Riemann-Roch Theory for Function Fields

Andrei Jorza

March 15, 2005

1 Motivation

Let K be a global field (i.e., K is a finite extension of \mathbb{Q} or of $\mathbb{F}_{q}(x)$).
Definition 1.1. The ζ-function is

$$
\zeta_{K}(s)=\sum_{I} \frac{1}{\mathbf{N} I^{s}},
$$

where I runs through all the ideals of \mathcal{O}_{K}.
Proposition 1.2. We have

$$
\zeta_{K}(s)=\prod_{\mathfrak{p} \in \text { Spec } \mathcal{O}_{K}} \frac{1}{1-\mathbf{N}^{-s}} .
$$

Proof. There are sensible convergence issues here, but we will not worry about these. Since \mathcal{O}_{K} is a Dedekind domain, with unique factorization, every ideal $I=\mathfrak{p}_{1}^{n_{1}} \cdots \mathfrak{p}_{k}^{n_{k}}$ so

$$
\zeta_{K}(s)=\sum\left(\mathbf{N}_{1}^{n_{1}} \cdots \mathfrak{p}_{k}^{n_{k}}\right)^{-s}=\prod_{\mathfrak{p}_{i}} \sum_{n_{i}=0}^{\infty}\left(\mathbf{N}_{i}\right)^{-n_{i} s}=\prod_{\mathfrak{p}_{i}} \frac{1}{1-\mathbf{N p}_{i}^{-s}}
$$

The $\zeta_{K}(s)$ clearly converges for $\operatorname{Re} s>1$ and moreover it has an analytic continuation to $\mathbb{C} \backslash\{1\}$.
Theorem 1.3 (Dirichlet's Class Number Formula). If K is a number field then the residue of ζ_{K} at 1 is

$$
\operatorname{vol}\left(\mathbb{A}_{K}^{\times} / K^{\times}\right)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w_{K} \sqrt{\left|D_{K}\right|}} .
$$

This can be rewritten as

$$
\zeta_{K}^{r_{1}+r_{2}-1}(0)=-\frac{h_{K} R_{K}}{w_{K}},
$$

which looks exactly like the Birch And Swinnerton-Dyer conjecture since the rank of $\mathbb{G}_{m}\left(\mathcal{O}_{K}\right)$ is $r_{1}+r_{2}-1$.

One way to prove this is to relate ζ_{K} to ζ-functions associated to characters $\mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{C}^{\times}$ and then use harmonic analysis. We will not prove this theorem here but we'll see more of this analogy later when we study elliptic curves.

2 Riemann-Roch on Function Fields

2.1 Divisors on Adèles

We would like to obtain similar formulas for function fields.
Let K be a finite extension of $\mathbb{F}_{q}(x)$. Recall the topological rings $K^{\times} \hookrightarrow \mathbb{A}_{K}^{1} \hookrightarrow \mathbb{A}_{K}^{\times} \hookrightarrow \mathbb{A}_{K}$. For each finite place v of K (all places are finite!) recall that we have $K_{v}, \mathcal{O}_{v}, \wp_{v}, k_{v} / \mathbb{F}_{q}, q_{v}=q^{d_{v}}$.
Definition 2.1. $\operatorname{Div}(K)$ is the free abelian group generated by the (finite) places v of K, i.e. $\operatorname{Div}(K)=\bigoplus_{v} v \mathbb{Z}$. The map $\operatorname{Div}(K) \rightarrow \mathbb{Z}$ given by deg $: \sum n_{v} v \mapsto \sum n_{v} d_{v}$ is a homomorphism with kernel $\operatorname{Div}^{0}(K)$.

There is an obvious map $\mathbb{A}_{K}^{\times} \rightarrow \operatorname{Div}(K)$ given by div $: \mathfrak{a}=\left(a_{v}\right) \mapsto \sum v\left(a_{v}\right) v$, a homomorphism. Then we clearly have $|\mathfrak{a}|_{\mathbb{A}}=q^{-\operatorname{deg} \mathfrak{a}}$ so this gives
Lemma 2.2. The map div is a surjection from \mathbb{A}_{K}^{1} to $\operatorname{Div}^{0}(K)$ with kernel $\prod \mathcal{O}_{v}^{\times}$.
Let $P(K)=\operatorname{div}\left(K^{\times}\right)$be the principal divisors. Then write $\operatorname{Pic}(K)=\operatorname{Div}(K), \operatorname{Pic}^{0}(K)=$ $\operatorname{Div}^{0}(K) / P(K)$.

Proposition 2.3. There is an isomorphism $C l(K) \cong \operatorname{Pic}^{0}(K)$ which proves that $C l(K)$ is finite.

Proof. There is an isomorphism between the group of fractional ideals and \mathbb{A}_{K}^{1}. Moreover, the $\operatorname{group} \mathbb{A}_{K}^{1} / K^{\times}$is compact and $\prod \mathcal{O}_{v}^{\times}$is open so $\operatorname{Pic}^{0}(K) \cong \mathbb{A}_{K}^{1} / K^{\times} \prod \mathcal{O}_{v}^{\times}$is finite.

2.2 Invertible sheaves associated with divisors

Definition 2.4. For $\mathfrak{a}=\sum a_{v} v \in \operatorname{Div}(K)$ let $U(\mathfrak{a})=\left\{b=\left(b_{v}\right) \in \mathbb{A}_{K}^{\times} \|\left. b_{v}\right|_{v} \leq q_{v}^{-a_{v}}\right\}=$ $\prod\left\{b \in K_{v}^{\times} \|\left. b\right|_{v} \leq q_{v}^{-a_{v}}\right\}$ which is compact by Tychonov since each factor is compact. Let $\mathcal{L}(\mathfrak{a})=\left(U(\mathfrak{a}) \cap K^{\times}\right) \cup\{0\}$. This is compact in K^{\times}which is discrete, so $\mathcal{L}(\mathfrak{a})$ is a finite $K \cap \prod \mathcal{O}_{v}$ module. Since $K \cap \prod K_{v}=\mathbb{F}_{q}$ we get $|\mathcal{L}(\mathfrak{a})|=q^{\ell(\mathfrak{a})}$ where $\ell(\mathfrak{a})=\operatorname{dim}_{\mathbb{F}_{q}} \mathcal{L}(\mathfrak{a})$.

Lemma 2.5. If $\operatorname{deg} \mathfrak{a}<0$ then $\mathcal{L}(\mathfrak{a})=0$. If $\operatorname{deg} \mathfrak{a}=0$ but $\mathfrak{a} \neq 0$ in $\operatorname{Pic}(K)$ then $\mathcal{L}(\mathfrak{a})=0$.

Proof. $\mathcal{L}(\mathfrak{a})$ consists of elements $x \in K^{\times}$such that $|x|_{\mathbb{A}}=q^{-\operatorname{deg} \mathfrak{a}}>1$ which cannot be unless $\mathfrak{a}=0$.

If $\operatorname{deg} \mathfrak{a}=0$ then the above proof shows that the only possible nonzero element in $\mathcal{L}(\mathfrak{a})$ must be $x \in K^{\times}$such that $x_{v}=-a_{v}$ which means that $\mathfrak{a}=\operatorname{div} x=0$ in $\operatorname{Pic}(K)$ contradicting the hypothesis.

Lemma 2.6. Prove that $\mathcal{L}(\mathfrak{a})$ can be identified with divisors $\mathfrak{b} \in \operatorname{Div}(K)$ such that $\mathfrak{b} \geq 0$ and $\mathfrak{b}=\mathfrak{a} \in \operatorname{Pic}(K)$.

Proof. $\mathcal{L}(\mathfrak{a})=K \cap\left\{\mathfrak{b} \in \mathbb{A}_{K} \mid v\left(\mathfrak{b}_{v}\right)+v\left(a_{v}\right) \geq 0\right\}$. So the divisor $\mathfrak{b}+\mathfrak{a}$ is nonnegative and is clearly linearly equivalent to \mathfrak{a} since $\mathfrak{b} \in K$.

Remark 2.7. We have $\ell(0)=1$ which corresponds to the fact that $\mathcal{L}(0)=K^{\times} \cap \prod \mathcal{O}_{v}=\mathbb{F}_{q}$.
Lemma 2.8. If I is an ideal of \mathcal{O}_{K} then $\mathbf{N} I=q^{\operatorname{deg}(\text { divoideal }(I))}$, where ideal : $I=\prod \mathfrak{p}_{v}^{n_{v}} \mapsto$ $\left(\pi_{v}^{n_{v}}\right)$ for uniformizers $\pi_{v} \in K_{v}$.

Proof. Assume that $I=\prod \mathfrak{p}_{v}^{n_{v}}$ then divoideal $I=\sum n_{v} v$ while $\mathbf{N} I=q^{\sum n_{v} d_{v}}=q^{\operatorname{deg}(\operatorname{divoideal}(I))}$.

2.3 The canonical divisor

Let $\chi: \mathbb{A}_{K} / K \rightarrow \mathbb{C}^{\times}$be a nontrivial character, which corresponds to a collection of local characters $\chi_{v}: K_{v} \rightarrow \mathbb{C}^{\times}$that are trivial on \mathcal{O}_{v} for almost all v. Let $\operatorname{ord}\left(\chi_{v}\right)$ be the smallest integer n_{v} such that χ_{v} is trivial on $\wp_{v}^{n_{v}}$. Then $\operatorname{ord}(\chi)=\sum \operatorname{ord}\left(\chi_{v}\right) v \in \operatorname{Div}(K)$.
Proposition 2.9. Let χ^{\prime} be another nontrivial character of \mathbb{A}_{K} / K. Then $\operatorname{ord}(\chi)=\operatorname{ord}\left(\chi^{\prime}\right)$ in $\operatorname{Pic}(K)$.

Proof. Characters are defined up to scalar action so for each v there exists a $b_{v} \in K_{v}^{\times}$such that $\chi_{v}^{\prime}(x)=\chi_{v}\left(b_{v} x\right)$ which means that $\chi^{\prime}(x)=\chi(b x)$ where $b=\left(b_{v}\right)_{v} \in \mathbb{A}_{K}$. But χ and χ^{\prime} are trivial on K by definition so $\chi(b)=1$ which implies that ord $\left(\chi^{\prime}\right)=\operatorname{ord}(\chi(b))=\operatorname{ord}(\chi)+\operatorname{div}(b)=$ ord (χ) since $b \in K$.

Definition 2.10. There exists a unique divisor $\mathfrak{c}=\operatorname{ord}(\chi)$ for some χ nontrivial character of \mathbb{A}_{K} / K. This is called the canonical divisor and $\ell(\mathfrak{c})=g$ is called the genus of K. (For number fields there are analogous notions genus of K coming from Arakelov geometry.)

2.4 Topological duality

For a topological group G we define the topological dual $\widehat{G}=\operatorname{Hom}_{\text {continuous }}\left(G, \mathbb{C}^{\times}\right)$. Fix χ a nontrivial character of \mathbb{A}_{K} / K for which $\mathfrak{c}=\operatorname{ord}(\chi)$. The map $a \mapsto \chi(a-)$ identifies \mathbb{A}_{K} to its topological dual.
Lemma 2.11. If $H \subset G$ is an open topological subgroup and $H^{\perp}=\{f \in \widehat{G} \mid f(H)=1\}$ then $\widehat{G / H} \cong H^{\perp}$. Moreover, G is compact if \hat{G} is discrete and G is discrete if \hat{G} is compact. Via topological duals the exact sequence

$$
1 \rightarrow H \rightarrow G \rightarrow G / H \rightarrow 1
$$

becomes

$$
1 \rightarrow H^{\perp} \rightarrow \hat{G} \rightarrow \hat{H} \rightarrow 1 .
$$

If G / H is compact and H is discrete in G then the measure on G is the composite of the discrete measure on H and the Haar measure on G / H.
Remark 2.12. This shows that $\widehat{\mathbb{A}_{K} / K}=K$ is discrete.
Lemma 2.13. For $\mathfrak{a} \in \operatorname{Div}(K)$ we write $U=U(\mathfrak{a})$ and $U^{\prime}(\mathfrak{c}-\mathfrak{a})$. Then $\mathbb{A}_{K} /(K+U)$ is the topological dual of $K \cap U^{\prime}$.

Proof. It is enough to show that $(K+U)^{\perp} \cong K \cap U^{\prime}$. First, $(K+U)^{\perp} \subset K^{\perp}=K$. Now under the indentification $\mathbb{A}_{K} \cong \widehat{\mathbb{A}_{K}}$ the set $(K+U)^{\perp}$ consists of $x \in \mathbb{A}_{K}$ such that $\chi(x(K+U))=1$. This happens if and only if $\chi(x(k+b))=1$ for all $k \in K$ and b such that $|b|_{v} \leq q_{v}^{-a_{v}}$. Therefore we want $\chi_{v}\left(x_{v}\left(k_{v}+b_{v}\right)\right)=1$ which happens for all $x_{v}\left(k_{v}+b_{v}\right) \in \wp_{v}^{\operatorname{ord}\left(\chi_{v}\right) \text {. This happens when }}$ $x_{v} \in \wp_{v}^{\operatorname{ord}\left(\chi_{v}\right)+a_{v}}$ so $x \in U^{\prime}$. Therefore, $(K+U)^{\perp}=K \cap U^{\prime}$.

2.5 Riemann-Roch

Lemma 2.14. Let μ be a Haar measure on \mathbb{A}_{K} induced from the discrete measure on K and the normalized Haar measure on \mathbb{A}_{K} / K. Then $\mu(U)=q^{-\operatorname{deg} \mathfrak{a}}=q^{\ell(\mathfrak{a})} \mu((K+U) / U)$. Moreover, $\mu\left(\mathbb{A}_{K} / K\right)=q^{\ell(\mathfrak{c}-\mathfrak{a})} \mu((K+U) / U)$.

Proof. We have an exact sequence $1 \rightarrow K \rightarrow \mathbb{A}_{K} \rightarrow \mathbb{A}_{K} / K \rightarrow 1$ in which we have an exact sequence $1 \rightarrow K \cap U \rightarrow U \rightarrow(K+U) / K \rightarrow 1$. Therefore $\mu(U)=q^{\ell(\mathfrak{a})} \mu((K+U) / U)$ since $\mu(K \cap U)=\mu(\mathcal{L}(\mathfrak{a}))$. The fact that $\mu(U)=q^{-\operatorname{deg} \mathfrak{a}}$ is immediate from definition.

The last equality follows from the exact sequence $1 \rightarrow(K+U) / K \rightarrow \mathbb{A}_{K} / K \rightarrow\left(\mathbb{A}_{K} / K\right) /((K+$ $U) / K)=\mathbb{A}_{K} /(K+U) \rightarrow 1$ because $\mu\left(K \cap U^{\prime}\right)=q^{\ell(\mathfrak{c}-\mathfrak{a})}$.

Theorem 2.15 (Riemann-Roch). For each $\mathfrak{a} \in \operatorname{Div}(K)$ we have

$$
\ell(\mathfrak{a})=\ell(\mathfrak{c}-\mathfrak{a})+\operatorname{deg} \mathfrak{a}-g+1 .
$$

Proof. From Lemma 2.14 we have

$$
\begin{aligned}
\mu\left(\mathbb{A}_{K} / K\right) & =q^{\ell(\mathfrak{c}-\mathfrak{a})} \mu((K+U) / U)=q^{\ell(\mathfrak{c}-\mathfrak{a})} q^{-\operatorname{deg} \mathfrak{a}} / q^{\ell(\mathfrak{a})} \\
& =q^{\ell(\mathfrak{c}-\mathfrak{a})-\operatorname{deg} \mathfrak{a}-\ell(\mathfrak{a})}
\end{aligned}
$$

The theorem follows if say $q^{g-1}=\mu\left(\mathbb{A}_{K} / K\right)$.
Proposition 2.16. We have $\operatorname{deg} \mathfrak{c}=2 g-2$ and $g=\ell(\mathfrak{c})$.
Proof. Add $\ell(\mathfrak{a})=\ell(\mathfrak{c}-\mathfrak{a})+\operatorname{deg} \mathfrak{a}-g+1$ and $\ell(\mathfrak{c}-\mathfrak{a})=\ell(a)+\operatorname{deg}(\mathfrak{c}-\mathfrak{a})-g+1$ and get $\operatorname{deg} \mathfrak{c}=2 g-2$. So if $\mathfrak{a}=0$ in the formula we get $\ell(0)=\ell(\mathfrak{c})+0-g+1$ so $\ell(\mathfrak{c})=g-1+1=g$.

Proposition 2.17. If $\operatorname{deg} \mathfrak{a}>2 g-2$ then $\ell(\mathfrak{a})=\operatorname{deg} \mathfrak{a}-g+1$.
Proof. Then $\operatorname{deg}(\mathfrak{c}-\mathfrak{a})<0$ so by Lemma 2.5 we have $\ell(\mathfrak{c}-\mathfrak{a})=0$.

3 Class number formula for function fields

Let's get back to our analogy between the case of number and function fields. Let K be a finite extension of $\mathbb{F}_{q}(x)$. Recall that $\zeta_{K}(s)=\sum_{I}(\mathbf{N} I)^{-s}$ and we have a homomorphism div : $I \rightarrow \operatorname{Div}(K)$ that takes integral ideals to nonnegative divisors.

Lemma 3.1. There exists $u \in \operatorname{Div}(K)$ such that $\operatorname{deg} u=1$.
Proof. If $u=\sum n_{v} v$ then $\operatorname{deg} u=\sum n_{v} d_{v}$ so it is enough to prove that the d_{v} have no common factor. I am not going to prove this, but you can think about what happens if $K=\mathbb{F}_{q}(x)$ (the analogous case of $K=\mathbb{Q}$ for number fields) and generalize. (See Weil, Basic Number Theory, pp 126 if impatient.)

Lemma 3.2. We have

$$
\begin{aligned}
\zeta_{K}(s) & =\sum_{\mathfrak{a} \in \operatorname{Div} \geq 0(K)} q^{\operatorname{deg} \mathfrak{a}}=\sum_{k=0}^{\infty} \sum_{\operatorname{deg} \mathfrak{a}=k, \mathfrak{a} \geq 0} q^{-k s} \\
& =\sum_{\mathfrak{a}_{i} \in \operatorname{Pic}^{0}(K)} \sum_{k=0}^{\infty} \sum_{\mathfrak{a} \geq 0, \mathfrak{a}=\mathfrak{a}_{i}+k u} q^{-k s} \\
& =(q-1)^{-1} \sum_{\mathfrak{a}_{i} \in \operatorname{Pic}^{0}(K)} \sum_{k=0}^{\infty} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}-\sum_{\mathfrak{a}_{i} \in \operatorname{Pic}^{0}(K)} 1 /\left(1-q^{-s}\right)
\end{aligned}
$$

Proof. The first equality follows from Lemma 2.8. From Lemma 2.6 we get that the number of $\mathfrak{a} \geq 0$ such that $\mathfrak{a}=\mathfrak{a}_{i}+k u$ is equal to $\left(q^{\ell\left(\mathfrak{a}_{i}+k u\right)}-1\right) /(q-1)$ (the 0 divisor corresponds to no ideal and any ideal defines a divisor up to a unit of \mathbb{F}_{q}^{\times}) so the last equality follows. (Here I used that $\mathfrak{a}-k u \in \operatorname{Pic}^{0}(K)$ must equal one of the \mathfrak{a}_{i}-s, up to scalars, which do not count.)
Lemma 3.3. We have $\sum_{k=0}^{\infty} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}=\sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}+q^{g-s(2 g-1)} /\left(1-q^{1-s}\right)$.
Proof. Recall that for $k>2 g-2$ we have $\ell\left(\mathfrak{a}_{i}+k u\right)=\operatorname{deg}\left(\mathfrak{a}_{i}+k u\right)-g+1=k-g+1$ so $\sum_{k=0}^{\infty} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}=\sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}+\sum_{k>2 g-2} q^{k(1-s)-g+1}$ which is equal to $\sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}+$ $\sum_{k>2 g-2} q^{(k-2 g+1)(1-s)+g-s(2 g-1)}=\sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}+q^{g-s(2 g-1))} /\left(1-q^{1-s}\right)$.
Proposition 3.4. There exists a polynomial P of degree $2 g$ such that

$$
\zeta_{K}(s)=\frac{P\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} .
$$

Proof. By Lemma 3.3 and the fact that $q^{s-s(2 g-1)} /\left(1-q^{1-s}\right)$ and $-1 /\left(1-q^{-s}\right)$ have the above property, it is enough to show that for each i the sum $\sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}$ has the required property.

But $\left(1-q^{-s}\right)\left(1-q^{1-s}\right) \sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}$ has degree $2 g$ in q^{-s} since only the term corresponding to $k=2 g-2$ counts. The conclusion then follows.

The really interesting facts that are analogous to the analytic class number formula in the case of number fields occur when we apply the Riemann-Roch theory.
Theorem 3.5 (Class number formula). We have $P(z)=q^{g} z^{2 g} P(1 / q z)$.
Proof. Clearly we can get rid of the $(q-1)^{-1}$ factor for the first part of the problem. Define $P_{i}\left(q^{-s}\right)=\left(1-q^{-s}\right)\left(1-q^{1-s}\right) \sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)-k s}+\left(1-q^{-s}\right) q^{g-s(2 g-1)}-\left(1-q^{1-s}\right)$ so $P_{i}(z)=$ $(1-z)(1-q z) \sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)} z^{k}+(1-z) q^{g} z^{2 g-1}-(1-q z)$.

We need to show that $\sum_{i} P_{i}(z)=q^{g} z^{2 g}\left(\sum_{i} P_{i}(1 / q z)\right)$. This is equivalent to $\sum_{i}((1-z)(1-$ $\left.q z) \sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)} z^{k}+(1-z) q^{g} z^{2 g-1}-(1-q z)\right)=\sum_{i}\left(q^{g} z^{2 g}\left((1-1 / q z)(1-1 / z) \sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)} q^{-k} z^{-k}+\right.\right.$ $\left.\left.(1-1 / q z) q^{-(g-1)} z^{-(2 g-1)}\right)+(1-z) q^{g} z^{2 g-1}\right)$

But the RHS is equal to

$$
\sum_{i}\left((1-z)(1-q z) \sum_{k=0}^{2 g-2} q^{\ell\left(a_{i}+k u\right)-k+g-1} z^{2 g-2-k}+(q z-1)+(1-z) q^{g} z^{2 g-1}\right) .
$$

But the Riemann-Roch formula gives that $\ell\left(a_{i}+k u\right)-k+g-1=\ell\left(\mathfrak{c}-\mathfrak{a}_{i}+k u\right)$. But $\mathfrak{c}=\mathfrak{a}_{1}+(2 g-2) u$ for our choice of \mathfrak{a}_{1}.

So we need to show that $\sum_{i}\left((1-z)(1-q z) \sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{i}+k u\right)} z^{k}+(1-z) q^{g} z^{2(g-1)}+(q z-1)\right)=$ $\sum_{i}\left((1-z)(1-q z) \sum_{k=0}^{2 g-2} q^{\ell\left(\mathfrak{a}_{1}-\mathfrak{a}_{i}+(2 g-2-k) u\right)} z^{2 g-2-k}+(q z-1)+(1-z) q^{g} z^{2(g-1)}\right)$ which is obvious.

Proposition 3.6. We have $P(0)=1$ and $P(1)=h_{K}$.
Proof. We have $P(z)=(q-1)^{-1} \sum_{\mathfrak{a}_{i} \in \operatorname{Pic}^{0}(K)} P_{i}(z)$. Since $P_{i}(1)=q-1$ we have $P(1)=$ $(q-1)^{-1} h_{K}(q-1)=h_{K}$.

Also note that $\lim _{\infty} \zeta_{K}(-s)=1$ by definition. So $P(0)=1$.
Proposition 3.7 (Class number formula). The residue at 0 of ζ_{K} is

$$
\operatorname{Res}_{0} \zeta_{K}(s)=\frac{h_{K}}{(1-q) \log q} .
$$

Proof. The residue at 0 is

$$
\lim _{s \rightarrow 0} \frac{P\left(q^{-s}\right)}{1-q^{1-s}} \frac{s}{1-q^{-s}}=\frac{h_{K}}{1-q} \frac{1}{\log q} .
$$

