Verifying the Birch and Swinnerton-Dyer

 Conjecture for Specific Elliptic CurvesWilliam Stein
Harvard University

Math 129: May 5, 2005

This talk reports on a project to verify the Birch and Swinnerton-Dyer conjecture for many specific elliptic curves over \mathbb{Q}.

Joint Work: Grigor Grigorov, Andrei Jorza, Corina Patrascu, Stefan Patrikis

Thanks: John Cremona, Stephen Donnelly, Ralph Greenberg, Grigor Grigorov, Barry Mazur, Robert Pollack, Nick Ramsey, Tony Scholl, Micahel Stoll.

Elliptic Curves over the Rational Numbers \mathbb{Q}

An elliptic curve is a nonsingular plane cubic curve with a rational point (possibly "at infinity").

$$
y^{2}+y=x^{3}-x
$$

EXAMPLES

$$
y^{2}+y=x^{3}-x
$$

$$
x^{3}+y^{3}=z^{3}(\text { projective })
$$

$$
y^{2}=x^{3}+a x+b
$$

Mordell's Theorem

Theorem (Mordell). The group $E(\mathbb{Q})$ of rational points on an elliptic curve is a finitely generated abelian group, so

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \oplus T,
$$

with $T=E(\mathbb{Q})_{\text {tor }}$ finite.

Mazur classified the possibilities for T.

Folklore conjecture: r can be arbitrary, but the biggest r ever found is (probably) 24.

Conjectures Proliferated

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and SwinnertonDyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these relations, which must lie very deep." - Birch 1965

The L-Function

Theorem (Wiles et al., Hecke) The following function extends to a holomorphic function on the whole complex plane:
$L(E, s)=\prod_{p \nmid \triangle}\left(\frac{1}{1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}}\right) \cdot \prod_{p \mid N} L_{p}(E, s)$
Here $a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)$ for all $p \nmid \Delta$, where Δ is divisible by the primes of bad reduction for E. We do not include the factors $L_{p}(E, s)$ at bad primes here.

Real Graph of the L-Series of

$$
y^{2}+y=x^{3}-x
$$

Graph of L-Series of $y^{2}+y=x^{3}-x$

Absolute Value of Elliptic Curve 37A Lseries Function

The Birch and Swinnerton-Dyer Conjecture

Conjecture: Let E be any elliptic curve over \mathbb{Q}. The order of vanishing of $L(E, s)$ as $s=1$ equals the rank of $E(\mathbb{Q})$.

The Kolyvagin and Gross-Zagier Theorems

Theorem: If the ordering of vanishing $\operatorname{ord}_{s=1} L(E, s)$ is ≤ 1, then the conjecture is true for E.

What about Taylor series of $L(E, s)$ around $s=1$?

Taylor Series

For $y^{2}+y=x^{3}-x$, the Taylor series about 1 is

$$
\begin{aligned}
L(E, s)= & 0+(s-1) 0.3059997 \ldots \\
& +(s-1)^{2} 0.18636 \ldots+\cdots
\end{aligned}
$$

In general, it's

$$
L(E, s)=c_{0}+c_{1} s+c_{2} s^{2}+\cdots .
$$

Big Mystery: Do these Taylor coefficients c_{n} have any deep arithmetic meaning?

BSD Formula Conjecture

Let $r=\operatorname{ord}_{s=1} L(E, s)$. Then Birch and Swinnerton-Dyer made a famous guess for the first nonzero coefficient c_{r} :

$$
c_{r}=\frac{\Omega_{E} \cdot \operatorname{Reg}_{E} \cdot \Pi_{p \mid N} t_{p}}{\# E(\mathbb{Q})_{\text {tor }}^{2}} \cdot \# Ш(E)
$$

- $\# E(\mathbb{Q})_{\text {tor }}$ - torsion order
- t_{p} - Tamagawa numbers
- Ω_{E} - real volume $\int_{E(\mathbb{R})} \omega_{E}$
- Reg_{E} - regulator of E
- $\amalg(E)=\operatorname{Ker}\left(\mathrm{H}^{1}(\mathbb{Q}, E) \rightarrow \oplus_{v} \mathrm{H}^{1}\left(\mathbb{Q}_{v}, E\right)\right)$
- Shafarevich-Tate group

What about c_{r+1}, c_{r+2}, etc?

I think nobody has even a wild and crazy

 guess for an interpretation of these.They are probably not "periods" like c_{r} is, so perhaps should not have any nice interpretation...

Motivating Problem 1

Motivating Problem 1. For specific curves, compute every quantity appearing in the BSD formula conjecture in practice.

NOTE:

This is not meant as a theoretical problem about computability, though by compute we mean "compute with proof."

Status

1. When $r_{\mathrm{an}}=\operatorname{ord}_{s=1} L(E, s) \leq 3$, then we can compute $r_{\text {an }}$. Open Problem: Show that $r_{\text {an }} \geq 4$ for some elliptic curve.
2. "Relatively easy" to compute $\# E(\mathbb{Q})_{\text {tor }}, c_{p}, \Omega_{E}$.
3. Computing Reg $_{E}$ essentially same as computing $E(\mathbb{Q})$; interesting and sometimes very difficult.
4. Computing $\# Ш(E)$ is currently very very difficult. Theorem (Kolyvagin):
$r_{\mathrm{an}} \leq 1 \Longrightarrow \amalg(E)$ is finite (with bounds)
Open Problem:
Prove that $\amalg(E)$ is finite for some E with r an ≥ 2.

Victor Kolyvagin

Kolyvagin's work on Euler systems is crucial to our project.

Motivating Problem 2: Cremona's Book

Motivating Problem 2. Prove BSD for every elliptic curve over \mathbb{Q} of conductor at most 1000, i.e., in Cremona's book.

1. By Tate's isogeny invariance of BSD, it suffices to prove BSD for each optimal elliptic curve of conductor $N \leq 1000$.
2. Rank part of the conjecture has been verified by Cremona for all curves with $N \leq 40000$.
3. All of the quantities in the conjecture, except for $\# Ш(E / \mathbb{Q})$, have been computed by Cremona for conductor ≤ 40000.
4. Cremona (Ch. 4, pg. 106): We have $2 \nmid \# Ш(E)$ for all optimal curves with conductor ≤ 1000 except 571A, 960D, and 960 N . So we can mostly ignore 2 henceforth.

John Cremona

John Cremona's software and book are crucial to our project.

The Four Nontrivial Ш’s

Conclusion: In light of Cremona's book and the above results, the problem is to show that $\amalg(E)$ is trivial for all but the following four optimal elliptic curves with conductor at most 1000:

Curve	a-invariants	$Ш(E)_{?}$
571A	$[0,-1,1,-929,-105954]$	4
681B	$[1,1,0,-1154,-15345]$	9
960D	$[0,-1,0,-900,-10098]$	4
960N	$[0,1,0,-20,-42]$	4

We first deal with these four.

Divisor of Order:

1. Using a 2-descent we see that $4 \mid \# W(E)$ for 571A, 960D, 960N.
2. For $E=681 B$: Using visibility (or a 3-descent) we see that $9 \mid \# Ш(E)$.

Multiple of Order:

1. For $E=681 B$, the mod 3 representation is surjective, and $3 \|\left[E(K): y_{K}\right]$ for $K=\mathbb{Q}(\sqrt{-8})$, so Kolyvagin's theorem implies that $\# Ш(E)=9$, as required.
2. Kolyvagin's theorem and computation $\Rightarrow \# Ш(E)=4$? for 571A, 960D, 960N.
3. Using MAGMA's FourDescent command, we compute Sel ${ }^{(4)}(E / \mathbb{Q})$ for 571A, 960D, 960N and deduce that $\# W(E)=4$. (Note: MAGMA Documentation currently misleading.)

The Eighteen Optimal Curves of Rank

$$
>1
$$

There are 18 curves with conductor ≤ 1000 and rank >1 (all have rank 2):

$$
\begin{aligned}
& \text { 389A, 433A, 446D, 563A, 571B, 643A, 655A, 664A, 681C, } \\
& 707 \mathrm{~A}, 709 \mathrm{~A}, 718 \mathrm{~B}, 794 \mathrm{~A}, ~ 817 \mathrm{~A}, 916 \mathrm{C}, 944 \mathrm{E}, 997 \mathrm{~B}, 997 \mathrm{C}
\end{aligned}
$$

For these E nobody currently knows how to show that $\amalg(E)$ is finite, let alone trivial. (But mention, e.g., p-adic L-functions.)

Motivating Problem 3: Prove the BSD Conjecture for all elliptic curve over \mathbb{Q} of conductor at most 1000 and rank ≤ 1.

SECRET MOTIVATION: Our actual motivation is to unify and extend results about BSD and algorithms for elliptic curves. Also, the computations give rise to many surprising and interesting examples.

Our Goal

- There are 2463 optimal curves of conductor at most 1000.
- Of these, 18 have rank 2, which leaves 2445 curves.
- Of these, 2441 are conjectured to have trivial Ш.

Thus our goal is to prove that

$$
\# Ш(E)=1
$$

for these 2441 elliptic curves.

Our Strategy

1. [Find an Algorithm] Based on deep work of Kolyvagin, Kato, et al.

Input: An elliptic curve over \mathbb{Q} with $r a n \leq 1$.
Output: $B \geq 1$ such that if $p \nmid B$, then $p \nmid \# W(E)$.
2. [Compute] Run the algorithm on our 2441 curves.
3. [Reducible] If $E[p]$ is reducible say nothing.

Kolyvagin Bound on \#Ш(E)

INPUT: An elliptic curve E over \mathbb{Q} with $r_{\mathrm{an}} \leq 1$.
OUTPUT: Odd $B \geq 1$ such that if $p \nmid 2 B$, then $p \nmid \# Ш(E / \mathbb{Q})$.

1. [Choose K] Choose a quadratic imaginary field $K=\mathbb{Q}(\sqrt{D})$ with certain properties, such that E / K has analytic rank 1 . Assume $\mathbb{Q}(E[p])$ has degree $\# \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.
2. [Compute Mordell-Weil]
(a) If $r=0$, compute generator z for $E^{D}(\mathbb{Q}) \bmod$ torsion.
(b) If $r=1$, compute generator z for $E(\mathbb{Q})$ mod torsion.
3. [Index of Heegner point] Compute the "Heegner point" $y_{K} \in E(K)$ associated to K. This is a point that comes from the "modularity" map $X_{0}(N) \rightarrow E$.
4. [Finished] Output $B=I \cdot A$, where A is the product of primes such that $\mathbb{Q}(E[p])$ has degree less than $\# \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Theorem (Kolyvagin): $p \nmid 2 B \Longrightarrow p \nmid \# Ш(E / \mathbb{Q})$.

