; they define a point $(c: d) \in \mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$, hence a right coset of $\Gamma_{0}(N)$ in $\mathrm{SL}_{2}(\mathbb{Z})$ (see Proposition 3.3.1).

Create $\mathbb{M}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$ in SAGE by typing ModularSymbols $(N, 2)$. We then use the SAGE command manin_generators to enumerate a list of generators $\left[r_{0}\right], \ldots,\left[r_{n}\right]$ as in Theorem 3.3.4 for several spaces of modular symbols.

```
sage: M = ModularSymbols(2,2)
sage: M
Full Modular Symbols space for Gamma_0(2) of weight 2 with
sign 0 and dimension 1 over Rational Field
sage: M.manin_generators()
[(0,1), (1,0), (1, 1)]
sage: M = ModularSymbols(3,2)
sage: M.manin_generators()
[(0,1), (1,0), (1, 1), (1,2)]
sage: M = ModularSymbols(6,2)
sage: M.manin_generators()
[(0,1), (1,0), (1, 1), (1,2), (1,3), (1,4), (1,5), (2,1),
    (2,3), (2,5), (3,1), (3,2)]
```

Given $x=(c, d)$, the command x. lift_to_sl2z(N) finds an element [a, b, c^{\prime}, d^{\prime}] of $\mathrm{SL}_{2}(\mathbb{Z})$ whose lower two entries are congruent to (c, d) modulo N.

```
sage: M = ModularSymbols(2,2)
sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]
[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]
sage: M = ModularSymbols (6,2)
sage: x = M.manin_generators() [9]
sage: x
(2,5)
sage: x.lift_to_sl2z(6)
[1, 2, 2, 5]
```

The manin_basis command returns a list of indices into the Manin generator list such that the corresponding symbols form a basis for the quotient of the \mathbb{Q}-vector space spanned by Manin symbols modulo the 2 and 3 -term relations of Theorem 3.3.4.

```
sage: M = ModularSymbols(2,2)
sage: M.manin_basis()
[1]
sage: [M.manin_generators()[i] for i in M.manin_basis()]
[(1,0)]
sage: M = ModularSymbols(6,2)
sage: M.manin_basis()
[1, 10, 11]
sage: [M.manin_generators()[i] for i in M.manin_basis()]
[(1,0), (3,1), (3,2)]
```

Thus, e.g., every element of $\mathbb{M}_{2}\left(\Gamma_{0}(6)\right)$ is a \mathbb{Q}-linear combination of the 3 symbols $[(1,0)],[(3,1)]$, and $[(3,2)]$. We can write each of these as a modular symbol using the modular_symbol_rep function.

```
sage: M.basis()
((1,0), (3,1), (3,2))
sage: [x.modular_symbol_rep() for x in M.basis()]
[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]
```

The manin_gens_to_basis function returns a matrix whose rows express each Manin symbol generator in terms of the subset of Manin symbols that forms a basis (as returned by manin_basis.

```
sage: M = ModularSymbols(2,2)
sage: M.manin_gens_to_basis()
[-1]
[ 1]
[ 0]
```

Since the basis is $(1,0)$ this means that in $\mathbb{M}_{2}\left(\Gamma_{0}(2) ; \mathbb{Q}\right)$, we have $[(0,1)]=$ $-[(1,0)]$ and $[(1,1)]=0$. (Since no denominators are involved, we have in fact computed a presentation of $\mathbb{M}_{2}\left(\Gamma_{0}(2) ; \mathbb{Z}\right)$.)

Convert a Manin symbol $x=(c, d)$ to an element of a modular symbols space M, use $\mathrm{M}(\mathrm{xx})$:

```
sage: M = ModularSymbols(2,2)
sage: x = (1,0); M(x)
(1,0)
sage: M( (3,1) ) # entries are reduced modulo $2$ first
0
sage: M( (10,19) )
-(1,0)
```

Next consider $\mathbb{M}_{2}\left(\Gamma_{0}(6) ; \mathbb{Q}\right)$:

```
sage: M = ModularSymbols(6,2)
sage: M.manin_gens_to_basis()
[-1 00 0]
[ [1 0 0]
[ 0 0 0]
[ [0 -1 1]
[ [0 -1 0]
[ llll
[ 0 0 0}
[ 0 1 - 1]
[ 0 0 -1]
[ [0 1-1]
[ 0 1 0
[ 0 0 1]
```

Recalling that our choice of basis for $\mathbb{M}_{2}\left(\Gamma_{0}(6) ; \mathbb{Q}\right)$ is $[(1,0)],[(3,1)],[(3,2)]$. Thus, e.g., first row of this matrix says that $[(0,1)]=-[(1,0)]$, and the fourth row asserts that $[(1,2)]=-[(3,1)]+[(3,2)]$.

```
sage: M = ModularSymbols(6,2)
sage: M((0,1))
-(1,0)
sage: M((1,2))
-(3,1) + (3,2)
```


3.4 Hecke Operators

3.4.1 Hecke Operators on Modular Symbols

When p is a prime not dividing N, define

$$
T_{p}\{\alpha, \beta\}=\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)\{\alpha, \beta\}+\sum_{r \bmod p}\left(\begin{array}{ll}
1 & r \\
0 & p
\end{array}\right)\{\alpha, \beta\} .
$$

As mentioned before, this definition is compatible with the integration pairing \langle,$\rangle of Section 3.1, in the sense that \left\langle f T_{p}, x\right\rangle=\left\langle f, T_{p} x\right\rangle$. When $p \mid N$, the definition is the same, except that the matrix $\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right)$ is not included in the sum. (There is a similar definition of T_{n} for n composite; see Section 8.3.1 for the general definition.)

Example 3.4.1. For example, when $N=11$ we have

$$
\begin{aligned}
T_{2}\{0,1 / 5\} & =\{0,2 / 5\}+\{0,1 / 10\}+\{1 / 2,3 / 5\} \\
& =-2\{0,1 / 5\}
\end{aligned}
$$

3.4.2 Hecke Operators on Manin Symbols

In [Mer94], L. Merel gives a description of the action of T_{p} directly on Manin symbols $\left[r_{i}\right]$ (see Section 8.3.2 for details). For example, when $p=2$ and N is odd, we have

$$
T_{2}\left(\left[r_{i}\right]\right)=\left[r_{i}\right]\left(\begin{array}{ll}
1 & 0 \tag{3.4.1}\\
0 & 2
\end{array}\right)+\left[r_{i}\right]\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)+\left[r_{i}\right]\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right)+\left[r_{i}\right]\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)
$$

For any prime, let S_{p} be the set of matrices constructed using the following algorithm (see [Cre97a, §2.4]):

Algorithm 3.4.2 (Cremona's Matrices). Given a prime p, this algorithm outputs a list of 2×2 matrices of determinant p that can be used to compute the Hecke operator T_{p}.

1. Output $\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)$.
2. For $r=\left\lceil-\frac{p}{2}\right\rceil, \ldots,\left\lfloor\frac{p}{2}\right\rfloor$:
(a) Let $x_{1}=p, x_{2}=-r, y_{1}=0, y_{2}=1, a=-p, b=r$.
(b) Output $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$.
(c) As long as $b \neq 0$, do the following:
i. Let q be the integer closest to a / b (if a / b is a half integer round away from 0).
ii. Let $c=a-b q, a=-b, b=c$.
iii. Set $x_{3}=q x_{2}-x_{1}, x_{1}=x_{2}, x_{2}=x_{3}$, and
$y_{3}=q y_{2}-y_{1}, y_{1}=y_{2}, y_{2}=y_{3}$,
iv. Output $\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)$.

Proposition 3.4.3 (Cremona, Merel). Let S_{p} be as above. Then for $p \nmid N$ and $[x] \in \mathcal{M}_{2}\left(\Gamma_{0}(N)\right)$ a Manin symbol, we have

$$
T_{p}([x])=\sum_{g \in S_{p}}[x g]
$$

Proof. See Proposition 2.4.1 of [Cre97a].
There are other lists of matrices, due to Merel, that work even when $p \mid N$ (see Section 8.3.2).

The command HeilbronnCremonaList (p), for p prime, gives a list of matrices that computes T_{p} on Manin symbols for $p \nmid N$.

```
sage: HeilbronnCremonaList(2)
[[1, 0, 0, 2], [2, 0, 0, 1], [2, 1, 0, 1], [1, 0, 1, 2]]
sage: HeilbronnCremonaList(3)
[[1, 0, 0, 3], [3, 1, 0, 1], [1, 0, 1, 3], [3, 0, 0, 1],
    [3, -1, 0, 1], [-1, 0, 1, -3]]
sage: HeilbronnCremonaList(5)
[[1, 0, 0, 5], [5, 2, 0, 1], [2, 1, 1, 3], [1, 0, 3, 5],
    [5, 1, 0, 1], [1, 0, 1, 5], [5, 0, 0, 1], [5, -1, 0, 1],
    [-1, 0, 1, -5], [5, -2, 0, 1], [-2, 1, 1, -3], [1, 0, -3, 5]]
sage: len(HeilbronnCremonaList(97))
392
```

Example 3.4.4. Using SAGE we compute the matrix of T_{2} on $\mathbb{M}_{2}\left(\Gamma_{0}(2)\right)$:

```
sage: M = ModularSymbols(2,2)
sage: M.T(2).matrix()
[1]
```

Example 3.4.5. We use SAGE to compute Hecke operators on $\mathbb{M}_{2}\left(\Gamma_{0}(6)\right)$:

```
sage: M = ModularSymbols(6, 2)
sage: M.T(2).matrix()
[\begin{array}{lll}{2}&{1}&{-1}\end{array}]
[-1 0
[-1 -1 2]
sage: M.T(3).matrix()
[3 2 0]
[0 1 0]
[2 2 1]
```

In fact for $p \geq 5$ we have $T_{p}=p+1$, since $M_{2}\left(\Gamma_{0}(6)\right)$ is spanned by generalized Eisenstein series (see Chapter 5).

Example 3.4.6. We use SAGE to compute Hecke operators on $\mathbb{M}_{2}\left(\Gamma_{0}(39)\right)$:

```
sage: M = ModularSymbols(39, 2)
sage: T2 = M.T(2)
sage: T2.matrix()
[ 3 0 -1 0 0 0 1 1 1 -1 0]
[ 0
[ [ 1 0 0 -1 1 1 1 0
[ 0}00010\mp@code{0}0
[ [0<rrlllllll
[ 0
[ 0
[ [00 0
```



```
sage: factor(T2.charpoly())
(x - 3)^3 * (x - 1)^2 * (x^2 + 2*x - 1)^2
```

Notice that the Hecke operators commute, so their eigenspace structure is similar.

```
sage: T2 = M.T(2).matrix()
sage: T5 = M.T(5).matrix()
sage: T2*T5 - T5*T2 == 0
True
sage: T5.charpoly().factor()
(x - 6)^3 * (x - 2)^2 * (x^2 - 8)^2
```

The rational decomposition of T_{2} is a list of the kernels of $\left(f^{e}\right)\left(T_{2}\right)$, where f runs through the irreducible factors of the characteristic polynomial of T_{2} and f^{e} exactly divides this characteristic polynomial. Using SAGE we find them:

```
sage: M = ModularSymbols(39, 2)
sage: M.T(2).decomposition()
[Dimension 3 subspace of a modular symbols space of level 39,
    Dimension 2 subspace of a modular symbols space of level 39,
    Dimension 4 subspace of a modular symbols space of level 39]
```


3.5 Computing the boundary map

In Section 3.2 we defined a map $\mathbb{M}_{2}\left(\Gamma_{0}(N)\right) \rightarrow \mathbb{B}_{2}\left(\Gamma_{0}(N)\right)$ whose kernel $\mathbb{S}_{2}\left(\Gamma_{0}(N)\right)$ is called the space of cuspidal modular symbols. This kernel will be important in computing cuspforms in Section 3.7 below.

To compute the boundary map on Manin symbols, note that $[\gamma]=\{\gamma(0), \gamma(\infty)\}$, so if $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then

$$
\delta([\gamma])=\{\gamma(\infty)\}-\{\gamma(0)\}=\{a / c\}-\{b / d\}
$$

Computing this boundary map would appear to first require an algorithm to compute the set $C\left(\Gamma_{0}(N)\right)=\Gamma_{0}(N) \backslash \mathbb{P}^{1}(\mathbb{Q})$ of cusps for $\Gamma_{0}(N)$. In fact, there is a trick to compute the set of cusps in the course of running the algorithm. First, give an algorithm for deciding whether or not two elements of $\mathbb{P}^{1}(\mathbb{Q})$ are equivalent modulo the action of $\Gamma_{0}(N)$. Then simply construct $C\left(\Gamma_{0}(N)\right)$ in the course of computing the boundary map, i.e., keep a list of cusps found so far, and whenever a new cusp class is discovered add it to the list. The following proposition, which is proved in [Cre97a, Prop. 2.2.3], explains how to determine whether two cusps are equivalent.

Proposition 3.5.1 (Cremona). Let $\left(c_{i}, d_{i}\right), i=1,2$ be pairs of integers with $\operatorname{gcd}\left(c_{i}, d_{i}\right)=1$, and possibly $d_{i}=0$. There exists $g \in \Gamma_{0}(N)$ such that $g\left(c_{1} / d_{1}\right)=$ c_{2} / d_{2} in $\mathbb{P}^{1}(\mathbb{Q})$ if and only if

$$
s_{1} d_{2} \equiv s_{2} d_{1} \quad\left(\bmod \operatorname{gcd}\left(d_{1} d_{2}, N\right)\right)
$$

where s_{j} satisfies $c_{j} s_{j} \equiv 1\left(\bmod d_{j}\right)$.
In SAGE the command boundary_map() computes the boundary map from $\mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$ to $\mathbb{B}_{2}\left(\Gamma_{0}(N)\right)$, and the cuspidal_submodule() command computes its kernel. For example, for level 2 the boundary map is given by the matrix $\left[\begin{array}{ll}1 & -1\end{array}\right]$, and its kernel is the 0 space.

```
sage: M = ModularSymbols(2, 2)
sage: M.boundary_map()
Hecke module morphism boundary map defined by the matrix
[ 1 -1]
Domain: Full Modular Symbols space for Gamma_0(2) of weight 2 with sign ...
Codomain: Space of Boundary Modular Symbols for Gamma0(2) of weight 2 and ...
sage: M.cuspidal_submodule()
Dimension O subspace of a modular symbols space of level 2
```

The smallest level for which the boundary map has nontrivial kernel, i.e., for which $\mathbb{S}_{2}\left(\Gamma_{0}(N)\right) \neq 0$ is $N=11$.

```
sage: M = ModularSymbols(11, 2)
sage: M.boundary_map().matrix()
[ 1r -1]
[ 0}00
[ 0 0]
sage: M.cuspidal_submodule()
Dimension 2 subspace of a modular symbols space of level 11
sage: S = M.cuspidal_submodule(); S
Dimension 2 subspace of a modular symbols space of level }1
sage: S.basis()
((1, 8), (1,9))
```

The following illustrates that the Hecke operators preserve $\mathbb{S}_{2}\left(\Gamma_{0}(N)\right)$:

```
sage: S.T(2).matrix()
[-2 0]
[ 0 -2]
sage: S.T(3).matrix()
[-1 0]
[ 0 -1]
sage: S.T(5).matrix()
[1 0]
[0 1]
```

A nontrivial fact (the Eichler-Shimura relation, etc.) is that for p prime the eigenvalue of each of these matrices is the same as $p+1-\# E\left(\mathbb{F}_{p}\right)$, where E is the elliptic curve $X_{0}(11)$ given by the equation

$$
y^{2}+y=x^{3}-x^{2}-10 x-20
$$

```
sage: E = EllipticCurve([0,-1,1,-10,-20])
sage: 2 + 1 - E.Np(2)
-2
sage: 3 + 1 - E.Np(3)
-1
sage: 5 + 1 - E.Np(5)
1
sage: print [S.T(p).matrix()[0,0] - (p+1-E.Np(p)) for p in primes(100)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

