Factoring Polynomials in $\mathbb{F}_{p}[X]$

Andrei Jorza

March 1, 2005

1 Generalities

We will denote by I_{n} the set of irreducible (monic) polynomials of degree n in $\mathbb{F}_{p}[X]$. There are a few questions. Is I_{n} nonempty? Can one test whether $f \in I_{n}$? Is there is fast algorithm to decompose a (random) polynomial in $\mathbb{F}_{p}[X]$ into irreducible factors?

Proposition 1.1. Let $f \in \mathbb{F}_{p}[X]$ be an irreducible polynomials of degree n. Then $f(X) \mid X^{p^{n}}-X$ and $f(X) \nmid X^{p^{m}}-X$ for any $m<n$.

Proof. We can realize $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(f)$ so f has a root in $\mathbb{F}_{p^{n}}$, which in turn is a root of $X^{p^{n}}-X$. Therefore $\left(f(X), X^{p^{n}}-X\right) \neq 1$ in $\mathbb{F}_{p^{n}}[X]$ and so in $\mathbb{F}_{p}[X]$. Since $f(X)$ is irreducible over $\mathbb{F}_{p}[X]$ this implies that $f(X) \mid X^{p^{n}}-X$.

Assume that $f(X) \mid X^{p^{m}}-X$ for some m. Then f has a root α in $\mathbb{F}_{p^{m}}$, since $\mathbb{F}_{p^{m}}$ is the set of roots of $X^{p^{m}}-X$. Then $1, \alpha, \ldots, \alpha^{m}$ are $m+1$ vectors in the m-dimensional vector space $\mathbb{F}_{p^{m}} / \mathbb{F}_{p}$. Therefore they are linearly dependent. Therefore the minimal polynomial $g(X)$ of α in $\mathbb{F}_{p}[X]$ will have degree $m<n$, which contradicts the fact that $f(X)$ is irreducible.

Theorem 1.2. Let $n \geq 2$ be a positive integer. Then

$$
X^{p^{n}}-X=\prod_{d \mid n} \prod_{f \in I_{d}} f
$$

Proof. For every $d \mid n$ and every $f \in I_{d}$ we know that $f(X)\left|X^{p^{d}}-X\right| X^{p^{m}}-X$ (because $X^{p^{n}}-X$ is Mersenne). Since all the polynomials f are irreducible so coprime, their product will divide $X^{p^{n}}-X$.

Corollary 1.3. Let $a_{n}=\left|I_{n}\right|$. Then

$$
a_{n} \geq \frac{p^{n}-(\log n) p^{n / 2}}{n} .
$$

Proof. By degree comparison, Theorem 1.2 gives $p^{n}=\sum_{d \mid n} d a_{d}$. By the Möbius inversion formula we get that

$$
a_{n}=\frac{1}{n} \sum_{d \mid n} p^{d} \mu(n / d)
$$

If $n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$ then $a_{n} \geq \frac{1}{n}\left(p^{n}-\sum_{1}^{k} p^{n / p_{i}}\right) \geq \frac{1}{n}\left(p^{n}-k p^{n / 2}\right)$.
In conclusion I_{n} is nonempty for all $n \geq 2$.

2 Irreducibility Testing

2.1 Theory

Let $f \in \mathbb{F}_{p}[X]$ be a polynomial of degree n. We would like to devise a test to see if $f \in I_{n}$. We have seen that if f is irreducible then $f(X) \mid X^{p^{n}}-X$ and for all $m<n$ $\left(f(X), X^{p^{m}}-X\right)=1$. Evidently, a counterexample to this would have $m \mid n$ so it is enough to check this condition for $m=n / p_{i}$ for each prime divisor p_{i} of n. Let's make things formal

Theorem 2.1. $f \in I_{n}$ if and only if

1. $f(X) \mid X^{p^{n}}-X$.
2. For each $p_{i} \mid n$ a prime divisor we have $\left(f(X), X^{p^{m}}-X\right)=1$ for $m=n / p_{i}$.

Proof. Assume that f is irreducible. Then f will pass the test by what we have already seen. Assume that $f=f_{1}^{\ell_{1}} \cdots f_{r}^{\ell_{r}}$. If $\ell_{j}>1$, then $f_{i}^{2} \mid f$ cannot divide $X^{p^{n}}-X$ since this polynomial is a product of distinct irreducible polynomials. So $\ell_{i}=1$ for all i.

Let α be a root of f_{1}. If $r \neq 1$ then $\operatorname{deg} f_{1}<n$ so α has degree $<n$ over \mathbb{F}_{p}. Moreover, if f passes test 1 then $\alpha \in \mathbb{F}_{p^{n}}$ so $\mathbb{F}_{p^{n}} / \mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}$ is a field extension tower. Therefore $\operatorname{deg} \alpha \mid n$ so $\operatorname{deg} \alpha \mid n / p_{i}$ for some i. Then $f_{1} \mid X^{p^{n / p_{i}}}-X$ so test 2 fails.

2.2 Running Time

The first test is $X^{p^{n}} \equiv X(\bmod f(X))$ and this can be done in $n \log p$ steps using repeated squarings. The second test needs $\log n$ tests of the form $\operatorname{gcd}\left(f(X), X^{p^{m}}-\right.$ $X)=1$. Each such test uses the Euclidean algorithm that needs m operations with degree $\leq m$ polynomials. So the running time of each such Euclidean algorithms is roughly $\mathcal{O}\left(n^{3}\right)$, although it might be faster in practice.

3 Finding Roots $(\bmod p)$

Let $p \neq 2$ be a prime number. Let $f \in \mathbb{F}_{p}[X]$ be a polynomial of degree m, and we may assume that 0 is not a root. We want to find a root of f in $E=\mathbb{F}_{p^{n}}$. Let $q=p^{n}$. If $\left(f(X), X^{q-1}-1\right)=1$ then f clearly has no roots in E. Otherwise, let $f_{0}(X)=\operatorname{gcd}\left(f(X), X^{q-1}-1\right)$, and all the roots of f in E will be roots of f_{0}. Write $f_{0}(X)=\left(X-a_{1}\right) \cdots\left(X-a_{k}\right)$. Whether all the roots are equal it is easy to check: simply compute all the derivatives of f and each should divide f. Assume that not all the roots are equal.

Lemma 3.1. Let $u \neq v \in E$. The the number of $w \in E$ such that one of the following two cases is satisfied is $(q-1) / 2$:

1. $u+w$ is a root of $X^{(q-1) / 2}-1$ and $v+w$ is a root of $X^{(q-1) / 2}+1$.
2. $u+w$ is a root of $X^{(q-1) / 2}+1$ and $v+w$ is a root of $X^{(q-1) / 2}-1$.

Proof. For such a w it is clear that $(u+w) /(v+w)$ is a quadratic nonresidue mod q, of which there are $(q-1) / 2$. Moreover, for every quadratic nonresidue c there is a unique w such that $(u+w) /(v+w)=c$ since $u \neq v$.

For $d \in E$ write $f_{d}(X)=f_{0}(X-d)$. Then the roots of f_{d} are $a_{1}+d, \ldots, a_{k}+d$ and by the lemma above for half of the d 's, there exist i, j such that $a_{i} \neq a_{j}$ and d satisfies the conditions in the lemma.

Proposition 3.2. If d satisfies the conditions in the lemma for a_{i}, a_{j} then $\operatorname{gcd}\left(f_{d}(X), X^{(q-1) / 2}-\right.$ $1)=h_{d}(X)$ has degree $<\operatorname{deg} f_{d}(X)$.

Proof. Otherwise $f_{d}(X) \mid X^{(q-1) / 2}-1$ so all the roots are quadratic residues which contradicts the assumption on d.

Algorithm 3.3.

Input f.

Compute $f_{0}(X)=\operatorname{gcd}\left(f(X), X^{q-1}-1\right)$.
Choose $d \in E$ randomly.
Compute $\operatorname{gcd}\left(f_{d}(X), X^{(q-1) / 2}-1\right)=h_{d}(X)$. With probability $1 / 2$ we have $\operatorname{deg} h_{d}(X)<$ $\operatorname{deg} f_{d}(X)$. Repeat until this happens.
Then $h_{d}(X) \mid f_{d}(X)$ so $h_{d}(X+d) \mid f_{0}(X)$ is a proper factor.
Repeat the algorithm for $h_{d}(X+d)$ until reach a linear factor.
Output a root of the last linear factor which will be a root of $f(X)$ in E.
Problem 3.4. For a prime $p \equiv 1(\bmod 4)$ find a, b integers so that $p=a^{2}+b^{2}$.
Proof. Let u be a root of $X^{2}+1(\bmod p)$, found as above. Then you know that $(a+b i) \mid(u+i)$ so use the Euclidean algorithm in $\mathbb{Z}[i]$ to find $a+b i=\operatorname{gcd}(p, u+i)$.

4 Factorisation $(\bmod p)$

4.1 Theory

Let $f \in \mathbb{F}_{p}[X]$ be a polynomial of degree n. We would like to factor f into irreducible polynomials in $\mathbb{F}_{p}[X]$. Test to see if irreducible, stop if yes. Otherwise continue.

For each $k \in\{1, \ldots, n\}$ find $h_{k}(X)=\operatorname{gcd}\left(f(X), X^{p^{k}-1}-1\right)$. For each $h_{k} \neq 1$ we have $h_{k}(X) \mid f(X)$ and all the roots of $h_{k}(X)$ are in $\mathbb{F}_{p^{k}}$. Use the above algorithm to find an $\alpha \in \mathbb{F}_{p^{k}}$ such that $h_{k}(\alpha)=0$. Find the minimal polynomial $g_{\alpha}(X)$ of α over \mathbb{F}_{p}. Then clearly $g_{\alpha}(X)$ will be an irreducible factor of $f(X)$.

Divide by $g_{\alpha}(X)$ and repeat.
Theorem 4.1. This works.
Proof. The only problem that may occur is that all the $h_{k}(X)$ are 1. Since $f(X)$ is reducible then $f=f_{1}^{\ell_{1}} \cdots f_{r}^{\ell_{r}}$. Then the roots of f_{1} are in $\mathbb{F}_{p^{\operatorname{deg} f_{1}}}$ so $h_{\operatorname{deg} f_{1}} \neq 1$.

4.2 Running Time

Let α be in $\mathbb{F}_{p^{k}}$ and in no smaller field (easy to check using powers of Frobenius). Then the minimal polynomial has degree k so simply find a relation between $1, \alpha, \ldots, \alpha^{k}$ using simple linear algebra.

