Torsion Points on Elliptic Curves

Torsion Points on Elliptic Curves over Quartic Fields

William Stein

(this is joint work with Sheldon Kamienny)
University of Washington
May 2010

Motivating Problem

Let K be a number field.
Theorem (Mordell-Weil): If E is an elliptic curve over K, then $E(K)$ is a finitely generated abelian group.

Thus $E(K)_{\text {tor }}$ is a finite group.
Problem: Which finite abelian groups $E(K)_{\text {tor }}$ occur, as we vary
over all elliptic curves E / K ?

Observation: $E(K)_{\text {tor }}$ is a finite subgroup of \mathbf{C} / Λ, so $E(K)_{\text {tor }}$ is cyclic or a product of two cyclic groups.

An Old Conjecture

Conjecture (Levi around 1908; re-made by Ogg in 1960s):
When $K=\mathbf{Q}$, the groups $E(\mathbf{Q})_{\text {tor }}$, as we vary over all E / \mathbf{Q}, are the following 15 groups:
$\mathbf{Z} / m \mathbf{Z} \quad$ for $m \leq 10$ or $m=12$
$(\mathbf{Z} / 2 \mathbf{Z}) \times(\mathbf{Z} / 2 v \mathbf{Z})$ for $v \leq 4$.

Note:

1. This is really a conjecture about rational points on certain curves of (possibly) higher genus
2. Or, it's a conjecture in arithmetic dynamics about periodic points.

Modular Curves

The modular curves $Y_{0}(N)$ and $Y_{1}(N)$:

- Let $Y_{0}(N)$ be the affine modular curve over \mathbf{Q} whose points parameterize isomorphism classes of pairs (E, C), where $C \subset E$
is a cyclic subgroup of order N.
- Let $Y_{1}(N)$ be \ldots of pairs (E, P), where $P \in E(\overline{\mathbf{Q}})$ is a point of order N.

Let $X_{0}(N)$ and $X_{1}(N)$ be the compactifications of the above affine curves.

Observation: There is an elliptic curve E / K with $p \mid \# E(K)$ if and only if $Y_{1}(p)(K)$ is nonempty.

Also, $Y_{0}(N)$ is a quotient of $Y_{1}(N)$, so if $Y_{0}(N)(K)$ is empty, then so is $Y_{0}(N)$.

Mazur's Theorem (1970s)

Theorem (Mazur) If $p \mid \# E(\mathbf{Q})_{\text {tor }}$ for some elliptic curve E / \mathbf{Q}, then $p \leq 13$.

Combined with previous work of Kubert and Ogg, one sees that Mazur's theorem implies Levi's conjecture, i.e., a complete classification of the finite groups $E(\mathbf{Q})_{\text {tor }}$.

Here are representative curves by the way (there are infinitely many for each j-invariant):

```
for ainvs in ([0,-2],[0,8],[0,4],[4,0],[0,-
1,-1,0,0],[0,1],
    [1, -1, 1, -3, 3],[7,0,0,16,0], [1,-
1,1,-14,29],
    [1,0,0,-45,81], [1, -1, 1, -122,
1721], [-4,0],
    [1,-5,-5,0,0], [5,-3,-6,0,0], [17,-
60,-120,0,0] ):
    E = EllipticCurve(ainvs)
    view((E.torsion_subgroup().invariants(),
E) )
    ([], y 2 = 稆-2)
    ([2], y' = x 3}+8
    ([3], y' = x 3}+4
    ([4], y }\mp@subsup{y}{}{2}=\mp@subsup{x}{}{3}+4x
    ([5], y2 - y = x 3}-\mp@subsup{x}{}{2}
```

$$
\begin{aligned}
& \left([6], y^{2}=x^{3}+1\right) \\
& \left([7], y^{2}+x y+y=x^{3}-x^{2}-3 x+3\right) \\
& \left([8], y^{2}+7 x y=x^{3}+16 x\right) \\
& \left([9], y^{2}+x y+y=x^{3}-x^{2}-14 x+29\right) \\
& \left([10], y^{2}+x y=x^{3}-45 x+81\right) \\
& \left([12], y^{2}+x y+y=x^{3}-x^{2}-122 x+1721\right) \\
& \left([2,2], y^{2}=x^{3}-4 x\right) \\
& \left([4,2], y^{2}+x y-5 y=x^{3}-5 x^{2}\right) \\
& \left([6,2], y^{2}+5 x y-6 y=x^{3}-3 x^{2}\right) \\
& \left([8,2], y^{2}+17 x y-120 y=x^{3}-60 x^{2}\right)
\end{aligned}
$$

Mazur's Method

Theorem (Mazur) If $p \mid \# E(\mathbf{Q})_{\text {tor }}$ for some elliptic curve E / \mathbf{Q}, then $p \leq 13$.

Basic idea of the proof:

1. Find a rank zero quotient A of $J_{0}(p)$ such that...
2. ... the induced map $f: X_{0}(p) \rightarrow A$ is a formal immersion at infinity (this means that the induced map on complete local rings is surjective, or equivalently, that the induced map on cotangent spaces is surjective).
3. Then consider the point $x \in Y_{0}(p)$ corresponding to a pair $(E,\langle P\rangle)$, where P has order p.
4. If E has potentially good reduction at 3 , get contradiction by injecting p-torsion mod 3 since $p>13$, so E has multiplicative reduction, hence we may assume x reduces to the cusp ∞.
5. The image of x in $A(\mathbf{Q})$ is thus in the kernel of the reduction map mod 3. But this kernel of reduction is a formal group, hence torsion free. But $A(\mathbf{Q})=A(\mathbf{Q})_{\text {tor }}$ is finite, so image of x is 0 .
6. Use that f is a formal immersion at infinity along with step 5 , to show that $x=\infty$, which is a contradiction since $x \in Y_{0}(p)$.

Mazur uses for A the Eisenstein quotient of $J_{0}(p)$ because he is able to prove -- way back in the 1970s! -- that this quotient has rank 0 by doing a p-descent. This is long before much was known toward the BSD conjecture. More recently one can:

- Merel 1995: use the winding quotient of $J_{0}(p)$, which is the maximal analytic rank 0 quotient. This makes the arguments easier, and we know by Kolyvagin-Logachev et al. or by Kato that the winding quotient has rank 0 . (For $p=67$ they already differ, since 67a has trivial torsion and rank 0 .)
- Parent 1999: use instead the winding quotient of $J_{1}(p)$, which leads to a similar argument as above. This quotient has rank 0 by Kato's theorem.

Kamienny-Mazur

A prime p is a torsion prime for degree d if there is a number field K of degree d and an elliptic curve E / K such that $p \mid \# E(K)_{\text {tor }}$

Let $S(d)=\{$ torsion primes for degree $\leq d\}$. For example, $S(1)=\{2,3,5,7\}$

Finding all possible torsion structure over all fields of degree $\leq d$ often involves determining $S(d)$, then doing some additional work (which we won't go into). E.g.,

Theorem (Frey, Faltings): If $S(d)$ is finite, then the set of groups $E(K)_{\text {tor }}$, as E varies over all elliptic curves over all number fields K of degree $\leq d$, is finite.

Kamienny and Mazur: Replace $X_{0}(p)$ by the symmetric power $X_{0}(p)^{(d)}$ and gave an explicit criterion in terms of independence of Hecke operators for $f_{d}: X_{0}(p)^{(d)} \rightarrow J_{0}(p)$ to be a formal immersion at $(\infty, \infty, \ldots, \infty)$ A point $y \in X_{0}(p)(K)$, where K has degree d, then defines a point $\tilde{y} \in X_{0}(p)^{(d)}(\mathbf{Q})$ etc.

Theorem (Kamienny and Mazur):

- $S(2)=\{2,3,5,7,11,13\}$,
- $S(d)$ is finite for $d \leq 8$,
- $S(d)$ has density 0 for all d.

Abromovich soon proved that $S(d)$ is finite for $d \leq 14$.
Corollary (Uniform Boundedness): There is a fixed constant B such
that if E / K is an elliptic curve over a number field of degree ≤ 8, then $\# E(K)_{\text {tor }} \leq B$.
(Very surprising!)

Torsion Structures over Quadratic Fields

Theorem (Kenku, Momose, Kamienny, Mazur): The complete list of subgroups that appear over quadratic fields is:

```
Z/mZ for m <= 16 or m = 18
(Z/2Z) x (Z/2vZ) for v <= 6.
(Z/3Z) x (Z/3vZ) for v = 1,2
(Z/4Z) x (Z/4vZ)
```

and each occurs for infinitely many j-invariants.

What is $S(d)$?

Kamienny, Mazur: "We expect that $\max (S(3)) \leq 19$, but it would simply be too embarrassing to parade the actual astronomical finite bound that our proof gives."

But soon, Merel in a tour de force, proves (by using the winding quotient and a deep modular symbols argument about independence of Hecke operators):

Theorem (Merel, 1996): $\max (S(d))<d^{3 d^{2}}$, for $d \geq 2$.
thus proving the full Universal Boundedness Conjecture, which is a huge result.

Shortly thereafter Oesterle modifies Merel's argument to get a much better upper bound:

Theorem (Oesterle): $\max (S(d))<\left(3^{d / 2}+1\right)^{2}$.

```
for d in [1..10]:
    print '%2s%10s %s'%(d,
floor((3^(d/2)+1)^2), d^(3* d^2))


\section*{Remark (Merel, personal communication, 2010-05-10)}
1. The known bounds for \(S(d)\) are exponential in \(d\). However, \(a\) polynomial bound on \(S(d)\) in \(d\) is expected. Therefore, one can not expect to computationally determine the exact list of torsion primes in degree for many more \(d\) 's.
2. The bound is obtained by considering (essentially) two cases (according to the type of reduction modulo \(\ell\) of your elliptic curve) : in one case it is easily seen to be exponential in \(d\), the hard case finally yields a bound which is polynomial in \(d\) (something like \(O\left(d^{8}\right)\) in my paper, \(O\left(d^{6}\right)\) after Oesterlé, I suspect one can lower it to \(O\left(d^{2}\right)\) ). Unsatisfying!
3. If you want a bound depending on the field \(K\) (instead of just the degree of \(K\) ), you can obtain a bound like O (size of the residue field of \(K\) of smallest order).

\section*{Parent's Kamienny Method: Nailing Down S(3)}

By Oesterle, we know that \(\max (S(3)) \leq 37\).
In 1999, Parent made Kamienny's method applied to \(J_{1}(p)\) explicit and computable, and used this to bound \(S(3)\) explicitly, showing that \(\max (S(3)) \leq 17\).

This makes crucial use of Kato's theorem toward the Birch and Swinnerton-Dyer conjecture!

In subsequent work, Parent rules out 17 finally giving the answer:
\[
S(3)=\{2,3,5,7,11,13\}
\]

The list of groups \(E(K)_{\text {tor }}\) that occur for \(K\) cubic is still unknown. However, using the notion of trigonality of modular curves (having a degree 3 map to \(P^{1}\) ), [Jeon, Kim, and Schweizer, 2004] showed that the groups that appear for infinitely many \(j\)-invariants are:
```

Z/mZ for m<=16, 18, 20
Z/2Z x Z/2vZ for v<=7

```

Remark: Parent also gave an explicit bound for the torsion of order powers of prime numbers in his thesis...

\section*{What about Degree 4?}

By Oesterle, we know that \(\max (S(4)) \leq 97\).
Recently, Jeon, Kim, and Park (2006), again used gonality (and big computations with Singular), to show that the groups that appear for infinitely many \(j\)-invariants for curves over quartic fields are:
```

Z/mZ for m<=18, or m=20, m=21, m=22, m=24
Z/2Z x Z/2vZ for v<=9
Z/3Z x Z/3vZ for v<=3
Z/4Z x Z/4vZ for v<=2
Z/5Z x Z/5Z
Z/6Z x Z/6Z

```

Question: Is \(S(4)=\{2,3,5,7,11,13,17\}\) ?

\section*{Explicit Kamienny-Parent for \(d=4\)}

To attack the above unsolved problem about \(S(4)\), we made Parent's (1999) approach very explicit in case \(d=4\) and \(\ell=2\) (he gives a general criterion for any \(d \ldots\)...). One arrives that the following (where \(t\) is a certain explicitly computed element of the Hecke algebra). With \(\ell=2, d=4\), we have \(\left(1+\ell^{d / 2}\right)^{2}=25\).

Proposition 3.3. Let \(p>25\) be a prime and consider Hecke operators \(T_{n}\) in the Hecke algebra \(\mathbb{T}=\mathbb{T}_{\Gamma_{1}(p)} \otimes \mathbb{F}_{2}\) associated to \(S_{2}\left(\Gamma_{1}(p) ; \mathbb{F}_{2}\right)\). Consider the following sequences of 4 elements of the Hecke algebra mod 2:
1. Partition \(4=4:\left(t, t T_{2}, t T_{3}, t T_{4}\right)\)
2. Partition \(4=1+3:\left(t, \quad t\langle d\rangle, t\langle d\rangle T_{2}, t\langle d\rangle T_{3}\right)\), for \(1<d<p / 2\).
3. Partition \(4=2+2:\left(t, t T_{2}, \quad t\langle d\rangle, t\langle d\rangle T_{2}\right)\), for \(1<d<p / 2\).
4. Partition \(4=1+1+2:\left(t, \quad t\left\langle d_{1}\right\rangle, \quad t\left\langle d_{2}\right\rangle, t\left\langle d_{2}\right\rangle T_{2}\right)\), for \(1<d_{1} \neq d_{2}<p / 2\).
5. Partition \(4=1+1+1+1:\left(t, \quad t\left\langle d_{1}\right\rangle, \quad t\left\langle d_{2}\right\rangle, \quad t\left\langle d_{3}\right\rangle\right)\), for \(1<d_{1} \neq d_{2} \neq d_{3}<p / 2\).

If the entries in every single one of these sequences (for all choices of \(d_{i}\) ) are linearly independent then there is no elliptic curve over a degree 4 number field with a rational point of order \(p\).

\section*{NOTES:}
1. This looks pretty crazy, but this is really just a way of expressing the condition that a certain map is a formal immersion.
2. As \(p\) gets large, there are a LOT of 4-tuples of elements of the Hecke algebra to test for independence mod 2.
3. Here is code that implements this algorithm: code.sage

\section*{Running the Algorithm}

After a few days we find that the criterion is not satisfied for \(p=29,31\), but it is for \(37 \leq p \leq 97\).

Conclusion:
Theorem (Kamienny, Stein): \(\max (S(4)) \leq 31\).
It's unclear to me, but Kamienny seems to also have a proof that rules out 29,31 , which would nearly answer the big question for degree 4 .

\section*{Last 2-3 Days...}

A complete solution!?!
Theorem (Kamienny, Stein Stoll): \(S(4)=\{2,3,5,7,11,13,17\}\)
Proofs uses that \(\operatorname{rank}\left(J_{1}(p)\right)=0\) for the above \(p\), informed by calculations from [Conrad-Edixhoven-Stein] about the arithmetic of \(J_{1}(p)\) for small \(p\), so one can use much more direct geometric arguments. This also involves some large computations with Magma on explicit algebraic curves, e.g., Riemann-Roch spaces, enumerating and reducing divisors, etc., built on top of Florian Hess's function fields package. Stoll: "Finding the degree 4 points takes about 3 hours [...] The other problem is that Magma crashes once in a while when turning a point into a place. This will be fixed in the next release, but for now, one may have to try the actual checking a few times until it runs through."

Related Conjecture (Stein): \(J_{1}(p)(\mathbf{Q})_{\text {tor }}\) is generated by differences of rational cusps.
(See extensive data about this conjecture in Conrad-Edixhoven-Stein.)
\(\square\)

\section*{Future Work}
1. Determine if \(J_{1}(p)(\mathbf{Q})_{\text {tor }}\) is cuspidal.
2. Make the algorithm for showing that \(\max (S(4)) \leq 31\) much more efficient. Right now it takes way too long.
3. Repeat my calculations, but for \(d=5\) and hope to replace the Oesterle bound of \(\max (S(5)) \leq 271\) by
\[
\max (S(5)) \leq 43 \quad \text { (or something close) }
\]

And then?
4. Isogeny degrees -- still an open problem even over quadratic fields!
- Cremona (a few minutes ago on Google Buzz): "I'm also very interested in the corresponding question for \(X_{0}(\ell)\), so we know what the possible prime degrees of isogenies are for a given field (or degree). I had some interesting correspondence about this with Parent about 6 months ago; he says that is still wide open for quadratic fields! My student Kimi is implementing isogenies of degree 11, 17, 19 (the genus 1 cases) in Sage (work in progress). But to have a genuine isogeny_class() function over any non-Q number fields we need a bound." and
- Mazur (email): "It would be also interesting if you could, say, rule out a few primes \(p\) occurring as \(p\)-isogenies over such fields (for non CM curves)?"
float((1+2^(5/2))^2)
44.313708498984766
previous_prime(275)```

