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1 Generalities

Let K be a number field. We have seen that a finite place of K is a valuation v : K → Z∪{∞}
such that v(xy) = v(x) + v(y), v(x + y) ≥ min(v(x), v(y)) and v(0) = ∞. This defines the

metric |x|v = q
−v(x)
v where qv = #kv the size of the residue field kv = Ov/℘v. Here Kv is the

completion of K at v, Ov is the ring of integers of Kv and ℘v is the maximal ideal of the local
ring Ov.

Let v be a finite place. Let f(x) ∈ Kv[x] be a polynomial f(x) = f0 + f1x + · · · + fnx
n.

The Newton polygon NP (f) is the lower convex hull of the points {(0,∞), (n,∞)} ∪ {Pi =
(i, v(fi))|i = 0, 1, . . . , n}. The NP (f) is a polygonal like formed by two vertical lines together
with a set of lines of various slopes.

Proposition 1.1. Let f be a polynomial of degree n. If u is a root of f then there exists a
segment in NP (f) of slope equal to −v(u).

Proof. We have f0 + f1u + · · · + fnu
n = 0. If min v(fiu

i) is uniquely attained, then the
nonarchimedean property of v would imply that v(f0 + f1u + · · · + fnu

n) = min(v(fiu
i)) =

v(0) = ∞ which cannot be. So ∃i 6= j such that v(fiu
i) = v(fju

j). But this corresponds to
the line of slope −v(u) through Pi and Pj . The valuation v(fiu

i) is the place where this line
intersects the vertical axis and the fact that this valuation is minimal implies that all the points
on NP (f) are on or above this line. So this line contains a segment of NP (f) which proves
the lemma.

Example 1.2. Let p be a prime number and let f(x) = x3 + px2 + px+ p2 ∈ Qp[x]. According
to the theory this will have one root of valuation 1 and two roots of valuation 1/2.

Proposition 1.3. Let f, g ∈ Kv[x] be two polynomials (f = f0 + · · ·+fdx
d, g = g0 + · · ·+gex

e)
such that all the slopes of NP (f) are less or equal to all the slopes of NP (g). Then NP (fg)
is obtained by adjoining NP (f) and NP (g) in the following explicit manner (here we interpret
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NP (f) as a piecewise linear function in x)

NP (fg)(x) =

{
NP (f)(x) +NP (g)(0), x ∈ [0, d]

NP (f)(d) +NP (g)(x− d), x ∈ [d, d+ e]

Example 1.4. f(x) = x3 + px2 + px+ p2, g(x) = px2 + x+ 1 and

(fg)(x) = px5 + (p2 + 1)x4 + (p2 + p+ 1)x3 + px2 + px+ p2.

Proof. (fg)(x) =
∑d+e

0 hix
i where hi =

∑
fjgi−j . If i ∈ [0, d] then

v(hi) = v(g0fi + · · ·+ gjfi−j + · · · )

and v(g0fi) = v(g0) + v(fi) ≥ NP (g)(0) + NP (f)(i) with equality if NP (f)(i) = v(fi). For
j > 0 we still have v(gjfi−j) ≥ NP (g)(j) +NP (f)(i− j) > NP (g)(0) + NP (f)(i) because of
the slope condition (⇐⇒ NP (g)(j)−NP (g)(0) > NP (f)(i)−NP (f)(i− j)). This takes care
of the case i ∈ [0, d].

Now assume that i ∈ [d, d+ e]. Then hi = fdgi−d + · · ·+ fd−jgi+j−d + · · · and the proof is
similar.

2 Factorization

This is a very nice theorem since it tells you that you can compose Newton polygons when
multiplying polynomials. Can we go the other way around? The answer is yes. But first we
need a technical lemma:

Lemma 2.1. Let c ∈ R. Write vc(f) = min(v(fi)+ic). Then vc(fg) = vc(f)+vc(g), vc(f+g) ≥
min(vc(f), vc(g)).

Proof. Let vc(f) = v(fi) + ic, vc(g) = v(gj) + jc. So vc(f) + vc(g) = v(figj) + (i + j)c ≤
v(
∑
fugi+j−u) + (i+ j)c) ≤ vc(fg) because v(hi) ≥ min v(fj) + v(gi−j). In the other direction,

vc(fg) ≤ v(hi+j) + (i+ j)c = v(
∑
fi−kgj+k) + (i+ j)c. If k 6= 0 then v(fi−kgj+k) + (i+ j)c >

vc(f) + vc(g) by choice of i and j. So v(
∑
fi−kgj+k) + (i+ j)c = v(figj) + (i+ j)c = vc(f) +

vc(g).

Lemma 2.2. This essentially bounds the quantities in the division with remainder. Let f, h ∈
Kv[x] with deg f = d and vc(f) = v(fd) + dc. Write h = qf + r division with remainder. Then
vc(q) ≥ vc(h)− vc(f) which in turn implies that vc(r) ≥ vc(h).

Proof. If h has degree n and let deg f = d; write q = q0 + · · · + qn−dxn−d. If we show by
induction on i that vc(qn−d−ixn−d−i) ≥ vc(h)− vc(f) then we are done.
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For each i ≤ n − d there is no contribution from r in the formula for hn−i so hn−ixn−i =
fdqn−d−ixn−i + fd−1qn−d−i+1x

n−i + · · · .
Note that vc(fdqn−d−ixn−i) = vc(f) + vc(qn−d−ixn−i−d) by the hypothesis on f . Also, from

the inductive hypothesis we get that vc(qn−d−(i−j)xn−d−(i−j)) ≥ vc(h) − vc(f) which implies
that vc(fd−jqn−d−i+jxn−i) ≥ vc(h). So

vc(fdqn−d−ix
n−i) = vc(hn−ixn−i −

∑

j>0

fd−jqn−d−i+jx
n−i) ≥ vc(H),

which implies the result for i given the result for i− j for j > 0.
Now vc(r) = vc(h− fq) ≥ min(vc(h), vc(f) + vc(q)) = vc(h).

The reason why this technical lemma is important is that it gives an algorithmic way to
approximate factorizations of polynomials.

Theorem 2.3. Let h ∈ Kv[x] be a polynomial of degree d+e and let d be a point of discontinuity
in NP (h). We saw in Proposition 1.3 that such Newton polygons arise when h is the product
of a polynomial of degree d and one of degree e. This theorem states that each h arise in such
manner.

Proof. As mentioned, the prood will be algorithmic. Let f0 = h0 + · · ·hdxd, the first d terms
in the expansion of h and let g0 = 1. Choose c such that vc(h) = vc(hdx

d) and such that d is
the smallest index with this property (vc(h) 6= vc(hix

i), i > d).
Now vc(h − f0g0) = ε > 0 and vc(f0) = vc(h). We’ll construct fi, gi such that deg fi =

d,deg gi ≤ n − d, vc(fi) = vc(h), vc(fi − fi+1) ≥ vc(h) + iε, vc(gi − gi−1) ≥ iε and finally
vc(h− figi) ≥ vc(h) + (i+ 1)ε. Clearly this implies that fi → f, gi → g, figi → fg, h so h = fg.

Write h − figi = qfi + r, division with remainder. Take fi+1 = fi + r, gi+1 = gi + q. Let’s
show that the conditions are satisfied. The conditions on the degrees are clearly satisfied.

Now vc(fi+1− fi) = vc(r) ≥ vc(h− figi) and vc(gi+1− gi) = vc(q) ≥ vc(h− figi)− vc(fi) by
Lemma 2.2. In particular this shows that vc(fi+1) = vc(fi) = vc(h).

By the inductive hypothesis we have vc(h − figi) ≥ vc(h) + (i + 1)ε so we have vc(r) ≥
vc(h) + (i + 1)ε which implies that vc(fi+1 − fi) ≥ vc(h) + (i + 1)ε, the first condition. Also
vc(q) ≥ vc(h) + (i+ 1)ε− vc(fi) = (i+ 1)ε and so vc(gi+1 − gi) ≥ (i+ 1)ε.

Lastly, vc(h − (fi + r)(gi + q)) = vc(h − figi − fiq − rgi − rq) = vc(r − rgi − rq) =
vc(r) + vc(1 − gi − q) but this is ≥ vc(h) + (i+ 1)ε + min(vc(1 − gi), vc(q)). The condition on
gi implies that vc(1− gi) ≥ ε and vc(q) ≥ (i+ 1)ε. So we get what we want.

Problem 2.4. Let f ∈ Kv[x] such that NP (f) consists of one segment that contains no other
lattice points. Then f is irreducible.
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Proof. Assume it is reducible. Then f = gh and each roots of g, h has to have the same
valuation as f so the NP of g and h have the same slope as that of f . But then we can put
NP (g) at the top of NP (f) and we get a lattice point on NP (f). So f is irreducible.

Problem 2.5. Factor the following polynomials x3 + 5x+ 25, x3 + 5x2 + 25 ∈ Q5[x].

3 Galois Groups

Let Lw/Kv be a Galois extension.

Lemma 3.1. Let α, β ∈ Lw such that v(β − σα) < v(σα − α) for any σ ∈ Gal(Lw/Kv) \
Gal(Lw/Kv(α)). Prove that α ∈ Kv(β).

Proof. Let σ ∈ Gal(Lw/Kv(β)). We want to show that σα = α which is enough to prove
the lemma. Assume that σα 6= α so v(α − σα) > v(β − σα) = v(σ(β − α)) = v(β − α) =
v(β − σα+ σα− α) ≥ min(v(β − σα), v(α− σα)) = v(α− σα) which is a contradiction.

Theorem 3.2 (Krasner). Let f ∈ Kv[x] be a monic irreducible polynomial of degree d. Let
x1, . . . , xd be the roots of f and let ε = maxi6=j v(xi−xj)/2 and let C = max(dε, v(fi)). Assume
that g is a polynomial of degree d in Kv[x] such that v0(f − g) > C. Then g is irreducible and
Kv[x]/(f) ∼= Kv[x]/(g). (This essentially says that the two Galois groups are equal.)

Proof. Since C > v(fi) the Newton polygon says that f ∼= g (mod pv) so if g factors by Hensel’s
lemma f factors. (I won’t prove Hensel’s lemma here.) So assume g is irreducible.

Let y1, . . . , yd be the roots of g. By dimension count enough to show that yi ∈ Kv(xj). For
this it is enough by Lemma 3.1 to show that there exist i and j such that for all k we have
v(yi−xj) > v(xk−xj), for then v(yi−xj) > v(xk−xj) ≥ min(v(xk−yi), v(yi−xj)) = v(xk−yi)
which gives the result.

Now, v(f(yj)) = v(f(yj) − g(yj)) = v(
∑

(fi − gi)yij) = λ =

{
C

C + nv(yj)
. But here the

polynomials are monic so v(yi) ≥ 0 so C ≤ v(f(yj)) = v(
∏

(yj − xk)) =
∑
v(yi − xk). For at

least one k we have v(yj − xk) ≥ C/d > ε so the hypotheses are satisfied.

Example 3.3. Let K/Q3 be the extension defined by the polynomial f(x) = x4−10x2 +27x+1.
Find Gal(K/Q3).

Proof. The idea is that g(x) = x4 − 10x2 + 1 has roots ±
√

2 +±
√

3 so the Galois group of g is
(Z/2Z)2.

So now all we need is that f and g satisfy the hypotheses of Theorem 3.2.
We start out with g instead of f . Would like to have C = v0(f−g) = 3. Then C > v(gi) = 0

so the only inequality we want to check is that C > 4ε. But ε = 1/2 so the hypotheses are
satisfied.
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