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My research reflects the interplay of abstract theory with explicit machine com-
putation, as illustrated by the following quote of Bryan Birch [Bir71]:

I want to describe some computations undertaken by myself and Swin-
nerton-Dyer on EDSAC by which we have calculated the zeta-functions
of certain elliptic curves. As a result of these computations we have
found an analogue for an elliptic curve of the Tamagawa number of an
algebraic group; and conjectures (due to ourselves, due to Tate, and
due to others) have proliferated.

This research statement is divided into three parts. The first is about com-
puting with modular forms and abelian varieties. The second discusses techniques
for understanding the arithmetic of elliptic curves and their higher-dimensional
analogues, motivated by the Birch and Swinnerton-Dyer conjecture. The third is
about making computations and tools available to the mathematical community.

1 Computing with Modular Forms

For several years I have developed algorithms and made available tools for com-
puting with modular forms, modular abelian varieties, and motives attached to
modular forms. I have written several packages that are included with MAGMA
[BCP97] for computing with modular forms and abelian varieties and created the
Modular Forms Database [Ste04a]. In this section I describe the current thrust
of my research in this direction for a general audience of mathematicians. In
Section 2, I will describe some more technical aspects of my research.

1.1 Background

An elliptic curve E is a smooth projective curve of genus one with a distinguished
point. Every such curve is naturally endowed with an abelian group structure,
and moreover E can even be defined by an equation of the form y2 = x3 + ax + b,
where x3 + ax + b has distinct roots. When a and b are complex numbers, there
is a lattice L in the complex plane such that E is isomorphic to the quotient
group C/L. This uniformization of E is useful, but there is sometimes another
uniformization that is extremely useful in number theory.

The 2 × 2 real matrices with determinant 1 act by linear fractional transfor-
mations on the extended upper half plane h = {z ∈ C : Im(z) > 0} ∪ Q ∪ {i∞}.
Especially important for number theory is the action by the (noncommutative)
group Γ1(N) of 2 × 2 matrices with integer entries and determinant 1 that are
of the form ( 1 ∗

0 1 ) modulo N . A celebrated theorem of Andrew Wiles et al. (see
[BCDT01]), which implies Fermat’qs last theorem, is that if E is an elliptic curve
defined over Q, then there is a surjective map of curves

Γ1(N)\h → E,
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where Γ1(N)\h is the orbit space of h under Γ1(N), viewed as a compact Riemann
surface. Using differential forms on Riemann surfaces, we can produce a holo-
morphic function f(z) on h called a weight 2 cuspidal modular eigenform. The
function f(z) has a representation of the form

f(z) =
∞

∑

n=1

anqn, q = e2πiz,

where the coefficients an hold deep arithmetic information about the elliptic curve.
In particular, ap = p + 1 − #E(Fp) for all but finitely many p. Thus modular
forms arise as functions whose coefficients hold deep arithmetic significance.

For example, the curve E defined by y2 + y = x3 − x2 has associated form

f = q
∞
∏

n=1

(1 − qn)2(1 − q11n)2 = q − 2q2 − q3 + 2q4 + q5 + · · · .

Note that y2 + y = x3 − x2 can be transformed into the form y2 = x3 + ax + b by
completing the square. Notice that when p = 2,

p + 1 − #E(F2) = 2 + 1 − 5 = −2

is the coefficient of q2.
A few decades before Wiles’s theorem, Goro Shimura gave a converse con-

struction (see, e.g, [Shi73]) passing from certain modular forms f to elliptic curves
Ef . More generally, his construction associates to a larger class of modular forms
certain more general objects than elliptic curves, which are abelian varieties.

Definition 1 (Abelian Variety). An abelian variety is a projective variety
equipped with a group structure.

The group law on an abelian variety is necessarily abelian. Also, abelian
varieties of dimension one are simply the elliptic curves.

Shimura’s construction associates an abelian variety Af to certain modular
cuspforms f =

∑

anqn (they must be eigenvectors for certain operators called
Hecke operators). The abelian variety Af is defined over Q and has dimension
equal to the degree of the field Q(a1, a2, a3, . . .) generated by the coefficients of f .
In particular, if f has rational coefficients, then Af is an elliptic curve.

Definition 2 (Modular Abelian Variety). We say that an abelian variety A
over a number field K is modular if there is a homomorphism (over K) with finite
kernel from A to a product of abelian varieties Af .

There is a conjectural generalization of Wiles’s theorem about modularity of
elliptic curves to abelian varieties [Rib92, Thm. 4.4].
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1.2 MAGMA: Packages for Modular Forms and Abelian Varieties

Much of my software is published as part of the non-commercial (but non-free)
MAGMA computer algebra system. The core of MAGMA is developed by a
group of academics at the University of Sydney, who are supported mostly by
grant money. MAGMA is considered by many to be the most comprehensive
tool for research in number theory, finite group theory, and cryptography, and
is widely distributed. I have already written over 25000 lines of modular forms
code and extensive documentation that is distributed with MAGMA, and intend
to “publish” future work in MAGMA. In addition to incremental improvements
to the packages I’ve already written, I next hope to develop a satisfactory package
for computing with modular abelian varieties over number fields.

As mentioned above, an abelian variety A over a number field K is modular
if it admits a finite-degree map to a product of abelian varieties Af . Modular
abelian varieties were studied intensively by Ribet, Mazur, and others during re-
cent decades, and studying them is popular because results about them often
yield surprising insight into number theoretic questions. Computation with mod-
ular abelian varieties is attractive because they are much easier to describe than
arbitrary abelian varieties, and their L-functions are reasonably well understood
when K is an abelian extension of Q.

I recently designed and implemented a general package for computing with
modular abelian varieties over number fields. This package was made available as
part of MAGMA version 2.11, but it is currently very limited at computations over
fields other than Q. I hope to develop and refine several crucial components of the
system. For example, when computing with modular abelian varieties over number
fields, three major problems arise, which I’ve enumerated below, and I hope to
resolve them in order to have a completely satisfactory system for computing with
modular abelian varieties. When the base field is Q, I have solved (1) and (2)
completely, and (3) in many cases.

1. Given a modular abelian variety A over a number field, efficiently compute
the endomorphism ring End(A) as a ring of matrices acting on H1(A,Z). I
have found a modular symbols solution that draws on work of Ribet [Rib80]
and Shimura [Shi73], but it is too slow to be really useful in practice. In
[Mer94], Merel uses Heilbronn matrices and Manin symbols to give effi-
cient algorithms for computing with Hecke operators. I intend to carry
over Merel’s method to give an efficient algorithm to compute End(A).

2. Let K be a number field. Given an explicit description of End(A/K) ⊗ Q,
decompose A as a product of simple abelian varieties over K. The problem is
to find a set of simple subvarieties Bi over K of abelian varieties Af , such that
there is a surjective finite-degree map from A to the product of the Bi. This
is likely a difficult problem in general, but it might be possible to combine
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work of Allan Steel on his “characteristic 0 Meataxe” with special features
of modular abelian varieties to solve it in practice. It is absolutely essential
to solve this problem in order to explicitly enumerate all modular abelian
varieties over Q of given level. Such an enumeration would be a major step
towards the ultimate possible extension of Cremona’s tables [Cre] to modular
abelian varieties. Computation of a decomposition is also crucial to other
algorithms, e.g., computing complements and duals of abelian subvarieties.

3. Given two modular abelian varieties over a number field K, decide whether
there is an isomorphism between them. When the endomorphism ring of
each abelian variety is known and both are simple, it is possible to reduce
this problem to the solution of a norm equation, which has been studied
extensively in many cases. This problem is analogous to the problem of
testing isomorphism for modules over a fixed ring, which has been solved
with much effort for many classes of rings.

Once these foundations for computing with modular abelian varieties are in place,
I hope to find an algorithm to enumerate all elements of the Q-isogeny class of a
modular abelian variety. This is something that can be done for elliptic curves,
but the algorithms for elliptic curves use explicit equations like y2 = x3 + ax + b
and do not generalize to abelian varieties. However other techniques are available
(e.g., drawing on David Helm’s Ph.D. thesis), which might make enumeration of
isogeny classes of abelian varieties possible.

1.3 A Snapshot of Other Current Projects

Here is a snapshot of some other projects I’m currently involved in:

1. Barry Mazur, John Tate, and I are creating a package for computing cyclo-
tomic p-adic height pairings on elliptic curves over Q with good ordinary
reduction at p, motivated by investigations into p-adic analogues of the BSD
conjecture. The main obstruction to quickly computing p-adic cyclotomic
heights to large precision is evaluating the p-adic modular form E2 at an
elliptic curve with good ordinary reduction. Nick Katz has pointed out that
one might compute E2 using explicit computations with Monsky-Washnitzer
cohomology (following, e.g., [Ked03]). I have tried this idea and it worked
fabulously, thus open many doors for other investigations.

2. Michael Stoll, Stephen Donnelly, Andrei Jorza, and Stefan Patrikis (a Har-
vard undergraduate), and I are attempting to verify the full BSD conjecture
for every elliptic curve of conductor at most 25000 and rank at most 1. This
involves refinement of Kolyvagin’s Euler system with a view towards com-
putational applications, and explicit computations on elliptic curves using
MAGMA, and computational tools and tables of Cremona and others. I am
responsible for general organization and programming.
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3. Baur Bektemirov (a Harvard undergraduate) and I are computing surpris-
ing statistics about the massive (about 200 million curves) Stein-Watkins
database of elliptic curves, which we intend to publish in Experimental Math-
ematics. We are also making the database easily available online.

4. Jennifer Balakrishnan (a Harvard undergraduate) and I are working on devel-
oping methods for the sort of linear algebra over cyclotomic fields that arises
in modular forms computations. We hope to understand the paper [Abb89]
on p-adic reconstruction of algebraic numbers, and apply it to computing
rational canonical forms of matrices over cyclotomic fields.

5. I am working with Joan-Carlos Lario to create a table of CM elliptic curves
over number fields. My primary input to the project is to use modular
symbols to compute explicit Weierstrass equations attached to appropriate
linear combinations of CM cuspforms.

2 Arithmetic of Elliptic Curves and Abelian Varieties

The underlying motivation for this part of my research is to prove implications
between the two parts of the Birch and Swinnerton-Dyer Conjecture (see Conjec-
ture 3 below), in examples and eventually in some generality. That is, we link
information about the first part of the BSD conjecture for an abelian variety B
to information about the second part of the conjecture for a related abelian va-
riety A. The concept of visibility provides a conceptual framework in which to
organize our ideas.

2.1 The Birch and Swinnerton-Dyer Conjecture

Much of my research is inspired by the following special case of the Birch and
Swinnerton-Dyer conjecture:

Conjecture 3 (BSD Conjecture (special case)). Let A be a modular abelian
variety over Q (see Section 1.1), and let L(A, s) be its L-function, which is an
entire function of s ∈ C.

1. L(A, 1) = 0 if and only if the group A(Q) is infinite.

2. If L(A, 1) 6= 0, then

L(A, 1)

ΩA

=

∏

cp · #X(A)

#A(Q)tor · #A∨(Q)tor
,

where the objects and notation in this formula are discussed below.
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This conjecture is striking because it asserts that the arithmetic behavior of
an abelian variety is governed by properties of an analytic function near 1!

In the conjecture, L(A, s) is the L-series attached to A, which is entire be-
cause A is modular, so L(A, 1) makes sense. The real volume ΩA is the measure
of A(R) with respect to a basis of differentials for the Néron model of A. For
each prime p | N , the integer cp = #ΦA,p(Fp) is the Tamagawa number of A at p,
where ΦA,p denotes the component group of the Néron model of A at p. The dual
of A is denoted A∨, and in the conjecture A(Q)tor and A∨(Q)tor are the torsion
subgroups. The Shafarevich-Tate group of A is

X(A) = Ker



H1(Q, A) →
⊕

p≤∞

H1(Qp, A)



 ,

which is a group that measures the failure of a local-to-global principle. It is a
major open problem to prove finiteness of this group in general. When L(A, 1) 6= 0,
Kato proved in [Kat] that X(A) and A(Q) are finite, so #X(A) makes sense and
one implication of part 1 of the conjecture is known.

Remark 4. The general Birch and Swinnerton-Dyer conjecture (see [Tat66, Lan91])
is a conjecture about any abelian variety A over a number field K (or a function
field of a curve over a finite field). It asserts that the order of vanishing of L(A, s)
at s = 1 equals the free rank of A(K), and gives a formula for the leading coefficient
of the Taylor expansion of L(A, s) at s = 1. Note that without the hypothesis
that A is modular and defined over Q, we do not yet know in general that L(A, s)
makes sense near s = 1, though this is expected to be the case. Finally, in the
case dim(A) = 1 and K = Q, the Clay Math Institute has announced a million
dollar prize for a proof that the free rank of A(Q) equals the order of vanishing of
L(A, s) at s = 1.

2.2 Visibility of Shafarevich-Tate Groups

Mazur introduced visibility in order to unify various constructions of X.

Definition 5 (Visibility of Shafarevich-Tate Groups). Suppose that

ι : A ↪→ J

is an inclusion of abelian varieties over Q. The visible subgroup of H1(Q, A) with
respect to J is

VisJ H1(Q, A) := Ker(H1(Q, A) → H1(Q, J)).

The visible subgroup of X(A) is the intersection of X(A) with VisJ H1(Q, A);
equivalently,

VisJ X(A) := Ker(X(A) → X(J)).
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The terminology “visible” arises from the fact that if x ∈ X(A) is visible in J ,
then a principal homogeneous space X corresponding to x can be realized as a
subvariety of J .

Before discussing theoretical questions about visibility, we describe computa-
tional evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian
varieties (and motives) that A. Agashe and I obtained by proving theorems in-
spired by the definition of visibility. In [AS02], Agashe and I prove a theorem that
makes it possible to use abelian varieties of positive rank to explicitly construct
subgroups of Shafarevich-Tate groups of other abelian varieties.

Theorem 6 (Agashe, Stein). If A and B are abelian subvarieties of an abelian
variety J , and B[p] ⊂ A, then, under certain technical hypothesis, there is an
injection

B(Q)/pB(Q) ↪→ VisJ X(A).

The paper concludes with the first ever example of an abelian variety Af

attached to a newform, of large dimension (20), whose Shafarevich-Tate group
has order that is provably divisible by an odd prime (5).

I have used the result described above to give evidence for the BSD conjecture
for many modular abelian varieties A, attached to modular forms of level N ≤
2333. These modular forms have “trivial nebentypus”, so the A we consider sit
naturally as subvarieties of the Jacobian J0(N) of a certain modular curve X0(N),
which classifies pairs (E, C), where E is an elliptic curve and C is a cyclic subgroup
of E of order N . More precisely, in [AS] Agashe and I describe the computation
of an odd divisor of the BSD conjectural order of X(A) for over ten thousand A
with L(A, 1) 6= 0 (these are all simple A with N ≤ 2333 and L(A, 1) 6= 0). For over
a hundred of these, the divisor of the conjectural order of X(A) is divisible by an
odd prime; for a quarter of these Agashe and I prove that if n is the conjectural
divisor of the order of X(A), then there are at least n elements of X(A) that are
visible in J0(N).

Dimitar Jetchev and I have been investigating the remaining 75% of the A with
n > 1 by considering the image of A in J0(NM) for small integers M . Information
about which M to choose can be extracted from Ribet’s level raising theorem (see
[Rib90]). As a test, I recently tried the first example with conjectural odd X(A)
that is not visible in J0(N) (this is an 18 dimensional abelian variety A of level
551 such that 9 | #X(A)). I showed in [Ste04c] that there are elements of order 3
in X(A) that are visible in J0(551 · 2). Since the dimension of J0(NM) grows
very quickly, a huge amount of computer memory may be required to investigate
visibility at higher level. (Fortunately, I received a grant from Sun Microsystems
for a $70K computer that contains 22GB of physical RAM.)

Some of these ideas generalize to the context of Grothendieck motives, which
A. Scholl attached to newforms of weight greater than two. N. Dummigan,
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M. Watkins, and I did work in this direction in [DWS03]. There we prove a theo-
rem that can sometimes be used to deduce the existence of visible Shafarevich-Tate
groups in motives attached to modular forms, assuming a conjecture of Beilinson
about ranks of Chow groups. However, we give several pages of tables that suggest
that Shafarevich-Tate groups of modular motives of level N are rarely visible in
the higher-weight motivic analogue of J0(N), much more rarely than for weight 2.
Just as above, the question remains to decide whether one expects these groups to
be visible in the analogue of J0(NM) for some integer M . It would be relatively
straightforward for me to do computations in this direction, and I intend to do so.

Before moving on to theoretical questions about visibility, we pause to empha-
size that the above computational investigations into the Birch and Swinnerton-
Dyer conjecture motivated me and others to develop new algorithms for com-
puting with modular abelian varieties. For example, in [CS01], B. Conrad and I
use Grothendieck’s monodromy pairing to give an algorithm for computing orders
of component groups of certain purely toric abelian varieties. Computing these
component groups is a crucial step in computing the Tamagawa numbers cp in
the BSD Conjecture. Our algorithm makes it practical to compute component
groups of quotients Af of J0(N) at primes p that exactly divide N . Without such
an algorithm it would probably be difficult to get very far in computational in-
vestigations into the Birch and Swinnerton-Dyer conjecture for abelian varieties;
indeed, the only other paper in this direction is [FpS+01], which restricts to the
case of Jacobians of genus 2 curves.

2.3 Visibility at Higher Level

Suppose Af is a quotient of J0(N) attached to a newform and let A = A∨
f ⊂ J0(N)

be its dual. One expects that most of X(A) is not visible in J0(N). Data of
Jetchev and I provides evidence for the following conjecture:

Conjecture 7 (Stein). For each x ∈ X(A), there is an integer M and a mor-
phism f : A → J0(NM), of finite degree and coprime to the order of x, such that
the image of x in X(f(A)) is visible in J0(NM).

A possible approach to Conjecture 7 is to assume the rank statement of the
Birch and Swinnerton-Dyer conjecture and relate when elements of X(A) becom-
ing visible at level NM to when there is a congruence between f and a newform g
of level NM with L(g, 1) = 0. Such an approach has lead me to hope for a re-
finement of Ribet’s level raising theorem [Rib90] that includes a statement about
the behavior of the value at 1 of the L-function attached to the form at higher
level. I intend to do further computations in the hopes of finding a satisfactory
conjectural refinement of Ribet’s theorem, which I hope to subsequently prove.

I also intend to investigate whether there is an M that is minimal with respect
to some property, such that every element of X(A) is simultaneously visible in
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J0(NM). This is well worth looking into, since the payoffs could be huge—the
existence of such an M would imply finiteness of X(A), since VisJ(X(A)) is
always finite. Finiteness of X(A) is a mysterious open problem when L(A, 1) = 0
and A is not a quotient of J0(N) with ords=1 L(A, s) = dimA. Finiteness of X(A)
may be a key obstruction to finding a proof of the BSD Conjecture.

2.3.1 Visibility of Mordell-Weil Groups

The Gross-Zagier theorem asserts that points on elliptic curves of rank 1 come
from Heegner points, and that points on curves of rank bigger than one do not.
It seems difficult to describe where points on elliptic curves of rank bigger than 1
“come from”. I introduced the following definition, in hopes of eventually creating
a framework for giving a conjectural explanation.

Definition 8 (Visibility of Mordell-Weil Groups). Suppose that π : J → A
is a surjective morphism of abelian varieties with connected kernel. The visible
quotient of A(Q) with respect to J (and π) is

VisJ(A(Q)) := Coker(J(Q) → A(Q)).

Visibility of Mordell-Weil groups is closely connected to visibility of Shafarevich-
Tate groups. If C is the kernel of π and δ : A(Q) → H1(Q, C) is the connecting
homomorphism of Galois cohomology, then δ induces an isomorphism

δ̃ : VisJ(A(Q)) ∼= VisJ(H1(Q, C)).

Note that this implies VisJ(A(Q)) is finite. Let

VisJ
X(A(Q)) := δ̃−1(VisJ(X(C))).

We have introduced nothing fundamentally new, but this different point of
view suggests questions that seemed unnatural before, which inspired the following
theorem and conjecture (my unpublished proof relies on [Kat, Rub98, Roh84]):

Theorem 9 (Stein). Let A be an elliptic curve. If x ∈ A(Q) has order n (set
n = 0 if x has infinite order), then for every d | n, there is a surjective morphism
J → A, with connected kernel, such that the image of x in VisJ(A(Q)) has order d.

Conjecture 10 (Stein). Suppose A is a modular abelian variety and x ∈ A(Q)
has order n. For every d | n there is a surjective morphism J → A, with con-
nected kernel, such that the image of x in VisJ(A(Q)) lies in VisJ

X
(A(Q)) and

has order d.

We now describe partial results about this conjecture that I proved in [Ste04b].
Suppose E is an elliptic curve over Q with conductor N , and let f be the newform
attached to E. Fix a prime p - 2N

∏

cp such that the Galois representation
Gal(Q) → Aut(E[p]) is surjective.
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Conjecture 11 (Stein). There is a prime ` - N and a surjective Dirichlet char-
acter χ : (Z/`Z)∗ → µp such that

L(E, χ, 1) 6= 0 and a`(E) 6≡ ` + 1 (mod p).

According to Sarnak and Kowalski, this conjecture does not seem amenable
to standard analytic averaging arguments. I have verified this conjecture for the
elliptic curve of rank 1 and conductor 37 and all p ≤ 25000. In most cases, the
smallest ` - N such that a`(E) 6≡ ` + 1 (mod p) and ` ≡ 1 (mod p) satisfies the
conjecture. I proved the following theorem in [Ste04b].

Theorem 12 (Stein). Let E be an elliptic curve over Q and suppose p and χ are
as in Conjecture 11 above. Then there is an exact sequence 0 → A → J → E → 0
that induces an exact sequence

0 → E(Q)/pE(Q) → X(A) → X(J) → X(E) → 0.

In particular,

E(Q)/pE(Q) ∼= VisJ
X(E(Q)) ∼= VisJ(X(A)).

We finish by explaining how Theorem 12 may lead to a link between the two
parts of the BSD Conjecture (Conjecture 3). Suppose E is an elliptic curve over Q
and L(E, 1) = 0. Then part 1 of Conjecture 3 asserts that E(Q) is infinite. Under
our hypothesis that L(E, 1) = 0, a standard argument shows that

L(A, 1)

ΩA

≡ 0 (mod p),

where A is as in Theorem 12. If part 2 of Conjecture 3 were true, there would
be an element x ∈ X(A) of order p (the proof of Theorem 12 rules out the
possibility that p divides a Tamagawa number). If, in addition, x were visible in
J , then E(Q) would be infinite, since E(Q) has no elements of order p. Part 2 of
Conjecture 3 does not assert that x is visible in J , so one can only hope that a
close examination of an eventual proof of part 2 of Conjecture 3 would yield some
insight into whether or not x is visible. Alternatively, one could try to replace the
isomorphism E(Q)/pE(Q) ∼= VisJ(X(A)) by an isomorphism

Sel(p)(E) ∼= X(A)[I]

where I is an appropriate ideal in the ring Z[µp] of endomorphism of A. Then
an appropriate refinement of part 2 of Conjecture 3 might imply that X(A)[I]
contains an element of order p, which would imply that either E(Q) is infinite or
X(E/Q)[p] is nonzero.
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3 Infrastructure Development

3.1 MANIN: A Free Package for Computing with Modular Forms

I have been working intensely for several months to create a free and open program
called MANIN for computing with modular forms and modular abelian varieties.
MANIN is implemented in a hybrid of the object-oriented languages Python and
C++. Python is easy to write and even easier to read, compiled C++ runs
quickly and gives access to the number theory libraries NTL, LiDIA, and PARI,
and interfacing Python with C++ is easy.

One reason I am creating MANIN is that MAGMA is expensive, hence many
mathematicians are unable to use the software I write in MAGMA. A second
reason is that most of MAGMA is closed source, so basic code that my modular
forms computations rely on are (perhaps) not extensively documented and only
available to a limited audience. For example, few people know in detail exactly
how MAGMA computes the echelon form of a matrix with entries in the rationals.
Finally MAGMA is complex, consisting of extensive package code that sits on top
of over 2.3 million lines of C code.

I intend to write a book, Algorithms for Computing With Modular Forms,
similar in spirit to Henri Cohen’s book Algorithms for Algebraic Number Theory.
This book will be based on my experiences implemented MANIN; as a starting
point, I am now teaching a graduate course on computing with modular forms.

3.2 The Modular Forms Database

The Modular Forms Database [Ste04a] is a freely-available collection of data about
objects attached to cuspidal modular forms. It is analogous to Sloane’s tables
of integer sequences, and extends Cremona’s tables [Cre] to abelian varieties of
dimension bigger than one and modular forms of weight bigger than two. The
database is used world-wide by prominent number theorists, including N. Elkies,
M. Flach, D. Goldfeld, B. Gross, K. Ono, B. Poonen, and D. Zagier.

I intend to greatly expand the database. A major challenge is that data about
modular abelian varieties of large dimension takes a huge amount of space to
store. For example, the database is currently a PostgreSQL/Python system that
occupies 40GB of disk space. I intend to find and implement a better method for
storing information about modular abelian varieties so that the database will be
more useful. Fortunately, in July 2004 I received a $21,000 grant from NSF for
computational equipment to store and make available the modular forms database.

I would like to improve the usability of the database. As a first step, I read
about how Google works and created a much faster database [Ste04d] that uses
Python, ZOPE, and ZODB and custom indexing code. I hope to greatly extend the
current very-limited query facilities of this database in response to user feedback.
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