Riemann-Roch Theory for Function Fields

Andrei Jorza

March 15, 2005

1 Motivation

Let K be a global field (i.e., K is a finite extension of \mathbb{Q} or of $\mathbb{F}_q(x)$).

Definition 1.1. The ζ -function is

$$\zeta_K(s) = \sum_I \frac{1}{\mathbf{N}I^s},$$

where I runs through all the ideals of \mathcal{O}_K .

Proposition 1.2. We have

$$\zeta_K(s) = \prod_{\mathfrak{p} \in \operatorname{Spec} \mathcal{O}_K} \frac{1}{1 - \mathbf{N}\mathfrak{p}^{-s}}.$$

Proof. There are sensible convergence issues here, but we will not worry about these. Since \mathcal{O}_K is a Dedekind domain, with unique factorization, every ideal $I = \mathfrak{p}_1^{n_1} \cdots \mathfrak{p}_k^{n_k}$ so

$$\zeta_K(s) = \sum (\mathbf{N}\mathfrak{p}_1^{n_1}\cdots\mathfrak{p}_k^{n_k})^{-s} = \prod_{\mathfrak{p}_i}\sum_{n_i=0}^{\infty} (\mathbf{N}\mathfrak{p}_i)^{-n_is} = \prod_{\mathfrak{p}_i}\frac{1}{1-\mathbf{N}\mathfrak{p}_i^{-s}}.$$

The $\zeta_K(s)$ clearly converges for $\operatorname{Re} s > 1$ and moreover it has an analytic continuation to $\mathbb{C} \setminus \{1\}$.

Theorem 1.3 (Dirichlet's Class Number Formula). *If* K *is a number field then the residue of* ζ_K *at* 1 *is*

$$\operatorname{vol}(\mathbb{A}_K^{\times}/K^{\times}) = \frac{2^{r_1}(2\pi)^{r_2}h_K R_K}{w_K \sqrt{|D_K|}}.$$

This can be rewritten as

$$\zeta_K^{r_1+r_2-1}(0) = -\frac{h_K R_K}{w_K},$$

which looks exactly like the Birch And Swinnerton-Dyer conjecture since the rank of $\mathbb{G}_m(\mathcal{O}_K)$ is $r_1 + r_2 - 1$.

One way to prove this is to relate ζ_K to ζ -functions associated to characters $\mathbb{A}_K^{\times}/K^{\times} \to \mathbb{C}^{\times}$ and then use harmonic analysis. We will not prove this theorem here but we'll see more of this analogy later when we study elliptic curves.

2 Riemann-Roch on Function Fields

2.1 Divisors on Adèles

We would like to obtain similar formulas for function fields.

Let K be a finite extension of $\mathbb{F}_q(x)$. Recall the topological rings $K^{\times} \hookrightarrow \mathbb{A}_K^1 \hookrightarrow \mathbb{A}_K^{\times} \hookrightarrow \mathbb{A}_K$. For each finite place v of K (all places are finite!) recall that we have $K_v, \mathcal{O}_v, \wp_v, k_v/\mathbb{F}_q, q_v = q^{d_v}$.

Definition 2.1. Div(K) is the free abelian group generated by the (finite) places v of K, i.e. $Div(K) = \bigoplus_{v} v\mathbb{Z}$. The map $Div(K) \to \mathbb{Z}$ given by deg : $\sum n_v v \mapsto \sum n_v d_v$ is a homomorphism with kernel $Div^0(K)$.

There is an obvious map $\mathbb{A}_K^{\times} \to \operatorname{Div}(K)$ given by div : $\mathfrak{a} = (a_v) \mapsto \sum v(a_v)v$, a homomorphism. Then we clearly have $|\mathfrak{a}|_{\mathbb{A}} = q^{-\deg \mathfrak{a}}$ so this gives

Lemma 2.2. The map div is a surjection from \mathbb{A}^1_K to $\operatorname{Div}^0(K)$ with kernel $\prod \mathcal{O}_v^{\times}$.

Let $P(K) = \operatorname{div}(K^{\times})$ be the principal divisors. Then write $\operatorname{Pic}(K) = \operatorname{Div}(K), \operatorname{Pic}^{0}(K) = \operatorname{Div}^{0}(K)/P(K)$.

Proposition 2.3. There is an isomorphism $Cl(K) \cong Pic^0(K)$ which proves that Cl(K) is finite.

Proof. There is an isomorphism between the group of fractional ideals and \mathbb{A}^1_K . Moreover, the group $\mathbb{A}^1_K/K^{\times}$ is compact and $\prod \mathcal{O}^{\times}_v$ is open so $\operatorname{Pic}^0(K) \cong \mathbb{A}^1_K/K^{\times} \prod \mathcal{O}^{\times}_v$ is finite. \Box

2.2 Invertible sheaves associated with divisors

Definition 2.4. For $\mathfrak{a} = \sum a_v v \in \operatorname{Div}(K)$ let $U(\mathfrak{a}) = \{b = (b_v) \in \mathbb{A}_K^{\times} ||b_v|_v \leq q_v^{-a_v}\} = \prod\{b \in K_v^{\times} ||b|_v \leq q_v^{-a_v}\}$ which is compact by Tychonov since each factor is compact. Let $\mathcal{L}(\mathfrak{a}) = (U(\mathfrak{a}) \cap K^{\times}) \cup \{0\}$. This is compact in K^{\times} which is discrete, so $\mathcal{L}(\mathfrak{a})$ is a finite $K \cap \prod \mathcal{O}_v$ module. Since $K \cap \prod K_v = \mathbb{F}_q$ we get $|\mathcal{L}(\mathfrak{a})| = q^{\ell(\mathfrak{a})}$ where $\ell(\mathfrak{a}) = \dim_{\mathbb{F}_q} \mathcal{L}(\mathfrak{a})$.

Lemma 2.5. If deg $\mathfrak{a} < 0$ then $\mathcal{L}(\mathfrak{a}) = 0$. If deg $\mathfrak{a} = 0$ but $\mathfrak{a} \neq 0$ in $\operatorname{Pic}(K)$ then $\mathcal{L}(\mathfrak{a}) = 0$.

Proof. $\mathcal{L}(\mathfrak{a})$ consists of elements $x \in K^{\times}$ such that $|x|_{\mathbb{A}} = q^{-\deg \mathfrak{a}} > 1$ which cannot be unless $\mathfrak{a} = 0$.

If deg $\mathfrak{a} = 0$ then the above proof shows that the only possible nonzero element in $\mathcal{L}(\mathfrak{a})$ must be $x \in K^{\times}$ such that $x_v = -a_v$ which means that $\mathfrak{a} = \operatorname{div} x = 0$ in $\operatorname{Pic}(K)$ contradicting the hypothesis.

Lemma 2.6. Prove that $\mathcal{L}(\mathfrak{a})$ can be identified with divisors $\mathfrak{b} \in \text{Div}(K)$ such that $\mathfrak{b} \geq 0$ and $\mathfrak{b} = \mathfrak{a} \in \text{Pic}(K)$.

Proof. $\mathcal{L}(\mathfrak{a}) = K \cap \{\mathfrak{b} \in \mathbb{A}_K | v(\mathfrak{b}_v) + v(a_v) \ge 0\}$. So the divisor $\mathfrak{b} + \mathfrak{a}$ is nonnegative and is clearly linearly equivalent to \mathfrak{a} since $\mathfrak{b} \in K$.

Remark 2.7. We have $\ell(0) = 1$ which corresponds to the fact that $\mathcal{L}(0) = K^{\times} \cap \prod \mathcal{O}_v = \mathbb{F}_q$.

Lemma 2.8. If I is an ideal of \mathcal{O}_K then $\mathbf{N}I = q^{\operatorname{deg}(\operatorname{div}\circ ideal(I))}$, where $ideal : I = \prod \mathfrak{p}_v^{n_v} \mapsto (\pi_v^{n_v})$ for uniformizers $\pi_v \in K_v$.

Proof. Assume that $I = \prod \mathfrak{p}_v^{n_v}$ then divoideal $I = \sum n_v v$ while $\mathbf{N}I = q^{\sum n_v d_v} = q^{\operatorname{deg}(\operatorname{divoideal}(I))}$.

2.3 The canonical divisor

Let $\chi : \mathbb{A}_K/K \to \mathbb{C}^{\times}$ be a nontrivial character, which corresponds to a collection of local characters $\chi_v : K_v \to \mathbb{C}^{\times}$ that are trivial on \mathcal{O}_v for almost all v. Let $\operatorname{ord}(\chi_v)$ be the smallest integer n_v such that χ_v is trivial on $\wp_v^{n_v}$. Then $\operatorname{ord}(\chi) = \sum \operatorname{ord}(\chi_v)v \in \operatorname{Div}(K)$.

Proposition 2.9. Let χ' be another nontrivial character of \mathbb{A}_K/K . Then $\operatorname{ord}(\chi) = \operatorname{ord}(\chi')$ in $\operatorname{Pic}(K)$.

Proof. Characters are defined up to scalar action so for each v there exists a $b_v \in K_v^{\times}$ such that $\chi'_v(x) = \chi_v(b_v x)$ which means that $\chi'(x) = \chi(bx)$ where $b = (b_v)_v \in \mathbb{A}_K$. But χ and χ' are trivial on K by definition so $\chi(b) = 1$ which implies that $\operatorname{ord}(\chi') = \operatorname{ord}(\chi(b)) = \operatorname{ord}(\chi) + \operatorname{div}(b) = \operatorname{ord}(\chi)$ since $b \in K$.

Definition 2.10. There exists a unique divisor $\mathfrak{c} = \operatorname{ord}(\chi)$ for some χ nontrivial character of \mathbb{A}_K/K . This is called the canonical divisor and $\ell(\mathfrak{c}) = g$ is called the genus of K. (For number fields there are analogous notions genus of K coming from Arakelov geometry.)

2.4 Topological duality

For a topological group G we define the topological dual $\widehat{G} = \operatorname{Hom}_{\operatorname{continuous}}(G, \mathbb{C}^{\times})$. Fix χ a nontrivial character of \mathbb{A}_K/K for which $\mathfrak{c} = \operatorname{ord}(\chi)$. The map $a \mapsto \chi(a-)$ identifies \mathbb{A}_K to its topological dual.

Lemma 2.11. If $H \subset G$ is an open topological subgroup and $H^{\perp} = \{f \in \widehat{G} | f(H) = 1\}$ then $\widehat{G/H} \cong H^{\perp}$. Moreover, G is compact if \widehat{G} is discrete and G is discrete if \widehat{G} is compact. Via topological duals the exact sequence

$$1 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 1$$

becomes

$$1 \to H^{\perp} \to \hat{G} \to \hat{H} \to 1.$$

If G/H is compact and H is discrete in G then the measure on G is the composite of the discrete measure on H and the Haar measure on G/H.

Remark 2.12. This shows that $\widehat{\mathbb{A}}_K/\widehat{K} = K$ is discrete.

Lemma 2.13. For $\mathfrak{a} \in \text{Div}(K)$ we write $U = U(\mathfrak{a})$ and $U'(\mathfrak{c} - \mathfrak{a})$. Then $\mathbb{A}_K/(K+U)$ is the topological dual of $K \cap U'$.

Proof. It is enough to show that $(K+U)^{\perp} \cong K \cap U'$. First, $(K+U)^{\perp} \subset K^{\perp} = K$. Now under the indentification $\mathbb{A}_K \cong \widehat{\mathbb{A}_K}$ the set $(K+U)^{\perp}$ consists of $x \in \mathbb{A}_K$ such that $\chi(x(K+U)) = 1$. This happens if and only if $\chi(x(k+b)) = 1$ for all $k \in K$ and b such that $|b|_v \leq q_v^{-a_v}$. Therefore we want $\chi_v(x_v(k_v+b_v)) = 1$ which happens for all $x_v(k_v+b_v) \in \wp_v^{\operatorname{ord}(\chi_v)}$. This happens when $x_v \in \wp_v^{\operatorname{ord}(\chi_v)+a_v}$ so $x \in U'$. Therefore, $(K+U)^{\perp} = K \cap U'$.

2.5 Riemann-Roch

Lemma 2.14. Let μ be a Haar measure on \mathbb{A}_K induced from the discrete measure on K and the normalized Haar measure on \mathbb{A}_K/K . Then $\mu(U) = q^{-\deg \mathfrak{a}} = q^{\ell(\mathfrak{a})}\mu((K+U)/U)$. Moreover, $\mu(\mathbb{A}_K/K) = q^{\ell(\mathfrak{c}-\mathfrak{a})}\mu((K+U)/U)$.

Proof. We have an exact sequence $1 \to K \to \mathbb{A}_K \to \mathbb{A}_K/K \to 1$ in which we have an exact sequence $1 \to K \cap U \to U \to (K+U)/K \to 1$. Therefore $\mu(U) = q^{\ell(\mathfrak{a})}\mu((K+U)/U)$ since $\mu(K \cap U) = \mu(\mathcal{L}(\mathfrak{a}))$. The fact that $\mu(U) = q^{-\deg \mathfrak{a}}$ is immediate from definition.

The last equality follows from the exact sequence $1 \to (K+U)/K \to \mathbb{A}_K/K \to (\mathbb{A}_K/K)/((K+U)/K) = \mathbb{A}_K/(K+U) \to 1$ because $\mu(K \cap U') = q^{\ell(\mathfrak{c}-\mathfrak{a})}$.

Theorem 2.15 (Riemann-Roch). For each $a \in Div(K)$ we have

$$\ell(\mathfrak{a}) = \ell(\mathfrak{c} - \mathfrak{a}) + \deg \mathfrak{a} - g + 1.$$

Proof. From Lemma 2.14 we have

$$\mu(\mathbb{A}_K/K) = q^{\ell(\mathfrak{c}-\mathfrak{a})}\mu((K+U)/U) = q^{\ell(\mathfrak{c}-\mathfrak{a})}q^{-\deg\mathfrak{a}}/q^{\ell(\mathfrak{a})}$$
$$= q^{\ell(\mathfrak{c}-\mathfrak{a})-\deg\mathfrak{a}-\ell(\mathfrak{a})}$$

The theorem follows if say $q^{g-1} = \mu(\mathbb{A}_K/K)$.

Proposition 2.16. We have deg c = 2g - 2 and $g = \ell(c)$.

Proof. Add $\ell(\mathfrak{a}) = \ell(\mathfrak{c} - \mathfrak{a}) + \deg \mathfrak{a} - g + 1$ and $\ell(\mathfrak{c} - \mathfrak{a}) = \ell(a) + \deg(\mathfrak{c} - \mathfrak{a}) - g + 1$ and get $\deg \mathfrak{c} = 2g - 2$. So if $\mathfrak{a} = 0$ in the formula we get $\ell(0) = \ell(\mathfrak{c}) + 0 - g + 1$ so $\ell(\mathfrak{c}) = g - 1 + 1 = g$. \Box

Proposition 2.17. If deg $\mathfrak{a} > 2g - 2$ then $\ell(\mathfrak{a}) = \deg \mathfrak{a} - g + 1$.

Proof. Then deg($\mathfrak{c} - \mathfrak{a}$) < 0 so by Lemma 2.5 we have $\ell(\mathfrak{c} - \mathfrak{a}) = 0$.

3 Class number formula for function fields

Let's get back to our analogy between the case of number and function fields. Let K be a finite extension of $\mathbb{F}_q(x)$. Recall that $\zeta_K(s) = \sum_I (\mathbf{N}I)^{-s}$ and we have a homomorphism div : $I \to \text{Div}(K)$ that takes integral ideals to nonnegative divisors.

Lemma 3.1. There exists $u \in Div(K)$ such that deg u = 1.

Proof. If $u = \sum n_v v$ then deg $u = \sum n_v d_v$ so it is enough to prove that the d_v have no common factor. I am not going to prove this, but you can think about what happens if $K = \mathbb{F}_q(x)$ (the analogous case of $K = \mathbb{Q}$ for number fields) and generalize. (See Weil, Basic Number Theory, pp 126 if impatient.)

Lemma 3.2. We have

$$\begin{aligned} \zeta_K(s) &= \sum_{\mathfrak{a}\in \operatorname{Div}_{\geq 0}(K)} q^{\deg \mathfrak{a}} = \sum_{k=0}^{\infty} \sum_{\deg \mathfrak{a}=k,\mathfrak{a}\geq 0} q^{-ks} \\ &= \sum_{\mathfrak{a}_i\in\operatorname{Pic}^0(K)} \sum_{k=0}^{\infty} \sum_{\mathfrak{a}\geq 0,\mathfrak{a}=\mathfrak{a}_i+ku} q^{-ks} \\ &= (q-1)^{-1} \sum_{\mathfrak{a}_i\in\operatorname{Pic}^0(K)} \sum_{k=0}^{\infty} q^{\ell(\mathfrak{a}_i+ku)-ks} - \sum_{\mathfrak{a}_i\in\operatorname{Pic}^0(K)} 1/(1-q^{-s}) \end{aligned}$$

Proof. The first equality follows from Lemma 2.8. From Lemma 2.6 we get that the number of $\mathfrak{a} \geq 0$ such that $\mathfrak{a} = \mathfrak{a}_i + ku$ is equal to $(q^{\ell(\mathfrak{a}_i + ku)} - 1)/(q - 1)$ (the 0 divisor corresponds to no ideal and any ideal defines a divisor up to a unit of \mathbb{F}_q^{\times}) so the last equality follows. (Here I used that $\mathfrak{a} - ku \in \operatorname{Pic}^{0}(K)$ must equal one of the \mathfrak{a}_{i} -s, up to scalars, which do not count.) \Box

Lemma 3.3. We have
$$\sum_{k=0}^{\infty} q^{\ell(\mathfrak{a}_i+ku)-ks} = \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i+ku)-ks} + q^{g-s(2g-1)}/(1-q^{1-s})$$

 $\begin{array}{l} Proof. \text{ Recall that for } k > 2g-2 \text{ we have } \ell(\mathfrak{a}_i + ku) = \deg(\mathfrak{a}_i + ku) - g + 1 = k - g + 1 \text{ so} \\ \sum_{k=0}^{\infty} q^{\ell(\mathfrak{a}_i + ku) - ks} = \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i + ku) - ks} + \sum_{k>2g-2} q^{k(1-s)-g+1} \text{ which is equal to } \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i + ku) - ks} + \sum_{k>2g-2} q^{(k-2g+1)(1-s)+g-s(2g-1)} = \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i + ku) - ks} + q^{g-s(2g-1))} / (1 - q^{1-s}). \end{array}$

Proposition 3.4. There exists a polynomial P of degree 2g such that

$$\zeta_K(s) = \frac{P(q^{-s})}{(1 - q^{-s})(1 - q^{1-s})}$$

Proof. By Lemma 3.3 and the fact that $q^{s-s(2g-1)}/(1-q^{1-s})$ and $-1/(1-q^{-s})$ have the above property, it is enough to show that for each *i* the sum $\sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i+ku)-ks}$ has the required property.

But $(1-q^{-s})(1-q^{1-s})\sum_{k=0}^{2g-2}q^{\ell(\mathfrak{a}_i+ku)-ks}$ has degree 2g in q^{-s} since only the term corresponding to k = 2q - 2 counts. The conclusion then follows.

The really interesting facts that are analogous to the analytic class number formula in the case of number fields occur when we apply the Riemann-Roch theory.

Theorem 3.5 (Class number formula). We have $P(z) = q^g z^{2g} P(1/qz)$.

 $\begin{array}{l} \textit{Proof. Clearly we can get rid of the } (q-1)^{-1} \text{ factor for the first part of the problem. Define} \\ P_i(q^{-s}) = (1-q^{-s})(1-q^{1-s}) \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i+ku)-ks} + (1-q^{-s})q^{g-s(2g-1)} - (1-q^{1-s}) \text{ so } P_i(z) = \\ (1-z)(1-qz) \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i+ku)}z^k + (1-z)q^gz^{2g-1} - (1-qz). \\ \text{We need to show that } \sum_i P_i(z) = q^gz^{2g}(\sum_i P_i(1/qz)). \text{ This is equivalent to } \sum_i ((1-z)(1-qz)) \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i+ku)}z^k + (1-z)q^gz^{2g-1} - (1-qz)) = \\ \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i+ku)}z^k + (1-z)q^gz^{2g-1} - (1-qz)) = \sum_i (q^gz^{2g}((1-1/qz)(1-1/z)) \sum_{k=0}^{2g-2} q^{\ell(\mathfrak{a}_i+ku)}q^{-k}z^{-k} + (1-1/qz)q^{-(g-1)}z^{-(2g-1)}) + (1-z)q^gz^{2g-1}) \\ \end{array}$

But the RHS is equal to

$$\sum_{i} ((1-z)(1-qz) \sum_{k=0}^{2g-2} q^{\ell(a_i+ku)-k+g-1} z^{2g-2-k} + (qz-1) + (1-z)q^g z^{2g-1}).$$

But the Riemann-Roch formula gives that $\ell(a_i + ku) - k + g - 1 = \ell(\mathfrak{c} - \mathfrak{a}_i + ku)$. But $\mathfrak{c} = \mathfrak{a}_1 + (2g-2)u$ for our choice of \mathfrak{a}_1 .

So we need to show that $\sum_{i}((1-z)(1-qz)\sum_{k=0}^{2g-2}q^{\ell(\mathfrak{a}_{i}+ku)}z^{k}+(1-z)q^{g}z^{2(g-1)}+(qz-1)) = \sum_{i}((1-z)(1-qz)\sum_{k=0}^{2g-2}q^{\ell(\mathfrak{a}_{i}-\mathfrak{a}_{i}+(2g-2-k)u)}z^{2g-2-k}+(qz-1)+(1-z)q^{g}z^{2(g-1)})$ which is obvious.

Proposition 3.6. We have P(0) = 1 and $P(1) = h_K$.

Proof. We have $P(z) = (q-1)^{-1} \sum_{\mathfrak{a}_i \in \operatorname{Pic}^0(K)} P_i(z)$. Since $P_i(1) = q-1$ we have $P(1) = (q-1)^{-1}h_K(q-1) = h_K$. Also note that $\lim_{\infty} \zeta_K(-s) = 1$ by definition. So P(0) = 1.

Proposition 3.7 (Class number formula). The residue at 0 of ζ_K is

$$Res_0\zeta_K(s) = \frac{h_K}{(1-q)\log q}.$$

Proof. The residue at 0 is

$$\lim_{s \to 0} \frac{P(q^{-s})}{1 - q^{1-s}} \frac{s}{1 - q^{-s}} = \frac{h_K}{1 - q} \frac{1}{\log q}.$$