

c ellipti

This talk reports on a project to verify the Birch and Swinnerton-Dyer conjecture for many specific elliptic curves over \mathbb{Q} .

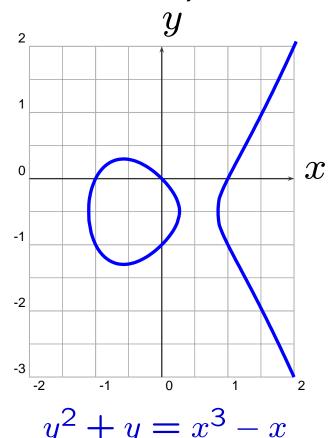
Joint Work: Grigor Grigorov, Andrei Jorza, Corina Patrascu, Stefan Patrikis

Thanks: John Cremona, Stephen Donnelly, Ralph Greenberg, Grigor Grigorov, Barry Mazur, Robert Pollack, Nick Ramsey, Tony Scholl, Micahel Stoll.

Elliptic Curves over the Rational

Numbers Q

An elliptic curve is a nonsingular plane cubic curve with a rational point (possibly "at infinity").



EXAMPLES

$$y^2 + y = x^3 - x$$

$$x^3 + y^3 = z^3$$
 (projective)

$$y^2 = x^3 + ax + b$$

$$3x^3 + 4y^3 + 5z^3 = 0$$

Mordell's Theorem

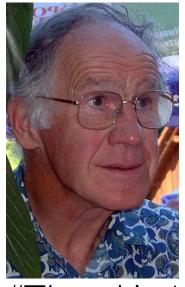
Theorem (Mordell). The group $E(\mathbb{Q})$ of rational points on an elliptic curve is a finitely generated abelian group, so

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T$$
,

with $T = E(\mathbb{Q})_{tor}$ finite.

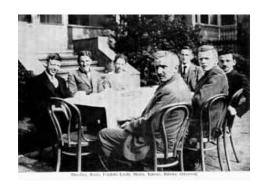
Mazur classified the possibilities for T.

Folklore conjecture: r can be arbitrary, but the biggest r ever found is (probably) 24.

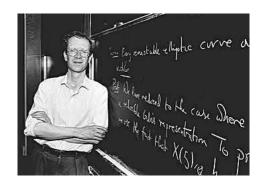


Conjectures Proliferated

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and Swinnerton-Dyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these Birch 1965 relations, which must lie very deep."



The *L*-Function



Theorem (Wiles et al., Hecke) The following function extends

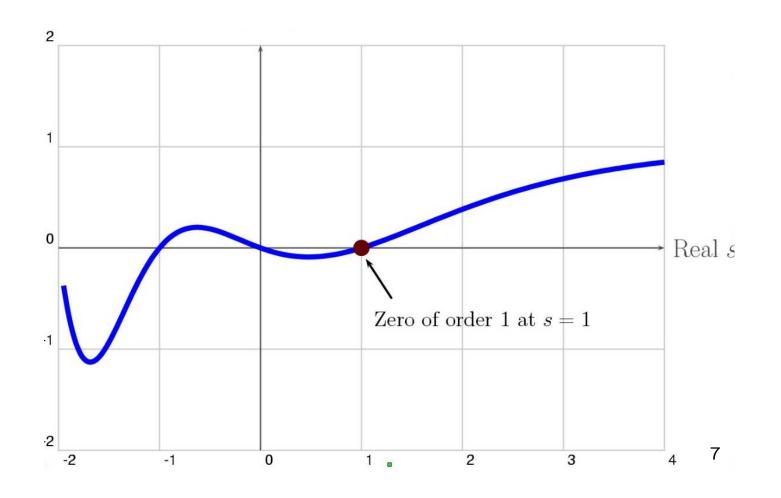
to a holomorphic function on the whole complex plane:

$$L(E,s) = \prod_{p \nmid \Delta} \left(\frac{1}{1 - a_p \cdot p^{-s} + p \cdot p^{-2s}} \right) \cdot \prod_{p \mid N} L_p(E,s)$$

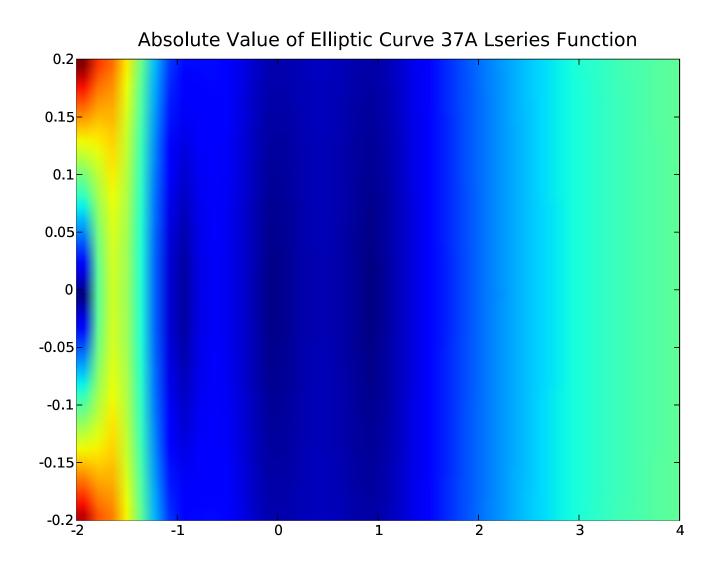
Here $a_p = p + 1 - \#E(\mathbb{F}_p)$ for all $p \nmid \Delta$, where Δ is divisible by the primes of bad reduction for E. We do not include the factors $L_p(E,s)$ at bad primes here.

Real Graph of the L-Series of

$$y^2 + y = x^3 - x$$



Graph of *L*-Series of $y^2 + y = x^3 - x$



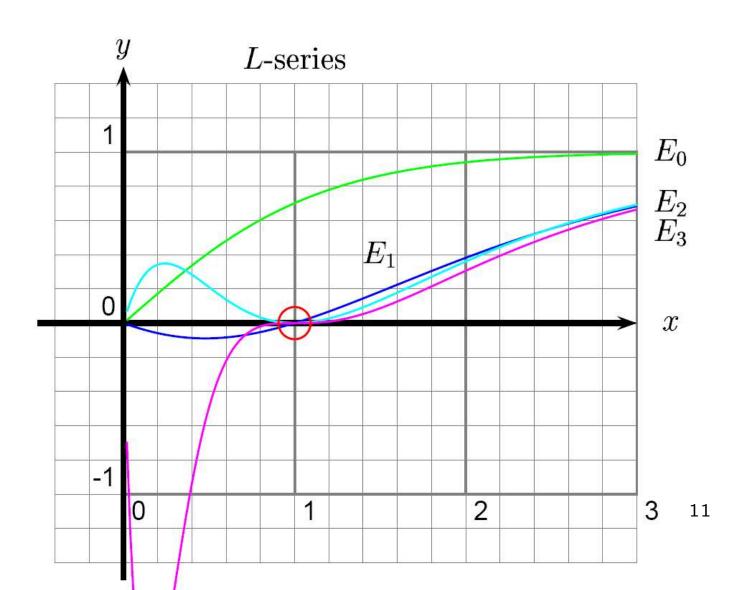
The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let E be any elliptic curve over \mathbb{Q} . The order of vanishing of L(E,s) as s=1 equals the rank of $E(\mathbb{Q})$.

The Kolyvagin and Gross-Zagier Theorems

Theorem: If the ordering of vanishing $\operatorname{ord}_{s=1} L(E,s)$ is ≤ 1 , then the conjecture is true for E.

What about Taylor series of L(E,s) around s=1?



Taylor Series

For $y^2 + y = x^3 - x$, the **Taylor series** about 1 is

$$L(E,s) = 0 + (s-1)0.3059997...$$

$$+(s-1)^20.18636...+\cdots$$

In general, it's

$$L(E,s) = c_0 + c_1 s + c_2 s^2 + \cdots$$

Big Mystery: Do these Taylor coefficients c_n have any deep arithmetic meaning?

BSD Formula Conjecture

Let $r = \operatorname{ord}_{s=1} L(E, s)$. Then Birch and Swinnerton-Dyer made a famous guess for the first nonzero coefficient c_r :

$$c_r = \frac{\Omega_E \cdot \text{Reg}_E \cdot \prod_{p|N} t_p}{\#E(\mathbb{Q})^2_{\text{tor}}} \cdot \#\mathbb{H}(E)$$

- $\#E(\mathbb{Q})_{tor}$ **torsion** order
- t_p Tamagawa numbers
- Ω_E real volume $\int_{E(\mathbb{R})} \omega_E$
- Reg_E **regulator** of E
- $\mathrm{III}(E) = \mathrm{Ker}(\mathrm{H}^1(\mathbb{Q}, E) \to \bigoplus_v \mathrm{H}^1(\mathbb{Q}_v, E))$
 - Shafarevich-Tate group

What about c_{r+1} , c_{r+2} , etc?

I think nobody has even a wild and crazy guess for an interpretation of these.

They are probably not "periods" like c_r is, so perhaps should not have any nice interpretation...

Motivating Problem 1

Motivating Problem 1. For specific curves, compute every quantity appearing in the BSD formula conjecture in practice.

NOTE:

This is **not** meant as a theoretical problem about computability, though by compute we mean "compute with proof."

Status

- 1. When $r_{an} = \operatorname{ord}_{s=1} L(E, s) \le 3$, then we can compute r_{an} . Open Problem: Show that $r_{an} \ge 4$ for some elliptic curve.
- 2. "Relatively easy" to compute $\#E(\mathbb{Q})_{tor}$, c_p , Ω_E .
- 3. Computing Reg_E essentially same as computing $E(\mathbb{Q})$; interesting and sometimes very difficult.
- 4. Computing $\#\coprod(E)$ is currently **very very difficult**.

Theorem (Kolyvagin):

 $r_{an} \leq 1 \implies \coprod(E)$ is finite (with bounds)

Open Problem:

Prove that $\coprod(E)$ is finite for some E with $r_{an} \geq 2$.

Victor Kolyvagin

Kolyvagin's work on Euler systems is crucial to our project.

Motivating Problem 2: Cremona's Book

Motivating Problem 2. Prove BSD for every elliptic curve over \mathbb{Q} of conductor at most 1000, i.e., in Cremona's book.

- 1. By Tate's isogeny invariance of BSD, it suffices to prove BSD for each **optimal** elliptic curve of conductor $N \leq 1000$.
- 2. Rank part of the conjecture has been verified by Cremona for all curves with N < 40000.
- 3. All of the quantities in the conjecture, **except** for $\#\mathbb{H}(E/\mathbb{Q})$, have been computed by Cremona for conductor ≤ 40000 .
- 4. Cremona (Ch. 4, pg. 106): We have $2 \nmid \# \coprod(E)$ for all optimal curves with conductor \leq 1000 except 571A, 960D, and 960N. So we can mostly ignore 2 henceforth.

John Cremona

John Cremona's software and book are crucial to our project.

The Four Nontrivial III's

Conclusion: In light of Cremona's book and the above results, the problem is to show that $\coprod(E)$ is *trivial* for all but the following four optimal elliptic curves with conductor at most 1000:

Curve	a-invariants	$\coprod(E)_{?}$
571A	[0,-1,1,-929,-105954]	4
681B	[1,1,0,-1154,-15345]	9
960D	[0,-1,0,-900,-10098]	4
960N	[0,1,0,-20,-42]	4

We first deal with these four.

Divisor of Order:

- 1. Using a 2-descent we see that $4 \mid \# \coprod (E)$ for 571A, 960D, 960N.
- 2. For E=681B: Using visibility (or a 3-descent) we see that $9 \mid \# \coprod (E)$.

Multiple of Order:

- 1. For E=681B, the mod 3 representation is surjective, and $3 \mid [E(K):y_K]$ for $K=\mathbb{Q}(\sqrt{-8})$, so Kolyvagin's theorem implies that $\#\mathbb{H}(E)=9$, as required.
- 2. Kolyvagin's theorem and computation $\implies \# \coprod (E) = 4^?$ for 571A, 960D, 960N.
- 3. Using MAGMA's FourDescent command, we compute $Sel^{(4)}(E/\mathbb{Q})$ for 571A, 960D, 960N and deduce that #III(E) = 4. (Note: MAGMA Documentation currently misleading.)

The Eighteen Optimal Curves of Rank

> 1

There are 18 curves with conductor \leq 1000 and rank > 1 (all have rank 2):

389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 681C, 707A, 709A, 718B, 794A, 817A, 916C, 944E, 997B, 997C

For these E **nobody** currently knows how to show that $\mathrm{III}(E)$ is finite, let alone trivial. (But mention, e.g., p-adic L-functions.)

Motivating Problem 3: Prove the BSD Conjecture for all elliptic curve over \mathbb{Q} of conductor at most 1000 and rank ≤ 1 .

SECRET MOTIVATION: Our actual motivation is to unify and extend results about BSD and algorithms for elliptic curves. Also, the computations give rise to many surprising and interesting examples.

Our Goal

- There are 2463 optimal curves of conductor at most 1000.
- Of these, 18 have rank 2, which leaves 2445 curves.
- Of these, 2441 are conjectured to have trivial III.

Thus our **goal** is to prove that

$$\#\coprod(E)=1$$

for these 2441 elliptic curves.

Our Strategy

1. [Find an Algorithm] Based on deep work of Kolyvagin, Kato, et al.

Input: An elliptic curve over \mathbb{Q} with $r_{an} \leq 1$.

Output: $B \ge 1$ such that if $p \nmid B$, then $p \nmid \# \coprod (E)$.

- 2. [Compute] Run the algorithm on our 2441 curves.
- 3. [Reducible] If E[p] is reducible say nothing.

Kolyvagin Bound on $\#\coprod(E)$

INPUT: An elliptic curve E over \mathbb{Q} with $r_{an} \leq 1$.

OUTPUT: Odd $B \ge 1$ such that if $p \nmid 2B$, then $p \nmid \# \coprod (E/\mathbb{Q})$.

1. [Choose K] Choose a quadratic imaginary field $K = \mathbb{Q}(\sqrt{D})$ with certain properties, such that E/K has analytic rank 1. Assume $\mathbb{Q}(E[p])$ has degree $\# \operatorname{GL}_2(\mathbb{F}_p)$.

2. [Compute Mordell-Weil]

- (a) If r = 0, compute generator z for $E^D(\mathbb{Q})$ mod torsion.
- (b) If r = 1, compute generator z for $E(\mathbb{Q})$ mod torsion.

- 3. [Index of Heegner point] Compute the "Heegner point" $y_K \in E(K)$ associated to K. This is a point that comes from the "modularity" map $X_0(N) \to E$.
- 4. [Finished] Output $B = I \cdot A$, where A is the product of primes such that $\mathbb{Q}(E[p])$ has degree less than $\# \operatorname{GL}_2(\mathbb{F}_p)$.

Theorem (Kolyvagin): $p \nmid 2B \implies p \nmid \# \coprod (E/\mathbb{Q})$.