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Preface

This book is based on notes I created for a one-semester undergraduate course
on Algebraic Number Theory, which I taught at Harvard during Spring 2004 and
Spring 2005. The textbook for the first course was chapter 1 of Swinnerton-Dyer’s
book [SD01]. The first draft of this book followed [SD01] closely, but the current
version but adding substantial text and examples to make the mathematics accessi-
ble to advanced undergraduates. For example, chapter 1 of [SD01] is only 30 pages,
whereas this book is 140 pages.

—————————

- Copyright: William Stein, 2005.

License: This book my be freely redistributed, printed and copied, even without
written permission from me. You may even extend or change this book, but this
preface page must remain in any derived work, and any derived work must also
remain free, including the LATEX source files.

Please send any typos or corrections to was@math.harvard.edu.
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Chapter 1

Introduction

1.1 Mathematical background I assume you have

In addition to general mathematical maturity, this book assumes you have the
following background:

• Basics of finite group theory

• Commutative rings, ideals, quotient rings

• Some elementary number theory

• Basic Galois theory of fields

• Point set topology

• Basic of topological rings, groups, and measure theory

For example, if you have never worked with finite groups before, you should read
another book first. If you haven’t seen much elementary ring theory, there is still
hope, but you will have to do some additional reading and exercises. I will briefly
review the basics of the Galois theory of number fields.

Some of the homework problems involve using a computer, but I’ll give you
examples which you can build on. I will not assume that you have a programming
background or know much about algorithms. If you don’t have PARI [ABC+] or
Magma [BCP97], and don’t want to install either one on your computer, you might
want to try the following online interface to PARI and Magma:

http://modular.fas.harvard.edu/calc/

9



10 CHAPTER 1. INTRODUCTION

1.2 What is algebraic number theory?

A number field K is a finite algebraic extension of the rational numbers Q. Every
such extension can be represented as all polynomials in an algebraic number α:

K = Q(α) =

{
m∑

n=0

anαn : an ∈ Q

}
.

Here α is a root of a polynomial with coefficients in Q.

Algebraic number theory involves using techniques from (mostly commutative)
algebra and finite group theory to gain a deeper understanding of number fields.
The main objects that we study in algebraic number theory are number fields,
rings of integers of number fields, unit groups, ideal class groups,norms, traces,
discriminants, prime ideals, Hilbert and other class fields and associated reciprocity
laws, zeta and L-functions, and algorithms for computing each of the above.

1.2.1 Topics in this book

These are some of the main topics that are discussed in this book:

• Rings of integers of number fields

• Unique factorization of ideals in Dedekind domains

• Structure of the group of units of the ring of integers

• Finiteness of the group of equivalence classes of ideals of the ring of integers
(the “class group”)

• Decomposition and inertia groups, Frobenius elements

• Ramification

• Discriminant and different

• Quadratic and biquadratic fields

• Cyclotomic fields (and applications)

• How to use a computer to compute with many of the above objects (both
algorithms and actual use of PARI and Magma).

• Valuations on fields

• Completions (p-adic fields)

• Adeles and Ideles



1.3. SOME APPLICATIONS OF ALGEBRAIC NUMBER THEORY 11

Note that we will not do anything nontrivial with zeta functions or L-functions.
This is to keep the prerequisites to algebra, and so we will have more time to
discuss algorithmic questions. Depending on time and your inclination, I may also
talk about integer factorization, primality testing, or complex multiplication elliptic
curves (which are closely related to quadratic imaginary fields).

1.3 Some applications of algebraic number theory

The following examples are meant to convince you that learning algebraic number
theory now will be an excellent investment of your time. If an example below seems
vague to you, it is safe to ignore it.

1. Integer factorization using the number field sieve. The number field sieve is
the asymptotically fastest known algorithm for factoring general large integers
(that don’t have too special of a form). Recently, in December 2003, the
number field sieve was used to factor the RSA-576 $10000 challenge:

1881988129206079638386972394616504398071635633794173827007 . . .
. . . 6335642298885971523466548531906060650474304531738801130339 . . .
. . . 6716199692321205734031879550656996221305168759307650257059
= 39807508642406493739712550055038649119906436234252670840 . . .

. . . 6385189575946388957261768583317
×47277214610743530253622307197304822463291469530209711 . . .

. . . 6459852171130520711256363590397527

(The . . . indicates that the newline should be removed, not that there are
missing digits.) For more information on the NFS, see the paper by Lenstra
et al. on the Math 129 web page.

2. Primality test: Agrawal and his students Saxena and Kayal from India re-
cently (2002) found the first ever deterministic polynomial-time (in the num-
ber of digits) primality test. There methods involve arithmetic in quotients of
(Z/nZ)[x], which are best understood in the context of algebraic number the-
ory. For example, Lenstra, Bernstein, and others have done that and improved
the algorithm significantly.

3. Deeper point of view on questions in number theory:

(a) Pell’s Equation (x2−dy2 = 1) =⇒ Units in real quadratic fields =⇒ Unit
groups in number fields

(b) Diophantine Equations =⇒ For which n does xn + yn = zn have a non-
trivial solution?

(c) Integer Factorization =⇒ Factorization of ideals

(d) Riemann Hypothesis =⇒ Generalized Riemann Hypothesis
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(e) Deeper proof of Gauss’s quadratic reciprocity law in terms of arithmetic
of cyclotomic fields Q(e2πi/n), which leads to class field theory.

4. Wiles’s proof of Fermat’s Last Theorem, i.e., xn+yn = zn has no nontrivial
integer solutions, uses methods from algebraic number theory extensively (in
addition to many other deep techniques). Attempts to prove Fermat’s Last
Theorem long ago were hugely influential in the development of algebraic
number theory (by Dedekind, Kummer, Kronecker, et al.).

5. Arithmetic geometry: This is a huge field that studies solutions to polyno-
mial equations that lie in arithmetically interesting rings, such as the integers
or number fields. A famous major triumph of arithmetic geometry is Faltings’s
proof of Mordell’s Conjecture.

Theorem 1.3.1 (Faltings). Let X be a plane algebraic curve over a number
field K. Assume that the manifold X(C) of complex solutions to X has genus
at least 2 (i.e., X(C) is topologically a donut with two holes). Then the set
X(K) of points on X with coordinates in K is finite.

For example, Theorem 1.3.1 implies that for any n ≥ 4 and any number
field K, there are only finitely many solutions in K to xn + yn = 1.

A major open problem in arithmetic geometry is the Birch and Swinnerton-
Dyer conjecture. Suppose X is an algebraic curve such that the set of com-
plex points X(C) is a topological torus. Then the conjecture of Birch and
Swinnerton-Dyer gives a criterion for whether or not X(K) is infinite in terms
of analytic properties of the L-function L(X, s).



Part I

Algebraic Number Fields
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Chapter 2

Basic Commutative Algebra

The commutative algebra in this chapter will provide a solid algebraic foundation for
understanding the more refined number-theoretic structures associated to number
fields.

First we prove the structure theorem for finitely generated abelian groups. Then
we establish the standard properties of Noetherian rings and modules, including a
proof of the Hilbert basis theorem. We also observe that finitely generated abelian
groups are Noetherian Z-modules. After establishing properties of Noetherian rings,
we consider rings of algebraic integers and discuss some of their properties.

2.1 Finitely Generated Abelian Groups

We will now prove the structure theorem for finitely generated abelian groups, since
it will be crucial for much of what we will do later.

Let Z = {0,±1,±2, . . .} denote the ring of integers, and for each positive inte-
ger n let Z/nZ denote the ring of integers modulo n, which is a cyclic abelian group
of order n under addition.

Definition 2.1.1 (Finitely Generated). A group G is finitely generated if there
exists g1, . . . , gn ∈ G such that every element of G can be obtained from the gi.

For example, the group Z is finitely generated, since it is generated by 1.

Theorem 2.1.2 (Structure Theorem for Abelian Groups). Let G be a finitely
generated abelian group. Then there is an isomorphism

G ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ · · · ⊕ (Z/nsZ) ⊕ Zr,

where n1 > 1 and n1 | n2 | · · · | ns. Furthermore, the ni and r are uniquely
determined by G.

We will prove the theorem as follows. We first remark that any subgroup of a
finitely generated free abelian group is finitely generated. Then we see that finitely

15
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generated abelian groups can be presented as quotients of finite rank free abelian
groups, and such a presentation can be reinterpreted in terms of matrices over the
integers. Next we describe how to use row and column operations over the integers
to show that every matrix over the integers is equivalent to one in a canonical
diagonal form, called the Smith normal form. We obtain a proof of the theorem by
reinterpreting Smith normal form in terms of groups.

Proposition 2.1.3. Suppose G is a free abelian group of finite rank n, and H is a
subgroup of G. Then H is a free abelian group generated by at most n elements.

The key reason that this is true is that G is a finitely generated module over the
principal ideal domain Z. We will give a complete proof of a beautiful generalization
of this result in the context of Noetherian rings next time, but will not prove this
proposition here.

Corollary 2.1.4. Suppose G is a finitely generated abelian group. Then there are
finitely generated free abelian groups F1 and F2 such that G ∼= F1/F2.

Proof. Let x1, . . . , xm be generators for G. Let F1 = Zm and let ϕ : F1 → G be
the map that sends the ith generator (0, 0, . . . , 1, . . . , 0) of Zm to xi. Then ϕ is a
surjective homomorphism, and by Proposition 2.1.3 the kernel F2 of ϕ is a finitely
generated free abelian group. This proves the corollary.

Suppose G is a nonzero finitely generated abelian group. By the corollary, there
are free abelian groups F1 and F2 such that G ∼= F1/F2. Choosing a basis for F1, we
obtain an isomorphism F1

∼= Zn, for some positive integer n. By Proposition 2.1.3,
F2

∼= Zm, for some integer m with 0 ≤ m ≤ n, and the inclusion map F2 ↪→ F1

induces a map Zm → Zn. This homomorphism is left multiplication by the n × m
matrix A whose columns are the images of the generators of F2 in Zn. The cokernel
of this homomorphism is the quotient of Zn by the image of A, and the cokernel
is isomorphic to G. By augmenting A with zero columns on the right we obtain a
square n × n matrix A with the same cokernel. The following proposition implies
that we may choose bases such that the matrix A is diagonal, and then the structure
of the cokernel of A will be easy to understand.

Proposition 2.1.5 (Smith normal form). Suppose A is an n×n integer matrix.
Then there exist invertible integer matrices P and Q such that A′ = PAQ is a
diagonal matrix with entries n1, n2, . . . , ns, 0, . . . , 0, where n1 > 1 and n1 | n2 | . . . |
ns. Here P and Q are invertible as integer matrices, so det(P ) and det(Q) are ±1.
The matrix A′ is called the Smith normal form of A.

We will see in the proof of Theorem 2.1.2 that A′ is uniquely determined by A.
An example of a matrix in Smith normal form is

A =




2 0 0
0 6 0
0 0 0


 .
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Proof. The matrix P will be a product of matrices that define elementary row
operations and Q will be a product corresponding to elementary column operations.
The elementary row and column operations are as follows:

1. [Add multiple] Add an integer multiple of one row to another (or a multiple
of one column to another).

2. [Swap] Interchange two rows or two columns.

3. [Rescale] Multiply a row by −1.

Each of these operations is given by left or right multiplying by an invertible ma-
trix E with integer entries, where E is the result of applying the given operation
to the identity matrix, and E is invertible because each operation can be reversed
using another row or column operation over the integers.

To see that the proposition must be true, assume A 6= 0 and perform the fol-
lowing steps (compare [Art91, pg. 459]):

1. By permuting rows and columns, move a nonzero entry of A with smallest
absolute value to the upper left corner of A. Now attempt to make all other
entries in the first row and column 0 by adding multiples of row or column 1
to other rows (see step 2 below). If an operation produces a nonzero entry in
the matrix with absolute value smaller than |a11|, start the process over by
permuting rows and columns to move that entry to the upper left corner of
A. Since the integers |a11| are a decreasing sequence of positive integers, we
will not have to move an entry to the upper left corner infinitely often.

2. Suppose ai1 is a nonzero entry in the first column, with i > 1. Using the
division algorithm, write ai1 = a11q + r, with 0 ≤ r < a11. Now add −q times
the first row to the ith row. If r > 0, then go to step 1 (so that an entry with
absolute value at most r is the upper left corner). Since we will only perform
step 1 finitely many times, we may assume r = 0. Repeating this procedure
we set all entries in the first column (except a11) to 0. A similar process using
column operations sets each entry in the first row (except a11) to 0.

3. We may now assume that a11 is the only nonzero entry in the first row and
column. If some entry aij of A is not divisible by a11, add the column of A
containing aij to the first column, thus producing an entry in the first column
that is nonzero. When we perform step 2, the remainder r will be greater
than 0. Permuting rows and columns results in a smaller |a11|. Since |a11| can
only shrink finitely many times, eventually we will get to a point where every
aij is divisible by a11. If a11 is negative, multiple the first row by −1.

After performing the above operations, the first row and column of A are zero except
for a11 which is positive and divides all other entries of A. We repeat the above
steps for the matrix B obtained from A by deleting the first row and column. The
upper left entry of the resulting matrix will be divisible by a11, since every entry of
B is. Repeating the argument inductively proves the proposition.
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Example 2.1.6. The matrix

(
−1 2
−3 4

)
has Smith normal form to

(
1 0
0 2

)
, and the

matrix




1 4 9
16 25 36
49 64 81


 has Smith normal form




1 0 0
0 3 0
0 0 72


 . As a double check,

note that the determinants of a matrix and its Smith normal form match, up to
sign. This is because

det(PAQ) = det(P ) det(A) det(Q) = ±det(A).

Theorem 2.1.2. Suppose G is a finitely generated abelian group, which we may
assume is nonzero. As in the paragraph before Proposition 2.1.5, we use Corol-
lary 2.1.4 to write G as a the cokernel of an n × n integer matrix A. By Propo-
sition 2.1.5 there are isomorphisms Q : Zn → Zn and P : Zn → Zn such that
A′ = PAQ is a diagonal matrix with entries n1, n2, . . . , ns, 0, . . . , 0, where n1 > 1
and n1 | n2 | . . . | ns. Then G is isomorphic to the cokernel of the diagonal matrix
A′, so

G ∼= (Z/n1Z) ⊕ (Z/n2Z) ⊕ · · · ⊕ (Z/nsZ) ⊕ Zr, (2.1.1)

as claimed. The ni are determined by G, because ni is the smallest positive integer n
such that nG requires at most s + r − i generators. We see from the representation
(2.1.1) of G as a product that ni has this property and that no smaller positive
integer does.

2.2 Noetherian Rings and Modules

Let R be a commutative ring with unit element. We will frequently work with
R-modules, which are like vector spaces but over a ring.

More precisely, an R-module is an additive abelian group M equipped with a map
R×M → M such that for all r, r′ ∈ R and all m, m′ ∈ M we have (rr′)m = r(r′m),
(r + r′)m = rm + r′m, r(m + m′) = rm + rm′, and 1m = m. A submodule is a
subgroup of M that is preserved by the action of R. An ideal in a ring R is an
R-submodule I ⊂ R, where we view R as a module over itself.

Example 2.2.1. The set of abelian groups are in natural bijection with Z-modules.

A homomorphism of R-modules ϕ : M → N is a abelian group homomorphism
such that for any r ∈ R and m ∈ M we have ϕ(rm) = rϕ(m). A short exact
sequence of R-modules

0 → L
f−→ M

g−→ N → 0

is a specific choice of injective homomorphism f : L → M and a surjective homo-
morphism g : M → N such that im(f) = ker(g).

Example 2.2.2. The sequence

0 → Z
2−→ Z → Z/2Z → 0
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is an exact sequence, where the first map sends 1 to 2, and the second is the natural
quotient map.

Definition 2.2.3 (Noetherian). An R-module M is noetherian if every submod-
ule of M is finitely generated. A ring R is noetherian if R is noetherian as a module
over itself, i.e., if every ideal of R is finitely generated.

Notice that any submodule M ′ of a noetherian module M is also noetherian.
Indeed, if every submodule of M is finitely generated then so is every submodule of
M ′, since submodules of M ′ are also submodules of M .

Definition 2.2.4 (Ascending chain condition). An R-module M satisfies the
ascending chain condition if every sequences M1 ⊂ M2 ⊂ M3 ⊂ · · · of submodules
of M eventually stabilizes, i.e., there is some n such that Mn = Mn+1 = Mn+2 = · · · .

We will use the notion of maximal element below. If X is a set of subsets of
a set S, ordered by inclusion, then a maximal element A ∈ X is a set so that no
superset of A is contained in X . Note that it is not necessary that A contain every
other element of X , and that X could contain many maximal elements.

Proposition 2.2.5. If M is an R-module, then the following are equivalent:

1. M is noetherian,

2. M satisfies the ascending chain condition, and

3. Every nonempty set of submodules of M contains at least one maximal ele-
ment.

Proof. 1 =⇒ 2: Suppose M1 ⊂ M2 ⊂ · · · is a sequence of submodules of M .
Then M∞ = ∪∞

n=1Mn is a submodule of M . Since M is noetherian and M∞ is
a submodule of M , there is a finite set a1, . . . , am of generators for M∞. Each ai

must be contained in some Mj , so there is an n such that a1, . . . , am ∈ Mn. But
then Mk = Mn for all k ≥ n, which proves that the chain of Mi stabilizes, so the
ascending chain condition holds for M .
2 =⇒ 3: Suppose 3 were false, so there exists a nonempty set S of submodules
of M that does not contain a maximal element. We will use S to construct an
infinite ascending chain of submodules of M that does not stabilize. Note that S is
infinite, otherwise it would contain a maximal element. Let M1 be any element of S.
Then there is an M2 in S that contains M1, otherwise S would contain the maximal
element M1. Continuing inductively in this way we find an M3 in S that properly
contains M2, etc., and we produce an infinite ascending chain of submodules of M ,
which contradicts the ascending chain condition.
3 =⇒ 1: Suppose 1 is false, so there is a submodule M ′ of M that is not finitely
generated. We will show that the set S of all finitely generated submodules of
M ′ does not have a maximal element, which will be a contradiction. Suppose S
does have a maximal element L. Since L is finitely generated and L ⊂ M ′, and
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M ′ is not finitely generated, there is an a ∈ M ′ such that a 6∈ L. Then L′ =
L + Ra is an element of S that strictly contains the presumed maximal element L,
a contradiction.

Lemma 2.2.6. If

0 → L
f−→ M

g−→ N → 0

is a short exact sequence of R-modules, then M is noetherian if and only if both L
and N are noetherian.

Proof. First suppose that M is noetherian. Then L is a submodule of M , so L is
noetherian. If N ′ is a submodule of N , then the inverse image of N ′ in M is a
submodule of M , so it is finitely generated, hence its image N ′ is finitely generated.
Thus N is noetherian as well.

Next assume nothing about M , but suppose that both L and N are noetherian.
If M ′ is a submodule of M , then M0 = ϕ(L)∩M ′ is isomorphic to a submodule of the
noetherian module L, so M0 is generated by finitely many elements a1, . . . , an. The
quotient M ′/M0 is isomorphic (via g) to a submodule of the noetherian module N ,
so M ′/M0 is generated by finitely many elements b1, . . . , bm. For each i ≤ m, let ci

be a lift of bi to M ′, modulo M0. Then the elements a1, . . . , an, c1, . . . , cm generate
M ′, for if x ∈ M ′, then there is some element y ∈ M0 such that x− y is an R-linear
combination of the ci, and y is an R-linear combination of the ai.

Proposition 2.2.7. Suppose R is a noetherian ring. Then an R-module M is
noetherian if and only if it is finitely generated.

Proof. If M is noetherian then every submodule of M is finitely generated so M
is finitely generated. Conversely, suppose M is finitely generated, say by elements
a1, . . . , an. Then there is a surjective homomorphism from Rn = R ⊕ · · · ⊕ R to M
that sends (0, . . . , 0, 1, 0, . . . , 0) (1 in ith factor) to ai. Using Lemma 2.2.6 and
exact sequences of R-modules such as 0 → R → R⊕R → R → 0, we see inductively
that Rn is noetherian. Again by Lemma 2.2.6, homomorphic images of noetherian
modules are noetherian, so M is noetherian.

Lemma 2.2.8. Suppose ϕ : R → S is a surjective homomorphism of rings and R
is noetherian. Then S is noetherian.

Proof. The kernel of ϕ is an ideal I in R, and we have an exact sequence

0 → I → R → S → 0

with R noetherian. This is an exact sequence of R-modules, where S has the R-
module structure induced from ϕ (if r ∈ R and s ∈ S, then rs = ϕ(r)s). By
Lemma 2.2.6, it follows that S is a noetherian R-modules. Suppose J is an ideal
of S. Since J is an R-submodule of S, if we view J as an R-module, then J is
finitely generated. Since R acts on J through S, the R-generators of J are also
S-generators of J , so J is finitely generated as an ideal. Thus S is noetherian.
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Theorem 2.2.9 (Hilbert Basis Theorem). If R is a noetherian ring and S is
finitely generated as a ring over R, then S is noetherian. In particular, for any n
the polynomial ring R[x1, . . . , xn] and any of its quotients are noetherian.

Proof. Assume first that we have already shown that for any n the polynomial ring
R[x1, . . . , xn] is noetherian. Suppose S is finitely generated as a ring over R, so
there are generators s1, . . . , sn for S. Then the map xi 7→ si extends uniquely to a
surjective homomorphism π : R[x1, . . . , xn] → S, and Lemma 2.2.8 implies that S
is noetherian.

The rings R[x1, . . . , xn] and (R[x1, . . . , xn−1])[xn] are isomorphic, so it suffices
to prove that if R is noetherian then R[x] is also noetherian. (Our proof follows
[Art91, §12.5].) Thus suppose I is an ideal of R[x] and that R is noetherian. We
will show that I is finitely generated.

Let A be the set of leading coefficients of polynomials in I. (The leading coeffi-
cient of a polynomial is the coefficient of highest degree, or 0 if the polynomial is 0;
thus 3x7 + 5x2 − 4 has leading coefficient 3.) We will first show that A is an ideal
of R. Suppose a, b ∈ A are nonzero with a + b 6= 0. Then there are polynomials f
and g in I with leading coefficients a and b. If deg(f) ≤ deg(g), then a + b is the
leading coefficient of xdeg(g)−deg(f)f + g, so a + b ∈ A. Suppose r ∈ R and a ∈ A
with ra 6= 0. Then ra is the leading coefficient of rf , so ra ∈ A. Thus A is an ideal
in R.

Since R is noetherian and A is an ideal, there exist nonzero a1, . . . , an that
generate A as an ideal. Since A is the set of leading coefficients of elements of I,
and the aj are in A, we can choose for each j ≤ n an element fj ∈ I with leading
coefficient aj . By multipying the fj by some power of x, we may assume that the
fj all have the same degree d ≥ 1.

Let S<d be the set of elements of I that have degree strictly less than d. This
set is closed under addition and under multiplication by elements of R, so S<d is a
module over R. The module S<d is the submodule of the R-module of polynomials
of degree less than n, which is noetherian because it is generated by 1, x, . . . , xn−1.
Thus S<d is finitely generated, and we may choose generators h1, . . . , hm for S<d.

We finish by proving using induction on the degree that every g ∈ I is an R[x]-
linear combination of f1, . . . , fn, h1, . . . hm. If g ∈ I has degree 0, then g ∈ S<d, since
d ≥ 1, so g is a linear combination of h1, . . . , hm. Next suppose g ∈ I has degree e,
and that we have proven the statement for all elements of I of degree < e. If e ≤ d,
then g ∈ S<d, so g is in the R[x]-ideal generated by h1, . . . , hm. Next suppose that
e ≥ d. Then the leading coefficient b of g lies in the ideal A of leading coefficients
of elements of I, so there exist ri ∈ R such that b = r1a1 + · · ·+ rnan. Since fi has
leading coefficient ai, the difference g − xe−drifi has degree less than the degree e
of g. By induction g−xe−drifi is an R[x] linear combination of f1, . . . , fn, h1, . . . hm,
so g is also an R[x] linear combination of f1, . . . , fn, h1, . . . hm. Since each fi and
hj lies in I, it follows that I is generated by f1, . . . , fn, h1, . . . hm, so I is finitely
generated, as required.

Properties of noetherian rings and modules will be crucial in the rest of this
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course. We have proved above that noetherian rings have many desirable properties.

2.2.1 The Ring Z is noetherian

The ring Z of integers is noetherian because every ideal of Z is generated by one
element.

Proposition 2.2.10. Every ideal of the ring Z of integers is principal.

Proof. Suppose I is a nonzero ideal in Z. Let d the least positive element of I.
Suppose that a ∈ I is any nonzero element of I. Using the division algorithm, write
a = dq + r, where q is an integer and 0 ≤ r < d. We have r = a− dq ∈ I and r < d,
so our assumption that d is minimal implies that r = 0, so a = dq is in the ideal
generated by d. Thus I is the principal ideal generated by d.

Example 2.2.11. Let I = (12, 18) be the ideal of Z generated by 12 and 18. If
n = 12a + 18b ∈ I, with a, b ∈ Z, then 6 | n, since 6 | 12 and 6 | 18. Also,
6 = 18 − 12 ∈ I, so I = (6).

Proposition 2.2.7 and 2.2.10 together imply that any finitely generated abelian
group is noetherian. This means that subgroups of finitely generated abelian groups
are finitely generated, which provides the missing step in our proof of the structure
theorem for finitely generated abelian groups.

2.3 Rings of Algebraic Integers

In this section we will learn about rings of algebraic integers and discuss some of
their properties. We will prove that the ring of integers OK of a number field is
noetherian.

Fix an algebraic closure Q of Q. Thus Q is an infinite field extension of Q with
the property that every polynomial f ∈ Q[x] splits as a product of linear factors in
Q[x]. One choice of Q is the subfield of the complex numbers C generated by all
roots in C of all polynomials with coefficients in Q. Note that any two choices of Q
are isomorphic, but there will be many isomorphisms between them.

An algebraic integer is an element of Q.

Definition 2.3.1 (Algebraic Integer). An element α ∈ Q is an algebraic integer
if it is a root of some monic polynomial with coefficients in Z.

For example,
√

2 is an algebraic integer, since it is a root of x2 − 2, but one can
prove 1/2 is not an algebraic integer, since one can show that it is not the root of
any monic polynomial over Z. Also π and e are not algebraic numbers (they are
transcendental).

The only elements of Q that are algebraic integers are the usual integers Z.
However, there are elements of Q that have denominators when written down, but
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are still algebraic integers. For example,

α =
1 +

√
5

2

is an algebraic integer, since it is a root of the monic polynomial x2 − x − 1.

Definition 2.3.2 (Minimal Polynomial). The minimal polynomial of α ∈ Q is
the monic polynomial f ∈ Q[x] of least positive degree such that f(α) = 0.

It is a consequence of Lemma 2.3.3 that the minimal polynomial α is unique.
The minimal polynomial of 1/2 is x − 1/2, and the minimal polynomial of 3

√
2 is

x3 − 2.

Lemma 2.3.3. Suppose α ∈ Q. Then the minimal polynomial of α divides any
polynomial h such that h(α) = 0.

Proof. Let f be a minimal polynomial of α. If h(α) = 0, use the division algorithm
to write h = qf + r, where 0 ≤ deg(r) < deg(f). We have

r(α) = h(α) − q(α)f(α) = 0,

so α is a root of r. However, f is the monic polynomial of least positive degree with
root α, so r = 0.

Lemma 2.3.4. If α is an algebraic integer, then the minimal polynomial of α has
coefficients in Z.

Proof. Suppose f ∈ Q[x] is the minimal polynomial of α. Since α is an algebraic
integer, there is a polynomial g ∈ Z[x] that is monic such that g(α) = 0. By
Lemma 2.3.3, we have g = fh, for some monic h ∈ Q[x]. If f 6∈ Z[x], then some
prime p divides the denominator of some coefficient of f . Let pi be the largest
power of p that divides some denominator of some coefficient f , and likewise let pj

be the largest power of p that divides some denominator of a coefficient of h. Then
pi+jg = (pif)(pjh), and if we reduce both sides modulo p, then the left hand side is
0 but the right hand side is a product of two nonzero polynomials in Fp[x], hence
nonzero, a contradiction.

Proposition 2.3.5. An element α ∈ Q is integral if and only if Z[α] is finitely
generated as a Z-module.

Proof. Suppose α is integral and let f ∈ Z[x] be the monic minimal polynomial
of α (that f ∈ Z[x] is Lemma 2.3.4). Then Z[α] is generated by 1, α, α2, . . . , αd−1,
where d is the degree of f . Conversely, suppose α ∈ Q is such that Z[α] is finitely
generated, say by elements f1(α), . . . , fn(α). Let d be any integer bigger than the
degrees of all fi. Then there exist integers ai such that αd =

∑n
i=1 aifi(α), hence α

satisfies the monic polynomial xd − ∑n
i=1 aifi(x) ∈ Z[x], so α is integral.
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Example 2.3.6. The rational number α = 1/2 is not integral. Note that G = Z[1/2]
is not a finitely generated Z-module, since G is infinite and G/2G = 0. (You can
see that G/2G = 0 implies that G is not finitely generated, by assuming that G
is finitely generated, using the structure theorem to write G as a product of cyclic
groups, and noting that G has nontrivial 2-torsion.)

Proposition 2.3.7. The set Z of all algebraic integers is a ring, i.e., the sum and
product of two algebraic integers is again an algebraic integer.

Proof. Suppose α, β ∈ Z, and let m, n be the degrees of the minimal polynomials
of α, β, respectively. Then 1, α, . . . , αm−1 span Z[α] and 1, β, . . . , βn−1 span Z[β] as
Z-module. Thus the elements αiβj for i ≤ m, j ≤ n span Z[α, β]. Since Z[α + β]
is a submodule of the finitely-generated module Z[α, β], it is finitely generated, so
α + β is integral. Likewise, Z[αβ] is a submodule of Z[α, β], so it is also finitely
generated and αβ is integral.

Definition 2.3.8 (Number field). A number field is a subfield K of Q such that
the degree [K : Q] := dimQ(K) is finite.

Definition 2.3.9 (Ring of Integers). The ring of integers of a number field K
is the ring

OK = K ∩ Z = {x ∈ K : x is an algebraic integer}.

The field Q of rational numbers is a number field of degree 1, and the ring
of integers of Q is Z. The field K = Q(i) of Gaussian integers has degree 2 and
OK = Z[i]. The field K = Q(

√
5) has ring of integers OK = Z[(1 +

√
5)/2].

Note that the Golden ratio (1 +
√

5)/2 satisfies x2 − x − 1. The ring of integers of
K = Q( 3

√
9) is Z[ 3

√
3], where 3

√
3 = 1

3( 3
√

9)2.

Definition 2.3.10 (Order). An order in OK is any subring R of OK such that the
quotient OK/R of abelian groups is finite. (Note that R must contain 1 because it
is a ring, and for us every ring has a 1.)

As noted above, Z[i] is the ring of integers of Q(i). For every nonzero integer n,
the subring Z + niZ of Z[i] is an order. The subring Z of Z[i] is not an order,
because Z does not have finite index in Z[i]. Also the subgroup 2Z + iZ of Z[i] is
not an order because it is not a ring.

We will frequently consider orders in practice because they are often much easier
to write down explicitly than OK . For example, if K = Q(α) and α is an algebraic
integer, then Z[α] is an order in OK , but frequently Z[α] 6= OK .

Lemma 2.3.11. Let OK be the ring of integers of a number field. Then OK∩Q = Z
and QOK = K.

Proof. Suppose α ∈ OK ∩ Q with α = a/b ∈ Q in lowest terms and b > 0. Since α
is integral, Z[a/b] is finitely generated as a module, so b = 1 (see Example 2.3.6).

To prove that QOK = K, suppose α ∈ K, and let f(x) ∈ Q[x] be the minimal
monic polynomial of α. For any positive integer d, the minimal monic polynomial
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of dα is ddeg(f)f(x/d), i.e., the polynomial obtained from f(x) by multiplying the
coefficient of xdeg(f) by 1, multiplying the coefficient of xdeg(f)−1 by d, multiplying
the coefficient of xdeg(f)−2 by d2, etc. If d is the least common multiple of the
denominators of the coefficients of f , then the minimal monic polynomial of dα has
integer coefficients, so dα is integral and dα ∈ OK . This proves that QOK = K.

2.4 Norms and Traces

In this section we develop some basic properties of norms, traces, and discriminants,
and give more properties of rings of integers in the general context of Dedekind
domains.

Before discussing norms and traces we introduce some notation for field exten-
sions. If K ⊂ L are number fields, we let [L : K] denote the dimension of L viewed
as a K-vector space. If K is a number field and a ∈ Q, let K(a) be the extension
of K generated by a, which is the smallest number field that contains both K and a.
If a ∈ Q then a has a minimal polynomial f(x) ∈ Q[x], and the Galois conjugates
of a are the roots of f . For example the element

√
2 has minimal polynomial x2 − 2

and the Galois conjugates are
√

2 and −
√

2.
Suppose K ⊂ L is an inclusion of number fields and let a ∈ L. Then left multi-

plication by a defines a K-linear transformation `a : L → L. (The transformation
`a is K-linear because L is commutative.)

Definition 2.4.1 (Norm and Trace). The norm and trace of a from L to K are

NormL/K(a) = det(`a) and trL/K(a) = tr(`a).

We know from linear algebra that determinants are multiplicative and traces
are additive, so for a, b ∈ L we have

NormL/K(ab) = NormL/K(a) · NormL/K(b)

and
trL/K(a + b) = trL/K(a) + trL/K(b).

Note that if f ∈ Q[x] is the characteristic polynomial of `a, then the constant
term of f is (−1)deg(f) det(`a), and the coefficient of xdeg(f)−1 is − tr(`a).

Proposition 2.4.2. Let a ∈ L and let σ1, . . . , σd, where d = [L : K], be the distinct
field embeddings L ↪→ Q that fix every element of K. Then

NormL/K(a) =
d∏

i=1

σi(a) and trL/K(a) =
d∑

i=1

σi(a).

Proof. We prove the proposition by computing the characteristic polynomial F
of a. Let f ∈ K[x] be the minimal polynomial of a over K, and note that f has
distinct roots and is irreducible, since it is the polynomial in K[x] of least degree
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that is satisfied by a and K has characteristic 0. Since f is irreducible, we have
K(a) = K[x]/(f), so [K(a) : K] = deg(f). Also a satisfies a polynomial if and only
if `a does, so the characteristic polynomial of `a acting on K(a) is f . Let b1, . . . , bn

be a basis for L over K(a) and note that 1, . . . , am is a basis for K(a)/K, where
m = deg(f)− 1. Then aibj is a basis for L over K, and left multiplication by a acts
the same way on the span of bj , abj , . . . , a

mbj as on the span of bk, abk, . . . , a
mbk,

for any pair j, k ≤ n. Thus the matrix of `a on L is a block direct sum of copies
of the matrix of `a acting on K(a), so the characteristic polynomial of `a on L
is f [L:K(a)]. The proposition follows because the roots of f [L:K(a)] are exactly the
images σi(a), with multiplicity [L : K(a)] (since each embedding of K(a) into Q
extends in exactly [L : K(a)] ways to L by Exercise ??).

The following corollary asserts that the norm and trace behave well in towers.

Corollary 2.4.3. Suppose K ⊂ L ⊂ M is a tower of number fields, and let a ∈ M .
Then

NormM/K(a) = NormL/K(NormM/L(a)) and trM/K(a) = trL/K(trM/L(a)).

Proof. For the first equation, both sides are the product of σi(a), where σi runs
through the embeddings of M into K. To see this, suppose σ : L → Q fixes K. If σ′

is an extension of σ to M , and τ1, . . . , τd are the embeddings of M into Q that fix L,
then σ′τ1, . . . , σ

′τd are exactly the extensions of σ to M . For the second statement,
both sides are the sum of the σi(a).

The norm and trace down to Q of an algebraic integer a is an element of Z,
because the minimal polynomial of a has integer coefficients, and the characteristic
polynomial of a is a power of the minimal polynomial, as we saw in the proof of
Proposition 2.4.2.

Proposition 2.4.4. Let K be a number field. The ring of integers OK is a lattice
in K, i.e., QOK = K and OK is an abelian group of rank [K : Q].

Proof. We saw in Lemma 2.3.11 that QOK = K. Thus there exists a basis a1, . . . , an

for K, where each ai is in OK . Suppose that as x =
∑n

i=1 ciai ∈ OK varies over all
elements of OK the denominators of the coefficients ci are arbitrarily large. Then
subtracting off integer multiples of the ai, we see that as x =

∑n
i=1 ciai ∈ OK varies

over elements of OK with ci between 0 and 1, the denominators of the ci are also
arbitrarily large. This implies that there are infinitely many elements of OK in the
bounded subset

S = {c1a1 + · · · + cnan : ci ∈ Q, 0 ≤ ci ≤ 1} ⊂ K.

Thus for any ε > 0, there are elements a, b ∈ OK such that the coefficients of a − b
are all less than ε (otherwise the elements of OK would all be a “distance” of least ε
from each other, so only finitely many of them would fit in S).
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As mentioned above, the norms of elements of OK are integers. Since the norm
of an element is the determinant of left multiplication by that element, the norm
is a homogenous polynomial of degree n in the indeterminate coefficients ci, which
is 0 only on the element 0. If the ci get arbitrarily small for elements of OK , then
the values of the norm polynomial get arbitrarily small, which would imply that
there are elements of OK with positive norm too small to be in Z, a contradiction.
So the set S contains only finitely many elements of OK . Thus the denominators
of the ci are bounded, so for some d, we have that OK has finite index in A =
1
dZa1 + · · · + 1

dZan. Since A is isomorphic to Zn, it follows from the structure
theorem for finitely generated abelian groups that OK is isomorphic as a Z-module
to Zn, as claimed.

Corollary 2.4.5. The ring of integers OK of a number field is noetherian.

Proof. By Proposition 2.4.4, the ring OK is finitely generated as a module over
Z, so it is certainly finitely generated as a ring over Z. By Theorem 2.2.9, OK is
noetherian.
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Chapter 3

Unique Factorization of Ideals

Unique factorization into irreducible elements frequently fails for rings of integers
of number fields. In this chapter we will deduce the most important basic property
of the ring of integers OK of an algebraic number, namely that every nonzero ideal
factors uniquely as a products of prime ideals. Along the way, we will introduce
fractional ideals and prove that they form a group under multiplication. The class
group of OK is the quotient of this group by the principal fractional ideals.

3.1 Dedekind Domains

Recall (Corollary 2.4.5) that we proved that the ring of integers OK of a number
field is noetherian. As we saw before using norms, the ring OK is finitely generated
as a module over Z, so it is certainly finitely generated as a ring over Z. By the
Hilbert Basis Theorem, OK is noetherian.

If R is an integral domain, the field of fractions Frac(R) of R is the field of all
equivalence classes of formal quotients a/b, where a, b ∈ R with b 6= 0, and a/b ∼ c/d
if ad = bc. For example, the field of fractions of Z is Q and the field of fractions
of Z[(1 +

√
5)/2] is Q(

√
5). The field of fractions of the ring OK of integers of a

number field K is just the number field K.

Definition 3.1.1 (Integrally Closed). An integral domain R is integrally closed
in its field of fractions if whenever α is in the field of fractions of R and α satisfies
a monic polynomial f ∈ R[x], then α ∈ R.

Proposition 3.1.2. If K is any number field, then OK is integrally closed. Also,
the ring Z of all algebraic integers is integrally closed.

Proof. We first prove that Z is integrally closed. Suppose α ∈ Q is integral
over Z, so there is a monic polynomial f(x) = xn + an−1x

n−1 + · · · + a1x + a0

with ai ∈ Z and f(α) = 0. The ai all lie in the ring of integers OK of the num-
ber field K = Q(a0, a1, . . . an−1), and OK is finitely generated as a Z-module, so
Z[a0, . . . , an−1] is finitely generated as a Z-module. Since f(α) = 0, we can write αn

29
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as a Z[a0, . . . , an−1]-linear combination of αi for i < n, so the ring Z[a0, . . . , an−1, α]
is also finitely generated as a Z-module. Thus Z[α] is finitely generated as Z-module
because it is a submodule of a finitely generated Z-module, which implies that c is
integral over Z.

Suppose α ∈ K is integral over OK . Then since Z is integrally closed, α is an
element of Z, so α ∈ K ∩ Z = OK , as required.

Definition 3.1.3 (Dedekind Domain). An integral domain R is a Dedekind
domain if it is noetherian, integrally closed in its field of fractions, and every nonzero
prime ideal of R is maximal.

However, it is not a Dedekind domain because it is not an integral domain. The
ring Z[

√
5] is not a Dedekind domain because it is not integrally closed in its field

of fractions, as (1 +
√

5)/2 is integrally over Z and lies in Q(
√

5), but not in Z[
√

5].
The ring Z is a Dedekind domain, as is any ring of integers OK of a number field, as
we will see below. Also, any field K is a Dedekind domain, since it is a domain, it
is trivially integrally closed in itself, and there are no nonzero prime ideals so that
condition that they be maximal is empty. The ring Z is not noetherian, but it is
integrally closed in its field of fraction, and every nonzero prime ideal is maximal.

Proposition 3.1.4. The ring of integers OK of a number field is a Dedekind do-
main.

Proof. By Proposition 3.1.2, the ring OK is integrally closed, and by Proposi-
tion 2.4.5 it is noetherian. Suppose that p is a nonzero prime ideal of OK . Let
α ∈ p be a nonzero element, and let f(x) ∈ Z[x] be the minimal polynomial of α.
Then

f(α) = αn + an−1α
n−1 + · · · + a1α + a0 = 0,

so a0 = −(αn + an−1α
n−1 + · · · + a1α) ∈ p. Since f is irreducible, a0 is a nonzero

element of Z that lies in p. Every element of the finitely generated abelian group
OK/p is killed by a0, so OK/p is a finite set. Since p is prime, OK/p is an integral
domain. Every finite integral domain is a field, so p is maximal, which completes
the proof.

If I and J are ideals in a ring R, the product IJ is the ideal generated by all
products of elements in I with elements in J :

IJ = (ab : a ∈ I, b ∈ J) ⊂ R.

Note that the set of all products ab, with a ∈ I and b ∈ J , need not be an ideal, so
it is important to take the ideal generated by that set.

Definition 3.1.5 (Fractional Ideal). A fractional ideal is a nonzero OK-submodule I
of K that is finitely generated as an OK-module.
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To avoid confusion, we will sometimes call a genuine ideal I ⊂ OK an integral
ideal. Also, since fractional ideals are finitely generated, we can clear denominators
of a generating set to see that every fractional ideal is of the form

aI = {ab : b ∈ I}

for some a ∈ K and integral ideal I ⊂ OK .
For example, the set 1

2Z of rational numbers with denominator 1 or 2 is a
fractional ideal of Z.

Theorem 3.1.6. The set of fractional ideals of a Dedekind domain R is an abelian
group under ideal multiplication with identity element OK .

Note that fractional ideals are nonzero by definition, so it’s not necessary to
write “nonzero fractional ideals” in the statement of the theorem. Before proving
Theorem 3.1.6 we prove a lemma. For the rest of this section OK is the ring of
integers of a number field K.

Definition 3.1.7 (Divides for Ideals). Suppose that I, J are ideals of OK . Then
we say that I divides J if I ⊃ J .

To see that this notion of divides is sensible, suppose K = Q, so OK = Z.
Then I = (n) and J = (m) for some integer n and m, and I divides J means that
(n) ⊃ (m), i.e., that there exists an integer c such that m = cn, which exactly
means that n divides m, as expected.

Lemma 3.1.8. Suppose I is a nonzero ideal of OK . Then there exist prime ideals
p1, . . . , pn such that p1 · p2 · · · pn ⊂ I, i.e., I divides a product of prime ideals.

Proof. Let S be the set of nonzero ideals of OK that do satisfy the conclusion of
the lemma. The key idea is to use that OK is noetherian to show that S is the
empty set. If S is nonempty, then OK is noetherian, so there is an ideal I ∈ S
that is maximal as an element of S. If I were prime, then I would trivially contain
a product of primes, so we may assume that I is not prime. Thus there exists
a, b ∈ OK such that ab ∈ I but a 6∈ I and b 6∈ I. Let J1 = I + (a) and J2 = I + (b).
Then neither J1 nor J2 is in S, since I is maximal, so both J1 and J2 contain a
product of prime ideals, say p1 · · · pr ⊂ J1 and q1 · · · qs ⊂ J2. Then

p1 · · · pr · q1 · · · qs ⊂ J1J2 = I2 + I(b) + (a)I + (ab) ⊂ I,

so I contains a product of primes. This is a contradiction, since we assumed I ∈ S.
Thus S is empty, which completes the proof.

We are now ready to prove the theorem.

Proof of Theorem 3.1.6. The product of two fractional ideals is again finitely gen-
erated, so it is a fractional ideal, and IOK = OK for any nonzero ideal I, so to
prove that the set of fractional ideals under multiplication is a group it suffices to
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show the existence of inverses. We will first prove that if p is a prime ideal, then p

has an inverse, then we will prove that all nonzero integral ideals have inverses, and
finally observe that every fractional ideal has an inverse. (Note: Once we know that
the set of fractional ideals is a group, it will follows that inverses are unique; until
then we will be careful to write “an” instead of “the”.)

Suppose p is a nonzero prime ideal of OK . We will show that the OK-module

I = {a ∈ K : ap ⊂ OK}

is a fractional ideal of OK such that Ip = OK , so that I is an inverse of p.
For the rest of the proof, fix a nonzero element b ∈ p. Since I is an OK-module,

bI ⊂ OK is an OK ideal, hence I is a fractional ideal. Since OK ⊂ I we have
p ⊂ Ip ⊂ OK , hence since p is maximal, either p = Ip or Ip = OK . If Ip = OK , we
are done since then I is an inverse of p. Thus suppose that Ip = p. Our strategy is
to show that there is some d ∈ I, with d 6∈ OK . Since Ip = p, such a d would leave p

invariant, i.e., dp ⊂ p. Since p is an OK-module we will see that it will follow that
d ∈ OK , a contradiction.

By Lemma 3.1.8, we can choose a product p1, . . . , pm, with m minimal, with

p1p2 · · · pm ⊂ (b) ⊂ p.

If no pi is contained in p, then we can choose for each i an ai ∈ pi with ai 6∈ p;
but then

∏
ai ∈ p, which contradicts that p is a prime ideal. Thus some pi, say

p1, is contained in p, which implies that p1 = p since every nonzero prime ideal
is maximal. Because m is minimal, p2 · · · pm is not a subset of (b), so there exists
c ∈ p2 · · · pm that does not lie in (b). Then p(c) ⊂ (b), so by definition of I we
have d = c/b ∈ I. However, d 6∈ OK , since if it were then c would be in (b). We
have thus found our element d ∈ I that does not lie in OK . To finish the proof
that p has an inverse, we observe that d preserves the OK-module p, and is hence
in OK , a contradiction. More precisely, if b1, . . . , bn is a basis for p as a Z-module,
then the action of d on p is given by a matrix with entries in Z, so the minimal
polynomial of d has coefficients in Z (because d satisfies the minimal polynomial
of `d, by the Cayley-Hamilton theorem). This implies that d is integral over Z, so
d ∈ OK , since OK is integrally closed by Proposition 3.1.2. (Note how this argument
depends strongly on the fact that OK is integrally closed!)

So far we have proved that if p is a prime ideal of OK , then

p−1 = {a ∈ K : ap ⊂ OK}

is the inverse of p in the monoid of nonzero fractional ideals of OK . As mentioned
after Definition 3.1.5, every nonzero fractional ideal is of the form aI for a ∈ K
and I an integral ideal, so since (a) has inverse (1/a), it suffices to show that every
integral ideal I has an inverse. If not, then there is a nonzero integral ideal I that
is maximal among all nonzero integral ideals that do not have an inverse. Every
ideal is contained in a maximal ideal, so there is a nonzero prime ideal p such that
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I ⊂ p. Multiplying both sides of this inclusion by p−1 and using that OK ⊂ p−1,
we see that

I ⊂ p−1I ⊂ p−1p = OK .

If I = p−1I, then arguing as in the proof that p−1 is an inverse of p, we see
that each element of p−1 preserves the finitely generated Z-module I and is hence
integral. But then p−1 ⊂ OK , which, upon multiplying both sides by p, implies that
OK = pp−1 ⊂ p, a contradiction. Thus I 6= p−1I. Because I is maximal among
ideals that do not have an inverse, the ideal p−1I does have an inverse J . Then
p−1J is an inverse of I, since (Jp−1)I = J(p−1I) = OK .

We can finally deduce the crucial Theorem 3.1.10, which will allow us to show
that any nonzero ideal of a Dedekind domain can be expressed uniquely as a product
of primes (up to order). Thus unique factorization holds for ideals in a Dedekind
domain, and it is this unique factorization that initially motivated the introduction
of ideals to mathematics over a century ago.

Theorem 3.1.9. Suppose I is a nonzero integral ideal of OK . Then I can be written
as a product

I = p1 · · · pn

of prime ideals of OK , and this representation is unique up to order.

Proof. Suppose I is an ideal that is maximal among the set of all ideals in OK

that can not be written as a product of primes. Every ideal is contained in a
maximal ideal, so I is contained in a nonzero prime ideal p. If Ip−1 = I, then
by Theorem 3.1.6 we can cancel I from both sides of this equation to see that
p−1 = OK , a contradiction. Since OK ⊂ p−1, we have I ⊂ Ip−1, and by the above
observation I is strictly contained in Ip−1. By our maximality assumption on I,
there are maximal ideals p1, . . . , pn such that Ip−1 = p1 · · · pn. Then I = p ·p1 · · · pn,
a contradiction. Thus every ideal can be written as a product of primes.

Suppose p1 · · · pn = q1 · · · qm. If no qi is contained in p1, then for each i there is
an ai ∈ qi such that ai 6∈ p1. But the product of the ai is in the p1 · · · pn, which is
a subset of p1, which contradicts that p1 is a prime ideal. Thus qi = p1 for some i.
We can thus cancel qi and p1 from both sides of the equation by multiplying both
sides by the inverse. Repeating this argument finishes the proof of uniqueness.

Theorem 3.1.10. If I is a fractional ideal of OK then there exists prime ideals
p1, . . . , pn and q1, . . . , qm, unique up to order, such that

I = (p1 · · · pn)(q1 · · · qm)−1.

Proof. We have I = (a/b)J for some a, b ∈ OK and integral ideal J . Applying
Theorem 3.1.10 to (a), (b), and J gives an expression as claimed. For uniqueness, if
one has two such product expressions, multiply through by the denominators and
use the uniqueness part of Theorem 3.1.10
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Example 3.1.11. The ring of integers of K = Q(
√
−6) is OK = Z[

√
−6]. We have

6 = −
√
−6

√
−6 = 2 · 3.

If ab =
√
−6, with a, b ∈ OK and neither a unit, then Norm(a)Norm(b) = 6, so

without loss Norm(a) = 2 and Norm(b) = 3. If a = c + d
√
−6, then Norm(a) =

c2 + 6d2; since the equation c2 + 6d2 = 2 has no solution with c, d ∈ Z, there is
no element in OK with norm 2, so

√
−6 is irreducible. Also,

√
−6 is not a unit

times 2 or times 3, since again the norms would not match up. Thus 6 can not
be written uniquely as a product of irreducibles in OK . Theorem 3.1.9, however,
implies that the principal ideal (6) can, however, be written uniquely as a product
of prime ideals. An explicit decomposition is

(6) = (2, 2 +
√
−6)2 · (3, 3 +

√
−6)2, (3.1.1)

where each of the ideals (2, 2 +
√
−6) and (3, 3 +

√
−6) is prime. We will discuss

algorithms for computing such a decomposition in detail in Chapter 5. The first
idea is to write (6) = (2)(3), and hence reduce to the case of writing the (p), for
p ∈ Z prime, as a product of primes. Next one decomposes the finite (as a set) ring
OK/pOK .

The factorization (3.1.1) can be compute using Magma (see [BCP97]) as follows:

> R<x> := PolynomialRing(RationalField());

> K := NumberField(x^2+6);

> OK := RingOfIntegers(K);

> [K!b : b in Basis(OK)];

[ 1,

K.1] // this is sqrt(-6)

> Factorization(6*OK);

[

<Prime Ideal of OK

Two element generators:

[2, 0]

[2, 1], 2>,

<Prime Ideal of OK

Two element generators:

[3, 0]

[3, 1], 2>

]

The factorization (3.1.1) can also be computed using PARI (see [ABC+]).

? k=nfinit(x^2+6);

? idealfactor(k, 6)

[[2, [0, 1]~, 2, 1, [0, 1]~] 2]

[[3, [0, 1]~, 2, 1, [0, 1]~] 2]

? k.zk

[1, x]
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The output of PARI is a list of two prime ideals with exponent 2. A prime
ideal is represented by a 5-tuple [p, a, e, f, b], where the ideal is pOK + αOK , where
α =

∑
aiωi, where ω1, . . . , ωn are a basis for OK (as output by k.zk).
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Chapter 4

Computing

4.1 Algorithms for Algebraic Number Theory

The main algorithmic goals in algebraic number theory are to solve the following
problems quickly:

• Ring of integers: Given a number field K, specified by an irreducible poly-
nomial with coefficients in Q, compute the ring of integers OK .

• Decomposition of primes: Given a prime number p ∈ Z, find the decom-
position of the ideal pOK as a product of prime ideals of OK .

• Class group: Compute the class group of K, i.e., the group of equivalence
classes of nonzero ideals of OK , where I and J are equivalent if there exists
α ∈ OK such that IJ−1 = (α).

• Units: Compute generators for the group UK of units of OK .

This chapter is about how to compute the first two using a computer.
The best overall reference for algorithms for doing basic algebraic number theory

computations is [Coh93]. This chapter is not about algorithms for solving the
above problems; instead is a tour of the two most popular programs for doing
algebraic number theory computations, Magma and PARI. These programs are
both available to use via the web page

http://modular.fas.harvard.edu/calc

The following two sections illustrate what we’ve done so far in this book, and a
little of where we are going. First we describe Magma then PARI.

4.2 Magma

This section is a first introduction to Magma for algebraic number theory. Magma

is a general purpose package for doing algebraic number theory computations, but

37
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it is closed source and not free. Its development and maintenance at the University
of Sydney is paid for by grants and subscriptions. I have visited Sydney three times
to work with them, and I also wrote the modular forms parts of MAGMA.

The documentation for Magma is available here:

http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm

Much of the algebraic number theory documentation is here:

http://magma.maths.usyd.edu.au/magma/htmlhelp/text711.htm

4.2.1 Smith Normal Form

In Section 2.1 we learned about Smith normal forms of matrices.

> A := Matrix(2,2,[1,2,3,4]);

> A;

[1 2]

[3 4]

> SmithForm(A);

[1 0]

[0 2]

[ 1 0]

[-1 1]

[-1 2]

[ 1 -1]

As you can see, Magma computed the Smith form, which is ( 1 0
0 2 ). What are the

other two matrices it output? To see what any Magma command does, type the
command by itself with no arguments followed by a semicolon.

> SmithForm;

Intrinsic ’SmithForm’

Signatures:

(<Mtrx> X) -> Mtrx, AlgMatElt, AlgMatElt

[

k: RngIntElt,

NormType: MonStgElt,

Partial: BoolElt,

RightInverse: BoolElt

]

The smith form S of X, together with unimodular matrices

P and Q such that P * X * Q = S.
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SmithForm returns three arguments, a matrix and matrices P and Q that transform
the input matrix to Smith normal form. The syntax to “receive” three return
arguments is natural, but uncommon in other programming languages:

> S, P, Q := SmithForm(A);

> S;

[1 0]

[0 2]

> P;

[ 1 0]

[-1 1]

> Q;

[-1 2]

[ 1 -1]

> P*A*Q;

[1 0]

[0 2]

Next, let’s test the limits. We make a 10 × 10 integer matrix with random entries
between 0 and 100, and compute its Smith normal form.

> A := Matrix(10,10,[Random(100) : i in [1..100]]);

> time B := SmithForm(A);

Time: 0.000

Let’s print the first row of A, the first and last row of B, and the diagonal of B:

> A[1];

( 4 48 84 3 58 61 53 26 9 5)

> B[1];

(1 0 0 0 0 0 0 0 0 0)

> B[10];

(0 0 0 0 0 0 0 0 0 51805501538039733)

> [B[i,i] : i in [1..10]];

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 51805501538039733 ]

Let’s see how big we have to make A in order to slow down Magma V2.11-10.
These timings below are on an Opteron 248 server.

> n := 50; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.020

> n := 100; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.210

> n := 150; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);
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> time B := SmithForm(A);

Time: 1.240

> n := 200; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 4.920

Remark 4.2.1. The same timings on a 1.8Ghz Pentium M notebook are 0.030,

0.410, 2.910, 10.600, respectively, so about twice as long. On a G5 XServe (with
Magma V2.11-2), they are 0.060, 0.640, 3.460, 12.270, respectively, which is
nearly three times as long as the Opteron (MAGMA seems very poorly optimized
for the G5, so watch out).

4.2.2 Number Fields

To define a number field, we first define the polynomial ring over the rational num-
bers. The notation R<x> below means “the variable x is the generator of the poly-
nomial ring”. We then pass an irreducible polynomial ot the NumberField function.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2); // a is the image of x in Q[x]/(x^3-2)

> a;

a

> a^3;

2

4.2.3 Relative Extensions

If K is a number field, and f(x) ∈ K[x] is an irreducible polynomial, and α is a root
of f , then L = K(α) ∼= K[x]/(f) is a relative extension of K. Magma can compute
with relative extensions, and also find the corresponding absolute extension of Q,
i.e., find a polynomial g such that K[x]/(f) ∼= Q[x]/(g).

The following illustrates defining L = K(
√

a), where K = Q(a) and a = 3
√

2.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> S<y> := PolynomialRing(K);

> L<b> := NumberField(y^2-a);

> L;

Number Field with defining polynomial y^2 - a over K

> b^2;

a

> b^6;

2

> AbsoluteField(L);

Number Field with defining polynomial x^6 - 2 over the Rational

Field
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4.2.4 Rings of integers

Magma can compute rings of integers of number fields.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2); // a is the image of x in Q[x]/(x^3-2)

> RingOfIntegers(K);

Maximal Equation Order with defining polynomial x^3 - 2 over ZZ

Sometimes the ring of integers of Q(a) is not Z[a]. First a simple example, then a
more complicated one:

> K<a> := NumberField(2*x^2-3); // doesn’t have to be monic

> 2*a^2 - 3;

0

> K;

Number Field with defining polynomial x^2 - 3/2 over the Rational

Field

> O := RingOfIntegers(K);

> O;

Maximal Order of Equation Order with defining polynomial 2*x^2 -

3 over ZZ

Printing OK gave us no real information. Instead we request a basis for OK :

> Basis(O);

[

O.1,

O.2

]

Again we get no information. To get a basis for OK in terms of a =
√

3/2, we use
Magma’s coercion operator !:

> [K!x : x in Basis(O)];

[

1,

2*a

]

Thus the ring of integers has basis 1 and 2
√

3/2 =
√

6 as a Z-module.
Here are some more examples, which we’ve reformated for publication.

> procedure ints(f) // (procedures don’t return anything; functions do)

K<a> := NumberField(f);

O := RingOfIntegers(K);

print [K!z : z in Basis(O)];
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end procedure;

> ints(x^2-5);

[

1, 1/2*(a + 1)

]

> ints(x^2+5);

[

1, a

]

> ints(x^3-17);

[

1, a, 1/3*(a^2 + 2*a + 1)

]

> ints(CyclotomicPolynomial(7));

[

1, a, a^2, a^3, a^4, a^5

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

[

1, a, a^2, a^3, a^4

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

[

1, a, a^2, 1/2*(a^3 + a),

1/16*(a^4 + 7*a^3 + 11*a^2 + 7*a + 14)

]

Lets find out how high of a degree Magma can easily deal with.

> d := 10; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

[

1, 10*a, ...

]

Time: 0.030

> d := 15; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...

Time: 0.160

> d := 20; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...

Time: 1.610

> d := 21; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...

Time: 0.640

> d := 22; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...
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Time: 3.510

> d := 23; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...

Time: 12.020

> d := 24; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...

Time: 34.480

> d := 24; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...

Time: 5.580 -- the timings very *drastically* on the same problem,

because presumably some randomized algorithms are used.

> d := 25; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

...

Time: 70.350

> d := 30; time ints(&+[i*x^i + 2*x+1: i in [0..d]]);

Time: 136.740

Recall that an order is a subring of OK of finite index as an additive group. We
can also define orders in rings of integers in Magma.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> O := Order([2*a]);

> O;

Transformation of Order over

Equation Order with defining polynomial x^3 - 2 over ZZ

Transformation Matrix:

[1 0 0]

[0 2 0]

[0 0 4]

> OK := RingOfIntegers(K);

> Index(OK,O);

8

4.2.5 Ideals

We can construct ideals in rings of integers of number fields in Magma as illustrated.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-5);

> OK := RingOfIntegers(K);

> I := 7*OK;

> I;

Principal Ideal of OK

Generator:
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[7, 0]

> J := (OK!a)*OK; // the ! computes the natural image of a in OK

> J;

Principal Ideal of OK

Generator:

[-1, 2]

> Generators(J);

[ [-1, 2] ]

> K!Generators(J)[1];

a

> I*J;

Principal Ideal of OK

Generator:

[-7, 14]

> J*I;

Principal Ideal of OK

Generator:

[-7, 14]

> I+J;

Principal Ideal of OK

Generator:

[1, 0]

>

> Factorization(I);

[

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

> Factorization(3*OK);

[

<Principal Prime Ideal of OK

Generator:

[3, 0], 1>

]

> Factorization(5*OK);

[

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], 2>

]

> Factorization(11*OK);
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[

<Prime Ideal of OK

Two element generators:

[11, 0]

[14, 2], 1>,

<Prime Ideal of OK

Two element generators:

[11, 0]

[17, 2], 1>

]

We can even work with fractional ideals in Magma.

> K<a> := NumberField(x^2-5);

> OK := RingOfIntegers(K);

> I := 7*OK;

> J := (OK!a)*OK;

> M := I/J;

> M;

Fractional Principal Ideal of OK

Generator:

-7/5*OK.1 + 14/5*OK.2

> Factorization(M);

[

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], -1>,

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

4.3 Using PARI

PARI is freely available (under the GPL) from

http://pari.math.u-bordeaux.fr/

The above website describes PARI thus:

PARI/GP is a widely used computer algebra system designed for fast
computations in number theory (factorizations, algebraic number the-
ory, elliptic curves...), but also contains a large number of other useful
functions to compute with mathematical entities such as matrices, poly-
nomials, power series, algebraic numbers etc., and a lot of transcendental
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functions. PARI is also available as a C library to allow for faster com-
putations.

Originally developed by Henri Cohen and his co-workers (Universit Bor-
deaux I, France), PARI is now under the GPL and maintained by Karim
Belabas (Universit Paris XI, France) with the help of many volunteer
contributors.

The sections below are very similar to the Magma sections above, except they
address PARI instead of Magma. We use Pari Version 2.2.9-alpha for all examples
below, and all timings are on an Opteron 248.

4.3.1 Smith Normal Form

In Section 2.1 we learned about Smith normal forms of matrices. We create matrices
in PARI by giving the entries of each row separated by a ;.

? A = [1,2;3,4];

? A

[1 2]

[3 4]

? matsnf(A)

[2, 1]

The matsnf function computes the diagonal entries of the Smith normal form of
a matrix. To get documentation about a function PARI, type ? followed by the
function name.

? ?matsnf

matsnf(x,{flag=0}): Smith normal form (i.e. elementary divisors)

of the matrix x, expressed as a vector d. Binary digits of flag

mean 1: returns [u,v,d] where d=u*x*v, otherwise only the diagonal d

is returned,

2: allow polynomial entries, otherwise assume x is integral,

4: removes all information corresponding to entries equal

to 1 in d.

Next, let’s test the limits. To time code in PARI use the gettime function:

? ?gettime

gettime(): time (in milliseconds) since last call to gettime.

If we divide the result of gettime by 1000 we get the time in seconds.
We make a 10× 10 integer matrix with random entries between 0 and 100, and

compute its Smith normal form.

> n=10;A=matrix(n,n,i,j,random(101));gettime;B=matsnf(A);gettime/1000.0

%7 = 0.0010000000000000000000000000000000000000
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Let’s see how big we have to make A in order to slow down PARI 2.2.9-alpha. These
timings below are on an Opteron 248 server.

? n=50;A=matrix(n,n,i,j,random(101));gettime;B=matsnf(A);gettime/1000.0

0.058

? n=100;A=matrix(n,n,i,j,random(101));gettime;B=matsnf(A);gettime/1000.0

1.3920000000000000000000000000000000000

? n=150;A=matrix(n,n,i,j,random(101));gettime;B=matsnf(A);gettime/1000.0

30.731000000000000000000000000000000000

? n=200;A=matrix(n,n,i,j,random(101));gettime;B=matsnf(A);gettime/1000.0

*** matsnf: the PARI stack overflows !

current stack size: 8000000 (7.629 Mbytes)

[hint] you can increase GP stack with allocatemem()

? allocatemem(); allocatemem(); allocatemem()

*** allocatemem: Warning: doubling stack size; new stack = 16000000 (15.259 Mbytes).

? n=200;A=matrix(n,n,i,j,random(101));gettime;B=matsnf(A);gettime/1000.0

35.742000000000000000000000000000000000

Remark 4.3.1. The same timings on a 1.8Ghz Pentium M notebook are 0.189,

5.489, 48.185, 170.21, respectively. On a G5 XServe, they are 0.19, 5.70,

41.95, 153.98, respectively.
Recall that the timings for the same computation on the Opteron under Magma

are 0.020, 0.210, 1.240, 4.290, which is vastly faster than PARI.

4.3.2 Number Fields

There are several ways to define number fields in PARI. The simplest is to give a
monic integral polynomial as input to the nfinit function.

? K = nfinit(x^3-2);

Number fields do not print as nicely in PARI as in Magma:

? K

K

%12 = [x^3 - 2, [1, 1], -108, 1, [[1, 1.2599210498948731647672106072782283506,

... and tons more numbers! ...

Confusingly, elements of number fields can be represented in PARI in many differ-
ent ways. I refer you to the documentation for PARI (§3.6). A simple way is as
polymods:

? a = Mod(x, x^3-2) \\ think of this as x in Q[x]/(x^3-2).

? a

Mod(x, x^3 - 2)

? a^3

Mod(2, x^3 - 2)



48 CHAPTER 4. COMPUTING

4.3.3 Rings of integers

To compute the ring of integers of a number field in PARI, use the nfbasis com-
mand.

? ?nfbasis

nfbasis(x,{flag=0},{p}): integral basis of the field Q[a], where a is

a root of the polynomial x, using the round 4 algorithm. Second and

third args are optional. Binary digits of flag means:

1: assume that no square of a prime>primelimit divides the

discriminant of x,

2: use round 2 algorithm instead.

If present, p provides the matrix of a partial factorization of the

discriminant of x, useful if one wants only an order maximal at

certain primes only.

For example, we compute the ring of integers of Q( 3
√

2).

? nfbasis(x^3-2)

[1, x, x^2]

? nfbasis(2*x^2-3)

[1, 2*x]

Here are some more examples, which we’ve reformated for publication.

> nfbasis(x^2-5)

[1, 1/2*x + 1/2]

? nfbasis(x^3-17)

[1, x, 1/3*x^2 - 1/3*x + 1/3]

? nfbasis(polcyclo(7))

[1, x, x^2, x^3, x^4, x^5]

? d=10; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

0.011000000000000000000000000000000000000

? d=15; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

0.027000000000000000000000000000000000000

? d=20; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

1.6690000000000000000000000000000000000

? d=20; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

1.6640000000000000000000000000000000000

? d=21; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

0.080000000000000000000000000000000000000

? d=22; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

1.5000000000000000000000000000000000000

? d=23; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

12.288000000000000000000000000000000000
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? d=24; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

1.6380000000000000000000000000000000000

? d=25; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

38.141000000000000000000000000000000000

? d=30; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

33.423000000000000000000000000000000000

? d=30; f=sum(i=0,d,i*x^i+2*x+1); gettime; nfbasis(f); gettime/1000.0

33.066000000000000000000000000000000000 \\ doesn’t vary much

Lets find out how high of a degree PARI can easily deal with.

Recall that the timing in Magma for computing OK for d = 30 was 136.740
seconds, which is four times as long as the 33 second timing of PARI.1 Thus for
the fields considered above, computation of OK in PARI is faster than in MAGMA.
Sometimes one system is much better than another, and it is not clear a priori which
will be better.

4.3.4 Ideals

In PARI ideals can be represented in several ways. For example, to construct a
principal ideal, give the generator. There is no ideal data type, but you can give
data that defines an ideal, e.g., an alement to define a principal ideal, to functions
that take ideals as input.

The following examples illustrate basic arithmetic with ideals and factorization
of ideals.

? a = Mod(x, x^2-5)

%41 = Mod(x, x^2 - 5)

? nf = nfinit(x^2-5);

? idealadd(nf, 5*a, 10*a)

%44 =

[25 15]

[ 0 5]

The output of idealadd is a 2-column matrix, whose columns represent elements
of K on the integral basis for OK output by nfbasis. These two elements generate
the ideal as an OK-module. We will prove later (see Prop. 6.3.2) that every ideal
can be generated by 2 elements.

Note that fractional ideals are also allowed:

1I onced discussed timings of PARI versus Magma with John Cannon, who is the director of
Magma. He commented that in some cases PARI implicitly assumes unproven conjectures, e.g.,
the Riemann Hypothesis, in order to get such fast algorithms, whereas the philosophy in Magma

is to not assume conjectures unless one explicitly asks it to.



50 CHAPTER 4. COMPUTING

? idealadd(nf, a/5, 10*a)

%45 =

[1 3/5]

[0 1/5]

We can also factor an ideal as a product of prime ideals. The output is an
arrays of pairs, a prime ideal and its exponent. These ideals are represented in yet
another way, as a 5-tuple [p, a, e, f, b], where a is a vector of integers. Such a tuple
corresponds to the ideal pOK + αOK , where α =

∑
aiωi, and the ωi are the basis

output by nfbasis. Explaining e, f, b requires ideas that we have not yet introduced
(ramification, inertia degrees, etc.) Here are some examples:

? nf = nfinit(x^2-5);

? idealfactor(nf, 7)

%46 =

[[7, [7, 0]~, 1, 2, [1, 0]~] 1]

? idealfactor(nf, 3)

%47 =

[[3, [3, 0]~, 1, 2, [1, 0]~] 1]

? idealfactor(nf, 5)

%48 =

[[5, [1, 2]~, 2, 1, [1, 2]~] 2]

? idealfactor(nf, 11)

%49 =

[[11, [-3, 2]~, 1, 1, [5, 2]~] 1]

[[11, [5, 2]~, 1, 1, [-3, 2]~] 1]

We can even factor fractional ideals:

? idealfactor(nf, 1/11)

%50 =

[[11, [-3, 2]~, 1, 1, [5, 2]~] -1]

[[11, [5, 2]~, 1, 1, [-3, 2]~] -1]



Chapter 5

Factoring Primes

Let p be a prime and OK the ring of integers of a number field. This chapter is about
how to write pOK as a product of prime ideals of OK . Paradoxically, computing
the explicit prime ideal factorization of pOK is easier than computing OK .

5.1 The Problem

A diagram from [LL93].

“The obvious mathematical breakthrough would be develop-
ment of an easy way to factor large prime numbers.”

– Bill Gates, The Road Ahead, 1st ed., pg 265

51
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Bill Gates meant1 factoring products of two primes, which would break the RSA
cryptosystem (see e.g. [Ste, §3.2]). However, perhaps he really meant what he said:
then we might imagine that he meant factorization of primes of Z in rings of integers
of number fields. For example, 216 + 1 = 65537 is a “large” prime, and in Z[i] we
have (65537) = (65537, 28 + i) · (65537, 28 − i).

5.1.1 Geomtric Intuition

Let K = Q(α) be a number field, and let OK be the ring of integers of K. To
employ our geometric intuition, as the Lenstras did on the cover of [LL93], it is
helpful to view OK as a one-dimensional scheme

X = Spec(OK) = { all prime ideals of OK }

over

Y = Spec(Z) = {(0)} ∪ {pZ : p ∈ Z>0 is prime }.
There is a natural map π : X → Y that sends a prime ideal p ∈ X to p ∩ Z ∈ Y .
For example, if

p = (65537, 28 + i) ⊂ Z[i],

then p ∩ Z = (65537). For more on this viewpoint, see [Har77] and [EH00, Ch. 2].
If p ∈ Z is a prime number, then the ideal pOK of OK factors uniquely as

a product
∏

p
ei

i , where the pi are maximal ideals of OK . We may imagine the
decomposition of pOK into prime ideals geometrically as the fiber π−1(pZ), where
the exponents ei are the multiplicities of the fibers. Notice that the elements of
π−1(pZ) are the prime ideals of OK that contain p, i.e., the primes that divide
pOK .

This chapter is about how to compute the pi and ei.

5.1.2 Examples

The following Magma session shows the commands needed to compute the factor-
ization of pOK in Magma for K the number field defined by a root of x5 + 7x4 +
3x2 − x + 1 and p = 2 and 5 (see Section 5.4 for PARI versions):

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^5 + 7*x^4 + 3*x^2 - x + 1);

> OK := RingOfIntegers(K);

> [K!OK.i : i in [1..5]];

1This quote is on page 265 of the first edition. In the second edition, on page 303, this sentence is
changed to “The obvious mathematical breakthrough that would defeat our public key encryption
would be the development of an easy way to factor large numbers.” This is less nonsensical;
however, fast factoring is not known to break all commonly used public-key cryptosystem. For
example, there are cryptosystems based on the difficulty of computing discrete logarithms in F

∗

p

and on elliptic curves over Fp, which (presumably) would not be broken even if one could factor
large numbers quickly.
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[ 1, a, a^2, a^3, a^4 ]

> I := 2*OK;

> Factorization(I);

[ <Principal Prime Ideal of OK

Generator: [2, 0, 0, 0, 0], 1>]

> J := 5*OK;

> Factorization(J);

[ <Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 1, 0, 0, 0], 1>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[3, 1, 0, 0, 0], 2>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 4, 1, 0, 0], 1>]

Thus 2OK is already a prime ideal, and

5OK = (5, 2 + a) · (5, 3 + a)2 · (5, 2 + 4a + a2).

Notice that in this example OK = Z[a]. (Warning: There are examples of OK

such that OK 6= Z[a] for any a ∈ OK , as Example 5.3.2 below illustrates.) When
OK = Z[a] it is relatively easy to factor pOK , at least assuming one can factor
polynomials in Fp[x]. The following factorization gives a hint as to why:

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5).

The exponent 2 of (5, 3 + a)2 in the factorization of 5OK above suggests “rami-
fication”, in the sense that the cover X → Y has less points (counting their “size”,
i.e., their residue class degree) in its fiber over 5 than it has generically:
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(5, 2 + 4a + a2)

(5, 3 + a)2

(5, 2 + a)

5Z

2OK

2Z

(0)

(0)

3Z 7Z 11Z

Diagram of Spec(OK) → Spec(Z)

5.2 A Method for Factoring Primes that Often Works

Suppose a ∈ OK is such that K = Q(a), and let f(x) ∈ Z[x] be the minimal
polynomial of a. Then Z[a] ⊂ OK , and we have a diagram of schemes

⋃
Spec(OK/p

ei

i ) Â

Ä

//

²²

Spec(OK)

²²⋃
Spec(Fp[x]/(f

ei

i )) Â

Ä

//

²²

Spec(Z[a])

²²
Spec(Fp)

Â

Ä

// Spec(Z)

where f =
∏

i f
ei

i is the factorization of the image of f in Fp[x], and pOK =
∏

p
ei

i

is the factorization of pOK in terms of prime ideals of OK . On the level of rings,
the bottom horizontal map is the quotient map Z → Z/pZ ∼= Fp. The middle
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horizontal map is induced by

Z[x] →
⊕

i

Fp[x]/(f
ei

i ),

and the top horizontal map is induced by

OK → OK/pOK
∼=

⊕
OK/p

ei

i ,

where the isomorphism is by the Chinese Remainder Theorem, which we will prove
in Chapter 6. The left vertical maps come from the inclusions

Fp ↪→ Fp[x]/(f
ei

i ) ↪→ OK/pei

i ,

and the right from the inclusions Z ↪→ Z[a] ↪→ OK .

The cover π : Spec(Z[a]) → Spec(Z) is easy to understand because it is defined
by the single equation f(x), in the sense that Z[a] ∼= Z[x]/(f(x)). To give a maximal
ideal p of Z[a] such that π(p) = pZ is the same as giving a homomorphism ϕ :
Z[x]/(f) → Fp up to automorphisms of the image, which is in turn the same as
giving a root of f in Fp up to automorphism, which is the same as giving an
irreducible factor of the reduction of f modulo p.

Lemma 5.2.1. Suppose the index of Z[a] in OK is coprime to p. Then the primes pi

in the factorization of pZ[a] do not decompose further going from Z[a] to OK , so
finding the prime ideals of Z[a] that contain p yields the primes that appear in the
factorization of pOK .

Proof. Fix a basis for OK and for Z[a] as Z-modules. Form the matrix A whose
columns express each basis element of Z[a] as a Z-linear combination of the basis
for OK . Then

det(A) = ±[OK : Z[a]]

is coprime to p, by hypothesis. Thus the reduction of A modulo p is invertible, so
it defines an isomorphism Z[a]/pZ[a] ∼= OK/pOK .

Let Fp denote a fixed algebraic closure of Fp; thus Fp is an algebraically closed
field of characteristic p, over which all polynomials in Fp[x] factor into linear fac-
tors. Any homomorphism OK → Fp send p to 0, so is the composition of a
homomorphism OK → OK/pOK with a homomorphism OK/pOK → Fp. Since
OK/pOK

∼= Z[a]/pZ[a], the homomorphisms OK → Fp are in bijection with the
homomorphisms Z[a] → Fp. The homomorphisms Z[a] → Fp are in bijection with
the roots of the reduction modulo p of the minimal polynomial of a in Fp.

Remark 5.2.2. Here is a “high-brow” proof of Lemma 5.2.1. By hypothesis we have
an exact sequence of abelian groups

0 → Z[a] → OK → H → 0,
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where H is a finite abelian group of order coprime to p. Tensor product is right
exact, and there is an exact sequence

Tor1(H,Fp) → Z[a] ⊗ Fp → OK ⊗ Fp → H ⊗ Fp → 0,

and Tor1(H,Fp) = H ⊗ Fp = 0, so Z[a] ⊗ Fp
∼= OK ⊗ Fp.

As suggested in the proof of the lemma, we find all homomorphisms OK → Fp

by finding all homomorphism Z[a] → Fp. In terms of ideals, if p = (f(a), p)Z[a] is a
maximal ideal of Z[a], then the ideal p′ = (f(a), p)OK of OK is also maximal, since

OK/p′ ∼= (OK/pOK)/(f(ã)) ∼= (Z[a]/pZ[a])/(f(ã)) ⊂ Fp,

where ã denotes the image of a in OK/pOK .

We formalize the above discussion in the following theorem (note: we will not
prove that the powers are ei here):

Theorem 5.2.3. Let f ∈ Z[x] be the minimal polynomial of a over Z. Suppose
that p - [OK : Z[a]] is a prime. Let

f =

t∏

i=1

f
ei

i ∈ Fp[x]

where the f i are distinct monic irreducible polynomials. Let pi = (p, fi(a)) where
fi ∈ Z[x] is a lift of f i in Fp[X]. Then

pOK =
t∏

i=1

pei

i .

We return to the example from above, in which K = Q(a), where a is a root
of f = x5 + 7x4 + 3x2 − x + 1. According to Magma, the ring of integers OK has
discriminant 2945785:

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^5 + 7*x^4 + 3*x^2 - x + 1);

> Discriminant(RingOfIntegers(K));

2945785

The order Z[a] has the same discriminant as f(x), which is the same as the dis-
criminant of OK , so Z[a] = OK and we can apply the above theorem. (Here we use
that the index of Z[a] in OK is the square of the quotient of their discriminants, a
fact we will prove later in Section 7.2.)

> Discriminant(x^5 + 7*x^4 + 3*x^2 - x + 1);

2945785
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We have

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5),

which yields the factorization of 5OK given before the theorem.

If we replace a by b = 7a, then the index of Z[b] in OK will be a power of 7,
which is coprime to 5, so the above method will still work.

> f := MinimalPolynomial(7*a);

> f;

x^5 + 49*x^4 + 1029*x^2 - 2401*x + 16807

> Discriminant(f);

235050861175510968365785

> Discriminant(f)/Discriminant(RingOfIntegers(K));

79792266297612001 // coprime to 5

> S<t> := PolynomialRing(GF(5));

> Factorization(S!f);

[ <t + 1, 2>,

<t + 4, 1>,

<t^2 + 3*t + 3, 1> ]

Thus 5 factors in OK as

5OK = (5, 7a + 1)2 · (5, 7a + 4) · (5, (7a)2 + 3(7a) + 3).

If we replace a by b = 5a and try the above algorithm with Z[b], then the method
fails because the index of Z[b] in OK is divisible by 5.

> f := MinimalPolynomial(5*a);

> f;

x^5 + 35*x^4 + 375*x^2 - 625*x + 3125

> Discriminant(f) / Discriminant(RingOfIntegers(K));

95367431640625 // divisible by 5

> Factorization(S!f);

[ <t, 5> ]

5.3 A General Method

There are numbers fields K such that OK is not of the form Z[a] for any a ∈ K.
Even worse, Dedekind found a field K such that 2 | [OK : Z[a]] for all a ∈ OK , so
there is no choice of a such that Theorem 5.2.3 can be used to factor 2 for K (see
Example 5.3.2 below).
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5.3.1 Essential Discriminant Divisors

Definition 5.3.1. A prime p is an essential discriminant divisor if p | [OK : Z[a]]
for every a ∈ OK .

See Example 7.2.5 below for why is it called an essential “discriminant” instead
of an essential “index divisor”.

Since [OK : Z[a]]2 is the absolute value of Disc(f(x))/ Disc(OK), where f(x) is
the characteristic polynomial of f(x), an essential discriminant divisor divides the
discriminant of the characteristic polynomial of any element of OK .

Example 5.3.2 (Dedekind). Let K = Q(a) be the cubic field defined by a root a of
the polynomial f = x3 +x2−2x+8. We will use Magma, which implements the al-
gorithm described in the previous section, to show that 2 is an essential discriminant
divisor for K.

> K<a> := NumberField(x^3 + x^2 - 2*x + 8);

> OK := RingOfIntegers(K);

> Factorization(2*OK);

[ <Prime Ideal of OK

Basis:

[2 0 0]

[0 1 0]

[0 0 1], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 0]

[0 0 2], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 1]

[0 0 2], 1> ]

Thus 2OK = p1p2p3, with the pi distinct, and one sees directly from the above
expressions that OK/pi

∼= F2. If OK = Z[a] for some a ∈ OK with minimal
polynomial f , then f(x) ∈ F2[x] must be a product of three distinct linear factors,
which is impossible, since the only linear polynomials in F2[x] are x and x + 1.

5.3.2 Remarks on Ideal Factorization in General

Recall (from Definition 2.3.10) that an order in OK is a subring O of OK that has
finite index in OK . For example, if OK = Z[i], then O = Z + 5Z[i] is an order in
OK , and as an abelian group OK/O is cyclic of order 5.

Most algebraic number theory books do not describe an algorithm for decom-
posing primes in the general case. Fortunately, Cohen’s book [Coh93, Ch. 6] does
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describe how to solve the general problem, in more than one way. The algorithms
are nontrivial, and occupy a substantial part of Chapter 6 of Cohen’s book. Our
goal for the rest of this section is to give a hint as to what goes into them.

The general solutions to prime ideal factorization are somewhat surprising,
since the algorithms are much more sophisticated than the one suggested by Theo-
rem 5.2.3. However, these complicated algorithms all run very quickly in practice,
even without assuming the maximal order is already known. In fact, they avoid
computing OK altogether, and instead compute only an order O that is p-maximal,
i.e., is such that p - [OK : O].

For simplicity we consider the following slightly easier problem whose solution
illustrates the key ideas needed in the general case.

Problem 5.3.3. Let O be any order in OK and let p be a prime of Z. Find the
prime ideals of O that contain p.

Given a prime p that we wish to factor in OK , we first find a p-maximal order O.
We then use a solution to Problem 5.3.3 to find the prime ideals p of O that contain
p. Second, we find the exponents e such that pe exactly divides pO. The resulting
factorization in O completely determines the factorization of pOK .

A p-maximal order can be found reasonably quickly in practice using algorithms
called “round 2” and “round 4”. To compute OK , given an order Z[α] ⊂ OK , one
takes a sum of p-maximal orders, one for every p such that p2 divides Disc(Z[α]).
The time-consuming part of this computation is finding the primes p such that
p2 | Disc(Z[α]), not finding the p-maximal orders. This example illustrates that a
fast algorithm for factoring integers would not only break the RSA cryptosystems,
but would massively speed up computation of the ring of integers of a number field.

Remark 5.3.4. The MathSciNet review of [BL94] by J. Buhler contains the following:

A result of Chistov says that finding the ring of integers OK in an
algebraic number field K is equivalent, under certain polynomial time
reductions, to the problem of finding the largest squarefree divisor of a
positive integer. No feasible (i.e., polynomial time) algorithm is known
for the latter problem, and it is possible that it is no easier than the
more general problem of factoring integers.

Thus it appears that computing the ring OK is quite hard.

5.3.3 Finding a p-Maximal Order

Before describing the general factorization algorithm, we sketch some of the theory
behind the general algorithms for computing a p-maximal order O in OK . The main
input is the following theorem, whose proof can be found in [Coh93, §6.1.1].

Theorem 5.3.5 (Pohst-Zassenhaus). Let O be an order in the the ring of inte-
gers OK of a number field, let p ∈ Z be a prime, and let

Ip = {x ∈ O : xm ∈ pO for some m ≥ 1 } ⊂ O
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be the radical of pO, which is an ideal of O. Let

O′ = {x ∈ K : xIp ⊂ Ip}.

Then O′ is an order and either O′ = O, in which case O is p-maximal, or O ⊂ O′

and p divides [O′ : O].

After deciding on how to represent elements of K and orders and ideals in K,
one can give an efficient algorithm to compute the O′ of the theorem. The algorithm
mainly involves linear algebra over finite fields. It is complicated to describe, but
efficient in practice, and is conceptually simple—just compute O′. The trick for
reducing the computation of O′ to linear algebra is the following lemma:

Lemma 5.3.6. Define a homomorphism map ψ : O ↪→ End(Ip/pIp) given by send-
ing α ∈ O to left multiplication by the reduction of α modulo p. Then

O′ =
1

p
Ker(ψ).

Note that to give an algorithm one must also figure out how to compute Ip/pIp

and the kernel of this map. This is all done in [Coh93, §6.1].

5.3.4 General Factorization Algorithm

We finally give an algorithm to factor pOK in general.

Algorithm 5.3.7 (General Factorization). Let K = Q(a) be a number field given
by an algebraic integer a as a root of its minimal monic polynomial f of degree n. We
assume that an order O has been given by a basis w1, . . . , wn and that O that contains
Z[a]. For any prime p ∈ Z, the following algorithm computes the set of maximal ideals
of O that contain p.

1. [Check if easy] If p - disc(Z[a])/ disc(O) (so p - [O : Z[a]]), then using Theo-
rem 5.2.3 we factor pO.

2. [Compute radical] Let I be the radical of pO, which is the ideal of elements x ∈ O
such that xm ∈ pO for some positive integer m. Note that pO ⊂ I, i.e., I | pO;
also I is the product of the primes that divide p, without multiplicity. Using linear
algebra over the finite field Fp, we compute a basis for I/pO, hence I, since
pO ⊂ I.

3. [Compute quotient by radical] Compute an Fp basis for

A = O/I = (O/pO)/(I/pO).

The second equality comes from the fact that pO ⊂ I. Note that O/pO is
obtained by simply reducing the basis w1, . . . , wn modulo p.
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4. [Decompose quotient] The ring A decomposes as a product A ∼=
∏

Fp[x]/(gi(x))
of fields. We can find such a decomposition explicitly using linear algebra.

5. [Compute the maximal ideals over p] Each maximal ideal pi lying over p is the
kernel of one of the compositions O → A → Fp[x]/(gi(x)).

Algorithm 5.3.7 finds all primes of O that contain the radical I of pO. Every
such prime clearly contains p, so to see that the algorithm is correct, we prove that
the primes p of O that contain p also contain I. If p is a prime of O that contains p,
then pO ⊂ p. If x ∈ I then xm ∈ pO for some m, so xm ∈ p which implies that
x ∈ p by primality of p. Thus p contains I, as required. Note that we do not find the
powers of primes that divide p in Algorithm 5.3.7; that’s left to another algorithm
that we will not discuss in this book.

Algorithm 5.3.7 was invented by J. Buchmann and H. W. Lenstra, though their
paper seems to have never been published; however, the algorithm is described in
detail in [Coh93, §6.2.5]. Incidentally, this chapter is based on Chapters 4 and 6 of
[Coh93], which is highly recommended, and goes into much more detail about these
algorithms.

5.4 Appendix: The Calculations in PARI

In this section we give PARI versions of all the Magma calculations in the rest of
this chapter.

? K = nfinit(x^5 + 7*x^4 + 3*x^2 - x + 1);

? idealfactor(K, 2)

[[2, [2, 0, 0, 0, 0]~, 1, 5, [1, 0, 0, 0, 0]~] 1]

? idealfactor(K, 5)

[[5, [-3, 0, 0, 1, 0]~, 2, 1, [1, 0, 2, -2, -1]~] 2]

[[5, [1, 0, 0, 1, 0]~, 1, 1, [1, 0, -2, 2, -1]~] 1]

[[5, [10, 1, 0, -8, 1]~, 1, 2, [2, 1, 1, -1, 1]~] 1]

? K.disc

2945785

? poldisc(x^5 + 7*x^4 + 3*x^2 - x + 1)

2945785

? a = Mod(x, x^5 + 7*x^4 + 3*x^2 - x + 1);

? f = charpoly(7*a)

x^5 + 49*x^4 + 1029*x^2 - 2401*x + 16807

? poldisc(f)

235050861175510968365785

? poldisc(f)/K.disc

79792266297612001
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? factormod(f,5)

[Mod(1, 5)*x + Mod(1, 5) 2]

[Mod(1, 5)*x + Mod(4, 5) 1]

[Mod(1, 5)*x^2 + Mod(3, 5)*x + Mod(3, 5) 1]

? f = charpoly(5*a)

? factormod(f,5)

[Mod(1, 5)*x 5]

? K = nfinit(x^3 + x^2 - 2*x + 8);

? idealfactor(K,2)

[[2, [1, 0, 1]~, 1, 1, [0, 0, -1]~] 1]

[[2, [1, 1, 0]~, 1, 1, [0, 1, 0]~] 1]

[[2, [2, 1, 1]~, 1, 1, [1, 1, 1]~] 1]



Chapter 6

The Chinese Remainder

Theorem

We prove the Chinese Remainder Theorem (CRT) for commutative rings and discuss
how to compute with it explicitly in Magma and PARI. We also apply the Chinese
Remainder Theorem to prove that every ideal in OK is generated by two elements
and determine the structure of pn/pn+1, where p is a nonzero prime ideal of OK .

6.1 The Chinese Remainder Theorem

6.1.1 CRT in the Integers

The Chinese Remainder Theorem from elementary number theory asserts that if
n1, . . . , nr are integers that are coprime in pairs, and a1, . . . , ar are integers, then
there exists an integer a such that a ≡ ai (mod ni) for each i = 1, . . . , r. Here
“coprime in pairs” means that gcd(ni, nj) = 1 whenever i 6= j; it does not mean
that gcd(n1, . . . , nr) = 1, though it implies this. In terms of rings, the Chinese
Remainder Theorem (CRT) asserts that the natural map

Z/(n1 · · ·nr)Z → (Z/n1Z) ⊕ · · · ⊕ (Z/nrZ) (6.1.1)

that sends a ∈ Z to its reduction modulo each ni, is an isomorphism.

This map is not an isomorphism if the ni are not coprime. Indeed, the cardinality
of the left hand side of (6.1.1) is lcm(n1, . . . , nr), whereas the cardinality of the right
hand side is n1 · · ·nr.

The isomorphism (6.1.1) can alternatively be viewed as asserting that any system
of linear congruences

x ≡ a1 (mod n1), x ≡ a2 (mod n2), · · · , x ≡ ar (mod nr)

with pairwise coprime moduli has a unique solution modulo n1 . . . nr.
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Before proving CRT in a general ring, we give a proof of (6.1.1). There is a
natural map

φ : Z → (Z/n1Z) ⊕ · · · ⊕ (Z/nrZ)

given by projection onto each factor. It’s kernel is

n1Z ∩ · · · ∩ nrZ.

If n and m are integers, then nZ ∩ mZ is the set of multiples of both n and m, so
nZ ∩ mZ = lcm(n, m)Z. Since the ni are coprime,

n1Z ∩ · · · ∩ nrZ = n1 . . . nrZ.

Thus we have proved there is an inclusion

i : Z/(n1 · · ·nr)Z ↪→ (Z/n1Z) ⊕ · · · ⊕ (Z/nrZ). (6.1.2)

This is half of the CRT; the other half is to prove that this map is surjective.
To prove the other half, note that since the ni are coprime in pairs,

gcd(n1, n2 . . . nr) = 1,

so there exists integers x, y such that

xn1 + yn2 · · ·nr = 1.

To complete the proof, observe that yn2 · · ·nr = 1 − xn1 is congruent to 1 modulo
n1 and 0 modulo n2 · · ·nr. Thus (1, 0, . . . , 0) is in the image of i. By a similar
argument, we see that (0, 1, . . . , 0) and the other similar elements are all in the
image of i, so i is surjective, which proves CRT.

Remark 6.1.1. One could also prove surjectivity of i by noting that both sides of
(6.1.2) are finite of order n1 . . . nr.

6.1.2 CRT in an Arbitrary Ring

Recall that all rings in this book are commutative with unity.

Definition 6.1.2 (Coprime). Ideals I and J are coprime if I + J = (1).

If I and J are nonzero ideals in the ring of integers of a number field, then
they are coprime precisely when the prime ideals that appear in their two (unique)
factorizations are disjoint.

Lemma 6.1.3. If I and J are coprime ideals in a ring R, then I ∩ J = IJ .

Proof. Choose x ∈ I and y ∈ J such that x + y = 1. If c ∈ I ∩ J then

c = c · 1 = c · (x + y) = cx + cy ∈ IJ + IJ = IJ,

so I ∩ J ⊂ IJ . The other inclusion is obvious by definition of ideal.
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Lemma 6.1.4. Suppose I1, . . . , Is are pairwise coprime ideals. Then I1 is coprime
to the product I2 · · · Is.

Proof. It suffices to prove the lemma in the case s = 3, since the general case then
follows from induction. By assumption, there are x1 ∈ I1, y1 ∈ I2 and x2 ∈ I1, y2 ∈
I3 such

x1 + y1 = 1 and x2 + y2 = 1.

Multiplying these two relations yields

x1x2 + x1y2 + y1x2 + y1y2 = 1 · 1 = 1.

The first three terms are in I1 and the last term is in I2∩ I3 = I2I3, so I1 is coprime
to I2I3.

Next we prove the Chinese Remainder Theorem in a very general form. We will
apply this result with R = OK in the rest of this chapter.

Theorem 6.1.5 (Chinese Remainder Theorem). Suppose I1, . . . , Ir are nonzero
ideals of a ring R such Im and In are coprime for any m 6= n. Then the natural
homomorphism R → ⊕r

n=1 R/In induces an isomorphism

ψ : R/
r∏

n=1

In →
r⊕

n=1

R/In.

Thus given any an ∈ R, for n = 1, . . . , r, there exists some a ∈ R such that a ≡ an

(mod In) for n = 1, . . . , r; moreover, a is unique modulo
∏r

n=1 In.

Proof. Let ϕ : R → ⊕r
n=1 R/In be the natural map induced by reduction modulo

the In. An inductive application of Lemma 6.1.3 implies that the kernel ∩r
n=1In

of ϕ is equal to
∏r

n=1 In, so the map ψ of the theorem is injective.
Each projection R → R/In is surjective, so to prove that ψ is surjective, it

suffices to show that (1, 0, . . . , 0) is in the image of ϕ, and similarly for the other
factors. By Lemma 6.1.4, J =

∏r
n=2 In is coprime to I1, there exists x ∈ I1 and

y ∈ J such that x + y = 1. Then y = 1 − x maps to 1 in R/I1 and to 0 in R/J ,
hence to 0 in R/In for each n ≥ 2, since J ⊂ In.

6.2 Computing Using the CRT

In order to explicitly compute an a as given by the Theorem 6.1.5, usually one first
precomputes elements v1, . . . , vr ∈ R such that v1 7→ (1, 0, . . . , 0), v2 7→ (0, 1, . . . , 0),
etc. Then given any an ∈ R, for n = 1, . . . , r, we obtain an a ∈ R with an ≡ a
(mod In) by taking

a = a1v1 + · · · + arvr.

How to compute the vi depends on the ring R. It reduces to the following problem:
Given coprimes ideals I, J ⊂ R, find x ∈ I and y ∈ J such that x + y = 1. If
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R is torsion free and of finite rank as a Z-module, so R ≈ Zn, then I, J can be
represented by giving a basis in terms of a basis for R, and finding x, y such that
x+y = 1 can then be reduced to a problem in linear algebra over Z. More precisely,
let A be the matrix whose columns are the concatenation of a basis for I with a
basis for J . Suppose v ∈ Zn corresponds to 1 ∈ Zn. Then finding x, y such that
x + y = 1 is equivalent to finding a solution z ∈ Zn to the matrix equation Az = v.
This latter linear algebra problem can be solved using Hermite normal form (see
[Coh93, §4.7.1]), which is a generalization of Gauss elimination.

We next describe how to use Magma and PARI to do CRT computations.

6.2.1 Magma

The Magma command ChineseRemainderTheorem implements the algorithm sug-
gested by Theorem 6.1.5. In the following example, we compute a prime over (3)
and a prime over (5) of the ring of integers of Q( 3

√
2), and find an element of OK

that is congruent to 3
√

2 modulo one prime and 1 modulo the other.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> OK := RingOfIntegers(K);

> I := Factorization(3*OK)[1][1];

> J := Factorization(5*OK)[1][1];

> I;

Prime Ideal of OK

Two element generators:

[3, 0, 0]

[4, 1, 0]

> J;

Prime Ideal of OK

Two element generators:

[5, 0, 0]

[7, 1, 0]

> b := ChineseRemainderTheorem(I, J, OK!a, OK!1);

> K!b;

-4

> b - a in I;

true

> b - 1 in J;

true

6.2.2 PARI

There is also a CRT algorithm for number fields in PARI, but it is more cumbersome
to use. First we defined Q( 3

√
2) and factor the ideals (3) and (5).
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? f = x^3 - 2;

? k = nfinit(f);

? i = idealfactor(k,3);

? j = idealfactor(k,5);

Next we form matrix whose rows correspond to a product of two primes, one
dividing 3 and one dividing 5:

? m = matrix(2,2);

? m[1,] = i[1,];

? m[1,2] = 1;

? m[2,] = j[1,];

Note that we set m[1,2] = 1, so the exponent is 1 instead of 3. We apply the CRT
to obtain a lift in terms of the basis for OK .

? ?idealchinese

idealchinese(nf,x,y): x being a prime ideal factorization and y

a vector of elements, gives an element b such that

v_p(b-y_p)>=v_p(x) for all prime ideals p dividing x,

and v_p(b)>=0 for all other p.

? idealchinese(k, m, [x,1])

[0, 0, -1]~

? nfbasis(f)

[1, x, x^2]

Thus PARI finds the lift −( 3
√

2)2, and we finish by verifying that this lift is correct.
I couldn’t figure out how to test for ideal membership in PARI, so here we just
check that the prime ideal plus the element is not the unit ideal, which since the
ideal is prime, implies membership.

? idealadd(k, i[1,1], -x^2 - x)

[3 1 2]

[0 1 0]

[0 0 1]

? idealadd(k, j[1,1], -x^2-1)

[5 2 1]

[0 1 0]

[0 0 1]

6.3 Structural Applications of the CRT

The next lemma is an application of the Chinese Remainder Theorem. We will use
it to prove that every ideal of OK can be generated by two elements. Suppose that I
is a nonzero integral ideals of OK . If a ∈ I, then (a) ⊂ I, so I divides (a) and the
quotient (a)I−1 is an integral ideal. The following lemma asserts that (a) can be
chosen so the quotient (a)I−1 is coprime to any given ideal.
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Lemma 6.3.1. If I and J are nonzero integral ideals in OK , then there exists an
a ∈ I such that the integral ideal (a)I−1 is coprime to J .

Before we give the proof in general, note that the lemma is trivial when I is
principal, since if I = (b), just take a = b, and then (a)I−1 = (a)(a−1) = (1) is
coprime to every ideal.

Proof. Let p1, . . . , pr be the prime divisors of J . For each n, let vn be the largest
power of pn that divides I. Since pvn

n 6= pvn+1
n , we can choose an element an ∈ pvn

n

that is not in pvn+1
n . By Theorem 6.1.5 applied to the r + 1 coprime integral ideals

pv1+1
1 , . . . , pvr+1

r , I ·
(∏

pvn
n

)−1
,

there exists a ∈ OK such that

a ≡ an (mod pvn+1
n )

for all n = 1, . . . , r and also

a ≡ 0 (mod I ·
(∏

pvn
n

)−1
).

To complete the proof we show that (a)I−1 is not divisible by any pn, or equiv-
alently, that each pvn

n exactly divides (a). Because a ≡ an (mod pvn+1
n ), there is

b ∈ pvn+1
n such that a = an + b. Since an ∈ pvn

n , it follows that a ∈ pvn
n , so pvn

n

divides (a). If a ∈ pvn+1
n , then an = a−b ∈ pvn+1

n , a contradiction, since an 6∈ pvn+1
n .

We conclude that pvn+1
n does not divide (a), which completes the proof.

Suppose I is a nonzero ideal of OK . As an abelian group OK is free of rank equal
to the degree [K : Q] of K, and I is of finite index in OK , so I can be generated as an
abelian group, hence as an ideal, by [K : Q] generators. The following proposition
asserts something much better, namely that I can be generated as an ideal in OK

by at most two elements.

Proposition 6.3.2. Suppose I is a fractional ideal in the ring OK of integers of a
number field. Then there exist a, b ∈ K such that I = (a, b) = {αa+βb : α, β ∈ OK}.

Proof. If I = (0), then I is generated by 1 element and we are done. If I is not an
integral ideal, then there is x ∈ K such that xI is an integral ideal, and the number
of generators of xI is the same as the number of generators of I, so we may assume
that I is an integral ideal.

Let a be any nonzero element of the integral ideal I. We will show that there
is some b ∈ I such that I = (a, b). Let J = (a). By Lemma 6.3.1, there exists b ∈ I
such that (b)I−1 is coprime to (a). Since a, b ∈ I, we have I | (a) and I | (b), so
I | (a, b). Suppose pn | (a, b) with p prime. Then pn | (a) and pn | (b), so p - (b)I−1,
since (b)I−1 is coprime to (a). We have pn | (b) = I · (b)I−1 and p - (b)I−1, so pn | I.
Thus (a, b) | I, so I = (a, b), as claimed.
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We can also use Theorem 6.1.5 to determine the OK-module structure of pn/pn+1.

Proposition 6.3.3. Let p be a nonzero prime ideal of OK , and let n ≥ 0 be an
integer. Then pn/pn+1 ∼= OK/p as OK-modules.

Proof. 1 Since pn 6= pn+1, by unique factorization, there is an element b ∈ pn such
that b 6∈ pn+1. Let ϕ : OK → pn/pn+1 be the OK-module morphism defined by
ϕ(a) = ab. The kernel of ϕ is p since clearly ϕ(p) = 0 and if ϕ(a) = 0 then
ab ∈ pn+1, so pn+1 | (a)(b), so p | (a), since pn+1 does not divide (b). Thus ϕ
induces an injective OK-module homomorphism OK/p ↪→ pn/pn+1.

It remains to show that ϕ is surjective, and this is where we will use Theo-
rem 6.1.5. Suppose c ∈ pn. By Theorem 6.1.5 there exists d ∈ OK such that

d ≡ c (mod pn+1) and d ≡ 0 (mod (b)/pn).

We have pn | (d) since d ∈ pn and (b)/pn | (d) by the second displayed condition, so
since p - (b)/pn, we have (b) = pn · (b)/pn | (d), hence d/b ∈ OK . Finally

ϕ

(
d

b

)
=

d

b
· d (mod pn+1) = b (mod pn+1) = c (mod pn+1),

so ϕ is surjective.

1Proof from [SD01, pg. 13].
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Chapter 7

Discrimants and Norms

In this chapter we give a geometric interpretation of the discriminant of an order in
a number field. We also define norms of ideals and prove that the norm function is
multiplicative. Discriminants of orders and norms of ideals will play a crucial roll
in our proof of finiteness of the class group in the next chapter.

7.1 Field Embeddings

Let K be a number field of degree n. By the primitive element theorem, K =
Q(α) for some α, so we can write K ∼= Q[x]/(f), where f ∈ Q[x] is the minimal
polynomial of α. Because C is algebraically closed and f is irreducible, it has exactly
n = [K : Q] complex roots. Each of these roots z ∈ C induces a homomorphism
Q[x] → C given by x 7→ z, whose kernel is (f). Thus we obtain n embeddings of
K ∼= Q[x]/(f) into C:

σ1, . . . , σn : K ↪→ C.

Let σ : K ↪→ Cn be the map a 7→ (σ1(a), . . . , σn(a)), and let V = Rσ(K) be the
R-span of the image σ(K) of K inside Cn.

Lemma 7.1.1. Suppose L ⊂ Rn is a subgroup of the vector space Rn. Then the
induced topology on L is discrete if and only if for every H > 0 the set

XH = {v ∈ L : max{|v1|, . . . , |vn|} ≤ H}

is finite.

Proof. If L is not discrete, then there is a point x ∈ L such that for every ε > 0
there is y ∈ L such that 0 < |x− y| < ε. By choosing smaller and smaller ε, we find
infinitely many elements x−y ∈ L all of whose coordinates are smaller than 1. The
set X(1) is thus not finite. Thus if the sets XH are all finite, L must be discrete.

Next assume that L is discrete and let H > 0 be any positive number. Then for
every x ∈ XH there is an open ball Bx that contains x but no other element of L.
Since XH is closed and bounded, it is compact, so the open covering ∪Bx of XH

has a finite subcover, which implies that XH is finite, as claimed.
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Lemma 7.1.2. If L if a free abelian group that is discrete in a finite-dimensional
real vector space V and RL = V , then the rank of L equals the dimension of V .

Proof. If x1, . . . , xm ∈ L are a basis for RL, then M = Zx1 + · · · + Zxm has
finite index in L, since otherwise the quotient L/M would be infinite, so there
would be infinitely many elements of L in a fundamental domain for M , which
by Lemma 7.1.1 would contradict discreteness of L. Thus the rank of L is m =
dim(RL), as claimed.

Proposition 7.1.3. The R-vector space V = Rσ(K) spanned by the image σ(K)
has dimension n.

Proof. We prove this by showing that the image σ(OK) is discrete. If σ(OK) were
not discrete it would contain elements all of whose coordinates are simultaneously
arbitrarily small. The norm of an element a ∈ OK is the product of the entries of
σ(a), so the norms of nonzero elements of OK would go to 0. This is a contradiction,
since the norms of elements of OK are integers.

Since σ(OK) is discrete in Cn, Lemma 7.1.2 implies that dim(V ) equals the
rank of σ(OK). Since σ is injective, dim(V ) is the rank of OK , which equals n by
Proposition 2.4.4.

Since σ(OK) is a lattice in V , the volume of V/σ(OK) is finite. Suppose
w1, . . . , wn is a basis for OK . Then if A is the matrix whose ith row is σ(wi),
then |det(A)| is the volume of V/σ(OK) (take this as the definition of volume).

Example 7.1.4. Let OK = Z[i] be the ring of integers of K = Q(i). Then w1 = 1,
w2 = i is a basis for OK . The map σ : K → C2 is given by

σ(a + bi) = (a + bi, a − bi) ∈ C2.

The image σ(OK) is spanned by (1, 1) and (i,−i). The volume determinant is

∣∣∣∣
(

1 1
i −i

)∣∣∣∣ = | − 2i| = 2.

Let OK = Z[
√

2] be the ring of integers of K = Q(
√

2). The map σ is

σ(a + b
√

2) = (a + b
√

2, a − b
√

2) ∈ R2,

and

A =

(
1 1√
2 −

√
2

)
,

which has determinant −2
√

2, so the volume of V/σ(OK) is 2
√

2.

As the above example illustrates, the volume V/σ(OK) need not be an integer,
and it loses sign information. If we consider det(A)2 instead, we obtain a well-
defined integer.
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7.2 Discriminants

Suppose w1, . . . , wn are a basis for OK as a Z-module, which we view as a Q-
vector space. Let σ : K ↪→ Cn be the embedding σ(a) = (σ1(a), . . . , σn(a)), where
σ1, . . . , σn are the distinct embeddings of K into C. Let A be the matrix whose
rows are σ(w1), . . . , σ(wn). The quantity det(A) depends on the ordering of the wi,
and need not be an integer.

If we consider det(A)2 instead, we obtain a number that is a well-defined integer.
Note that

det(A)2 = det(AA) = det(A) det(A) = det(A) det(At) = det(AAt)

= det


 ∑

k=1,...,n

σk(wi)σk(wj)


 = det


 ∑

k=1,...,n

σk(wiwj)




= det(Tr(wiwj)1≤i,j≤n),

so det(A)2 can be defined purely in terms of the trace without mentioning the
embeddings σi. Also, changing the basis for OK is the same as left multiplying A
by an integer matrix U of determinant ±1, which does not change the squared
determinant, since det(UA)2 = det(U)2 det(A)2 = det(A)2. Thus det(A)2 is well
defined, and does not depend on the choice of basis.

If we view K as a Q-vector space, then (x, y) 7→ Tr(xy) defines a bilinear pairing
K × K → Q on K, which we call the trace pairing. The following lemma asserts
that this pairing is nondegenerate, so det(Tr(wiwj)) 6= 0 hence det(A) 6= 0.

Lemma 7.2.1. The trace pairing is nondegenerate.

Proof. If the trace pairing is degenerate, then there exists a ∈ K such that for
every b ∈ K we have Tr(ab) = 0. In particularly, taking b = a−1 we see that
0 = Tr(aa−1) = Tr(1) = [K : Q] > 0, which is absurd.

Definition 7.2.2 (Discriminant). Suppose a1, . . . , an is any Q-basis of K. The
discriminant of a1, . . . , an is

Disc(a1, . . . , an) = det(Tr(aiaj)1≤i,j≤n) ∈ Q.

The discriminant Disc(O) of an order O in OK is the discriminant of any basis
for O. The discriminant dK = Disc(K) of the number field K is the discrimimant
of OK .

Note that the discriminants defined above are all nonzero by Lemma 7.2.1.

If α ∈ OK with Z[α] of finite index in OK , and f is the minimal polynomial
of α, then Disc(f) = Disc(Z[α]). To see this, note that if we choose the basis
1, α, . . . , αn−1 for Z[α], then both discriminants are the square of the same Vander-
monde determinant.
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Remark 7.2.3. Warning: In Magma Disc(K) is defined to be the discriminant of
the polynomial you happened to use to define K.

> K := NumberField(x^2-5);

> Discriminant(K);

20

> Discriminant(RingOfIntegers(K));

5

In contrast, PARI does the right thing:

? k=nfinit(x^2-5);

? k.disc

5

The following proposition asserts that the discriminant of an order O in OK is
bigger than disc(OK) by a factor of the square of the index.

Proposition 7.2.4. Suppose O is an order in OK . Then

Disc(O) = Disc(OK) · [OK : O]2.

Proof. Let A be a matrix whose rows are the images via σ of a basis for OK ,
and let B be a matrix whose rows are the images via σ of a basis for O. Since
O ⊂ OK has finite index, there is an integer matrix C such that CA = B, and
|det(C)| = [OK : O]. Then

Disc(O) = det(B)2 = det(CA)2 = det(C)2 det(A)2 = [OK : O]2 · Disc(OK).

Example 7.2.5. Let K be a number field and consider the quantity

D(K) = gcd{Disc(α) : α ∈ OK and [OK : Zα] < ∞}.

One might hope that D(K) is equal to the discriminant Disc(OK) of K. However
it’s not in general. Recall Example 5.3.2, of the field generated by a root of f =
x3 + x2 − 2x + 8. In that example, the discriminant of OK is coprime to 2, but for
every α ∈ OK , we have 2 | [OK : Z[α]]. By Proposition 7.2.4, the discriminant of
Z[α] is divisible by 4 for all α, so Disc(α) is also divisible by 4. This is the sense in
which 2 is an “essential discriminant divisor”.

This result is enough to give an algorithm for computing OK , albeit a potentially
slow one. Given K, find some order O ⊂ K, and compute d = Disc(O). Factor d,
and use the factorization to write d = s · f2, where f2 is the largest square that
divides d. Then the index of O in OK is a divisor of f , and we (tediously) can
enumerate all rings R with O ⊂ R ⊂ K and [R : O] | f , until we find the largest one
all of whose elements are integral. A much better algorithm is to proceed exactly
as just described, except use the ideas of Section 5.3.3 to find a p-maximal order
for each prime divisor of f , then add these p-maximal orders together.
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Example 7.2.6. Consider the ring OK = Z[(1 +
√

5)/2] of integers of K = Q(
√

5).
The discriminant of the basis 1, a = (1 +

√
5)/2 is

Disc(OK) =

∣∣∣∣
(

2 1
1 3

)∣∣∣∣ = 5.

Let O = Z[
√

5] be the order generated by
√

5. Then O has basis 1,
√

5, so

Disc(O) =

∣∣∣∣
(

2 0
0 10

)∣∣∣∣ = 20 = [OK : O]2 · 5,

hence O is not maximal.

Example 7.2.7. Consider the cubic field K = Q( 3
√

2), and let O be the order Z[ 3
√

2].
Relative to the base 1, 3

√
2, ( 3

√
2)2 for O, the matrix of the trace pairing is

A =




3 0 0
0 0 6
0 6 0


 .

Thus
disc(O) = det(A) = 108 = 22 · 33.

Suppose we do not know that the ring of integers OK is equal to O. By Proposi-
tion 7.2.4, we have

Disc(OK) · [OK : O]2 = 22 · 33,

so 3 | disc(OK), and [OK : O] | 6. Thus to prove O = OK it suffices to prove
that O is 2-maximal and 3-maximal, which could be accomplished as described in
Section 5.3.3.

7.3 Norms of Ideals

In this section we extend the notion of norm to ideals. This will be helpful in
the next chapter, where we will prove that the group of fractional ideals modulo
principal fractional ideals of a number field is finite by showing that every ideal is
equivalent to an ideal with norm at most some bound. This is enough, because as
we will see below there are only finitely many ideals of bounded norm.

Definition 7.3.1 (Lattice Index). If L and M are two lattices in a vector space V ,
then the lattice index [L : M ] is by definition the absolute value of the determinant
of any linear automorphism A of V such that A(L) = M .

For example, if L = 2Z and M = 10Z, then

[L : M ] = [2Z : 10Z] = det([5]) = 5,

since 5 multiples 2Z onto 10Z.
The lattice index has the following properties:
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• If M ⊂ L, then [L : M ] = #(L/M).

• If M, L, N are any lattices in V , then

[L : N ] = [L : M ] · [M : N ].

Definition 7.3.2 (Norm of Fractional Ideal). Suppose I is a fractional ideal of
OK . The norm of I is the lattice index

Norm(I) = [OK : I] ∈ Q≥0,

or 0 if I = 0.

Note that if I is an integral ideal, then Norm(I) = #(OK/I).

Lemma 7.3.3. Suppose a ∈ K and I is an integral ideal. Then

Norm(aI) = |NormK/Q(a)|Norm(I).

Proof. By properties of the lattice index mentioned above we have

[OK : aI] = [OK : I] · [I : aI] = Norm(I) · |NormK/Q(a)|.

Here we have used that [I : aI] = |NormK/Q(a)|, which is because left multiplica-
tion `a is an automorphism of K that sends I onto aI, so [I : aI] = |det(`a)| =
|NormK/Q(a)|.

Proposition 7.3.4. If I and J are fractional ideals, then

Norm(IJ) = Norm(I) · Norm(J).

Proof. By Lemma 7.3.3, it suffices to prove this when I and J are integral ideals. If
I and J are coprime, then Theorem 6.1.5 (the Chinese Remainder Theorem) implies
that Norm(IJ) = Norm(I) · Norm(J). Thus we reduce to the case when I = pm

and J = pk for some prime ideal p and integers m, k. By Proposition 6.3.3, which is
a consequence of CRT, the filtration of OK/pn given by powers of p has successive
quotients isomorphic to OK/p. Thus we see that #(OK/pn) = #(OK/p)n, which
proves that Norm(pn) = Norm(p)n.

We will use the following proposition in the next chapter when we prove finite-
ness of class groups.

Proposition 7.3.5. Fix a number field K. Let B be a positive integer. There are
only finitely many integral ideals I of OK with norm at most B.

Proof. An integral ideal I is a subgroup of OK of index equal to the norm of I. If G
is any finitely generated abelian group, then there are only finitely many subgroups
of G of index at most B, since the subgroups of index dividing an integer n are all
subgroups of G that contain nG, and the group G/nG is finite.



Chapter 8

Finiteness of the Class Group

Frequently OK is not a principal ideal domain. This chapter is about a way to
understand how badly OK fails to be a principal ideal domain. The class group of
OK measures this failure. As one sees in a course on Class Field Theory, the class
group and its generalizations also yield deep insight into the extensions of K that
are Galois with abelian Galois group.

8.1 The Class Group

Definition 8.1.1 (Class Group). Let OK be the ring of integers of a number
field K. The class group CK of K is the group of fractional ideals modulo the
sugroup of principal fractional ideals (a), for a ∈ K.

Note that if we let Div(OK) denote the group of fractional ideals, then we have
an exact sequence

0 → O∗
K → K∗ → Div(OK) → CK → 0.

That the class group CK is finite follows from the first part of the following theorem
and the fact that there are only finitely many ideals of norm less than a given integer
(Proposition 7.3.5).

Theorem 8.1.2 (Finiteness of the Class Group). Let K be a number field.
There is a constant Cr,s that depends only on the number r, s of real and pairs
of complex conjugate embeddings of K such that every ideal class of OK contains
an integral ideal of norm at most Cr,s

√
|dK |, where dK = Disc(OK). Thus by

Proposition 7.3.5 the class group CK of K is finite. One can choose Cr,s such that
every ideal class in CK contains an integral ideal of norm at most

√
|dK | ·

(
4

π

)s n!

nn
.

77



78 CHAPTER 8. FINITENESS OF THE CLASS GROUP

The explicit bound in the theorem is called the Minkowski bound, and it is the
best known general bound, which doesn’t depend on unproven conjectures.

The following two examples illustrate how to apply Theorem 8.1.2 to compute
CK in simple cases.

Example 8.1.3. Let K = Q[i]. Then n = 2, s = 1, and |dK | = 4, so the Minkowski
bound is

√
4 ·

(
4

π

)1 2!

22
=

4

π
< 2.

Thus every fractional ideal is equivalent to an ideal of norm 1. Since (1) is the only
ideal of norm 1, every ideal is principal, so CK is trivial.

Example 8.1.4. Let K = Q(
√

10). We have OK = Z[
√

10], so n = 2, s = 0,
|dK | = 40, and the Minkowski bound is

√
40 ·

(
4

π

)0

· 2!

22
= 2 ·

√
10 · 1

2
=

√
10 = 3.162277 . . . .

Theorem 8.1.2 implies that every ideal class has a representative that is an integral
ideal of norm 1, 2, or 3. The ideal 2OK is ramified in OK , so

2OK = (2,
√

10).

If (2,
√

10) were principal, say (α), then α = a + b
√

10 would have norm ±2. Then
the equation

x2 − 10y2 = ±2, (8.1.1)

would have an integer solution. But the squares mod 5 are 0,±1, so (8.1.1) has no
solutions. Thus (2,

√
10) defines a nontrivial element of the class group, and it has

order 2 since its square is the principal ideal 2OK . Thus 2 | #CK .
To find the integral ideals of norm 3, we factor x2 − 10 modulo 3, and see that

3OK = (3, 2 +
√

10) · (3, 4 +
√

10).

If either of the prime divisors of 3OK were principal, then the equation x2 −10y2 =
±3 would have an integer solution. Since it doesn’t even have one mod 5, the prime
divisors of 3OK are both nontrivial elements of the class group. Let

α =
4 +

√
10

2 +
√

10
=

1

3
· (1 +

√
10).

Then

(3, 2 +
√

10) · (α) = (3α, 4 +
√

10) = (1 +
√

10, 4 +
√

10) = (3, 4 +
√

10),

so the classes over 3 are equal.
In summary, we now know that every element of CK is equivalent to one of

(1), (2,
√

10), or (3, 2 +
√

10).

Thus the class group is a group of order at most 3 that contains an element of
order 2. Thus it must have order 2.
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Before proving Theorem 8.1.2, we prove a few lemmas. The strategy of the
proof is to start with any nonzero ideal I, and prove that there is some nonzero
a ∈ K, with very small norm, such that aI is an integral ideal. Then Norm(aI) =
NormK/Q(a)Norm(I) will be small, since NormK/Q(a) is small. The trick is to
determine precisely how small an a we can choose subject to the condition that aI
is an integral ideal, i.e., that a ∈ I−1.

Let S be a subset of V = Rn. Then S is convex if whenever x, y ∈ S then the
line connecting x and y lies entirely in S. We say that S is symmetric about the
origin if whenever x ∈ S then −x ∈ S also. If L is a lattice in V , then the volume
of V/L is the volume of the compact real manifold V/L, which is the same thing as
the absolute value of the determinant of any matrix whose rows form a basis for L.

Lemma 8.1.5 (Blichfeld). Let L be a lattice in V = Rn, and let S be a bounded
closed convex subset of V that is symmetric about the origin. Assume that Vol(S) ≥
2n Vol(V/L). Then S contains a nonzero element of L.

Proof. First assume that Vol(S) > 2n · Vol(V/L). If the map π : 1
2S → V/L is

injective, then
1

2n
Vol(S) = Vol

(
1

2
S

)
≤ Vol(V/L),

a contradiction. Thus π is not injective, so there exist P1 6= P2 ∈ 1
2S such that

P1 − P2 ∈ L. By symmetry −P2 ∈ 1
2S. By convexity, the average 1

2(P1 − P2) of P1

and −P2 is also in 1
2S. Thus 0 6= P1 − P2 ∈ S ∩ L, as claimed.

Next assume that Vol(S) = 2n · Vol(V/L). Then for all ε > 0 there is 0 6= Qε ∈
L ∩ (1 + ε)S, since Vol((1 + ε)S) > Vol(S) = 2n · Vol(V/L). If ε < 1 then the Qε

are all in L∩ 2S, which is finite since 2S is bounded and L is discrete. Hence there
exists nonzero Q = Qε ∈ L ∩ (1 + ε)S for arbitrarily small ε. Since S is closed,
Q ∈ L ∩ S.

Lemma 8.1.6. If L1 and L2 are lattices in V , then

Vol(V/L2) = Vol(V/L1) · [L1 : L2].

Proof. Let A be an automorphism of V such that A(L1) = L2. Then A defines an
isomorphism of real manifolds V/L1 → V/L2 that changes volume by a factor of
|det(A)| = [L1 : L2]. The claimed formula then follows, since [L1 : L2] = |det(A)|,
by definition.

Fix a number field K with ring of integers OK .
Let σ1, . . . , σr are the real embeddings of K and σr+1, . . . , σr+s are half the

complex embeddings of K, with one representative of each pair of complex conjugate
embeddings. Let σ : K → V = Rn be the embedding

σ(x) =
(
σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), . . . ,Re(σr+s(x)), Im(σr+1(x)), . . . , Im(σr+s(x))
)
,

Note that this σ is not the same as the one at the beginning of Section 7.2.
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Lemma 8.1.7.

Vol(V/σ(OK)) = 2−s
√
|dK |.

Proof. Let L = σ(OK). From a basis w1, . . . , wn for OK we obtain a matrix A
whose ith row is

(σ1(wi), · · · , σr(wi), Re(σr+1(wi)), . . . ,Re(σr+s(wi)), Im(σr+1(wi)), . . . , Im(σr+s(wi)))

and whose determinant has absolute value equal to the volume of V/L. By doing
the following three column operations, we obtain a matrix whose rows are exactly
the images of the wi under all embeddings of K into C, which is the matrix that
came up when we defined dK = Disc(OK) in Section 7.2.

1. Add i =
√
−1 times each column with entries Im(σr+j(wi)) to the column

with entries Re(σr+j(wi)).

2. Multiply all columns Im(σr+j(wi)) by −2i, thus changing the determinant by
(−2i)s.

3. Add each columns that now has entries Re(σr+j(wi)) + iIm(σr+j(wi)) to the
the column with entries −2iIm(σr+j(wi)) to obtain columns Re(σr+j(wi)) −
iIm(σr+j(wi)).

Recalling the definition of discriminant, we see that if B is the matrix constructed
by the above three operations, then det(B)2 = dK . Thus

Vol(V/L) = |det(A)| = |(−2i)−s · det(B)| = 2−s
√
|dK |.

Lemma 8.1.8. If I is a fractional OK-ideal, then σ(I) is a lattice in V , and

Vol(V/σ(I)) = 2−s
√
|dK | · Norm(I).

Proof. We know that [OK : I] = Norm(I) is a nonzero rational number. Lemma 8.1.7
implies that σ(OK) is a lattice in V , since σ(OK) has rank n as abelian group and
spans V , so σ(I) is also a lattice in V . For the volume formula, combine Lem-
mas 8.1.6–8.1.7 to get

Vol(V/σ(I)) = Vol(V/σ(OK)) · [OK : I] = 2−s
√
|dK |Norm(I).

Proof of Theorem 8.1.2. Let K be a number field with ring of integers OK , let
σ : K ↪→ V ∼= Rn be as above, and let f : V → R be the function defined by

f(x1, . . . , xn) = |x1 · · ·xr · (x2
r+1 + x2

(r+1)+s) · · · (x2
r+s + x2

n)|.
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Notice that if x ∈ K then f(σ(x)) = |NormK/Q(x)|, and

f(ax1, . . . , axn) = |a|nf(x1, . . . , xn).

Let S ⊂ V be any closed, bounded, convex, subset with positive volume that
is symmetric with respect to the origin and has positive volume. Since S is closed
and bounded,

M = max{f(x) : x ∈ S}

exists.

Suppose I is any fractional ideal of OK . Our goal is to prove that there is
an integral ideal aI with small norm. We will do this by finding an appropriate
a ∈ I−1. By Lemma 8.1.8,

c = Vol(V/σ(I−1)) = 2−s
√
|dK | · Norm(I)−1 =

2−s
√
|dK |

Norm(I)
.

Let λ = 2 ·
(

c
v

)1/n
, where v = Vol(S). Then

Vol(λS) = λn Vol(S) = 2n c

v
· v = 2n · c = 2n Vol(V/I−1),

so by Lemma 8.1.5 there exists 0 6= b ∈ σ(I−1) ∩ λS. Let a ∈ I−1 be such that
σ(a) = b. Since M is the largest norm of an element of S, the largest norm of an
element of σ(I−1) ∩ λS is at most λnM , so

|NormK/Q(a)| ≤ λnM.

Since a ∈ I−1, we have aI ⊂ OK , so aI is an integral ideal of OK that is equivalent
to I, and

Norm(aI) = |NormK/Q(a)| · Norm(I)

≤ λnM · Norm(I)

≤ 2n c

v
M · Norm(I)

= 2n · 2−s
√
|dK | · M · v−1

= 2r+s
√
|dK | · M · v−1.

Notice that the right hand side is independent of I. It depends only on r, s, |dK |, and
our choice of S. This completes the proof of the theorem, except for the assertion
that S can be chosen to give the claim at the end of the theorem, which we leave
as an exercise.

Corollary 8.1.9. Suppose that K 6= Q is a number field. Then |dK | > 1.
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Proof. Applying Theorem 8.1.2 to the unit ideal, we get the bound

1 ≤
√
|dK | ·

(
4

π

)s n!

nn
.

Thus √
|dK | ≥

(π

4

)s nn

n!
,

and the right hand quantity is strictly bigger than 1 for any s ≤ n/2 and any n > 1
(exercise).

A prime p ramifies in OK if and only if d | dK , so the corollary implies that
every extension of Q is ramified at some prime.

8.2 Class Number 1

The fields of class number 1 are exactly the fields for which OK is a principal ideal
domain. How many such number fields are there? We still don’t know.

Conjecture 8.2.1. There are infinitely many number fields K such that the class
group of K has order 1.

For example, if we consider real quadratic fields K = Q(
√

d), with d positive
and square free, many class numbers are probably 1, as suggested by the Magma

output below. It looks like 1’s will keep appearing infinitely often, and indeed Cohen
and Lenstra conjecture that they do ([CL84]).

for d in [2..1000] do

if IsFundamentalDiscriminant(d) then

h := ClassNumber(NumberField(x^2-d));

if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53, 56, 57, 61,

69, 73, 76, 77, 88, 89, 92, 93, 97, 101, 109, 113, 124, 129, 133,

137, 141, 149, 152, 157, 161, 172, 173, 177, 181, 184, 188, 193,

197, 201, 209, 213, 217, 233, 236, 237, 241, 248, 249, 253, 268,

269, 277, 281, 284, 293, 301, 309, 313, 317, 329, 332, 337, 341,

344, 349, 353, 373, 376, 381, 389, 393, 397, 409, 412, 413, 417,

421, 428, 433, 437, 449, 453, 457, 461, 472, 489, 497, 501, 508,

509, 517, 521, 524, 536, 537, 541, 553, 556, 557, 569, 573, 581,

589, 593, 597, 601, 604, 613, 617, 632, 633, 641, 649, 652, 653,

661, 664, 668, 669, 673, 677, 681, 701, 709, 713, 716, 717, 721,

737, 749, 753, 757, 764, 769, 773, 781, 789, 796, 797, 809, 813,
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821, 824, 829, 844, 849, 853, 856, 857, 869, 877, 881, 889, 893,

908, 913, 917, 921, 929, 933, 937, 941, 953, 956, 973, 977, 989, 997

In contrast, if we look at class numbers of quadratic imaginary fields, only a few at
the beginning have class number 1.

for d in [-1000..-1] do

if IsFundamentalDiscriminant(d) then

h := ClassNumber(NumberField(x^2-d));

if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

-163, -67, -43, -19, -11, -8, -7, -4, -3

It is a theorem that was proved independently and in different ways by Heegner,
Stark, and Baker that the above list of 9 fields is the complete list with class
number 1. More generally, it is possible (in theory), using deep work of Gross,
Zagier, and Goldfeld involving zeta functions and elliptic curves, to enumerate all
quadratic number fields with a given class number.

The function in PARI for computing the order of the class group of a quadratic
field in PARI is called qfbclassno.

?qfbclassno

qfbclassno(x,{flag=0}): class number of discriminant x using

Shanks’s method by default. If (optional) flag is set to 1,

use Euler products.

? for(d=2,1000, if(isfundamental(d), h=qfbclassno(d);if(h==1,print1(d,", "))))

5, 8, 12, 13, 17, 21, 24, ... 977, 989, 997,

? for(d=-1000,-1,if(isfundamental(d), h=qfbclassno(d);if(h==1,print1(d,", "))))

-163, -67, -43, -19, -11, -8, -7, -4, -3

PARI does the above class number computations vastly faster than MAGMA. How-
ever, note the following ominous warning in the PARI manual, which has been there
in some form since 1997:

Important warning. For D < 0, this function may give incorrect re-
sults when the class group has a low exponent (has many cyclic factors),
because implementing Shank’s method in full generality slows it down
immensely. It is therefore strongly recommended to double-check results
using either the version with flag=1, the fucntion qfbhclassno(-D) or
the function quadclassunit.
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8.3 More About Computing Class Groups

If p is a prime of OK , then the intersection p ∩ Z = pZ is a prime ideal of Z. We
say that p lies over p ∈ Z. Note p lies over p ∈ Z if and only if p is one of the
prime factors in the factorization of the ideal pOK . Geometrically, p is a point of
Spec(OK) that lies over the point pZ of Spec(Z) under the map induced by the
inclusion Z ↪→ OK .

Lemma 8.3.1. Let K be a number field with ring of integers OK . Then the class
group Cl(K) is generated by the prime ideals p of OK lying over primes p ∈ Z with
p ≤ BK =

√
|dK | ·

(
4
π

)s · n!
nn , where s is the number of complex conjugate pairs of

embeddings K ↪→ C.

Proof. Theorem 8.1.2 asserts that every ideal class in Cl(K) is represented by an
ideal I with Norm(I) ≤ BK . Write I =

∏m
i=1 pei

i , with each ei ≥ 1. Then by
multiplicativity of the norm, each pi also satisfies Norm(pi) ≤ BK . If pi ∩ Z = pZ,
then p | Norm(pi), since p is the residue characteristic of OK/p, so p ≤ BK . Thus I
is a product of primes p that satisfies the norm bound of the lemma.

This is a sketch of how to compute Cl(K):

1. Use the algorithms of Chapter 5 to list all prime ideals p of OK that appear
in the factorization of a prime p ∈ Z with p ≤ BK .

2. Find the group generated by the ideal classes [p], where the p are the prime
ideals found in step 1. (In general, this step can become fairly complicated.)

The following three examples illustrate computation of Cl(K) for K = Q(i),Q(
√

5)
and Q(

√
−6).

Example 8.3.2. We compute the class group of K = Q(i). We have

n = 2, r = 0, s = 1, dK = −4,

so

BK =
√

4 ·
(

4

π

)1

·
(

2!

22

)
=

8

π
< 3.

Thus Cl(K) is generated by the prime divisors of 2. We have

2OK = (1 + i)2,

so Cl(K) is generated by the principal prime ideal p = (1 + i). Thus Cl(K) = 0 is
trivial.

Example 8.3.3. We compute the class group of K = Q(
√

5). We have

n = 2, r = 2, s = 0, dK = 5,
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so

B =
√

5 ·
(

4

π

)0

·
(

2!

22

)
< 3.

Thus Cl(K) is generated by the primes that divide 2. We have OK = Z[γ], where

γ = 1+
√

5
2 satisfies x2 − x − 1. The polynomial x2 − x − 1 is irreducible mod 2, so

2OK is prime. Since it is principal, we see that Cl(K) = 1 is trivial.

Example 8.3.4. In this example, we compute the class group of K = Q(
√
−6). We

have
n = 2, r = 0, s = 1, dK = −24,

so

B =
√

24 · 4

π
·
(

2!

22

)
∼ 3.1.

Thus Cl(K) is generated by the prime ideals lying over 2 and 3. We have OK =
Z[
√
−6], and

√
−6 satisfies x2 +6 = 0. Factoring x2 +6 modulo 2 and 3 we see that

the class group is generated by the prime ideals

p2 = (2,
√
−6) and p3 = (3,

√
−6).

Also, p2
2 = 2OK and p2

3 = 3OK , so p2 and p3 define elements of order dividing 2 in
Cl(K).

Is either p2 or p3 principal? Fortunately, there is an easier norm trick that allows
us to decide. Suppose p2 = (α), where α = a + b

√
−6. Then

2 = Norm(p2) = |Norm(α)| = (a + b
√
−6)(a − b

√
−6) = a2 + 6b2.

Trying the first few values of a, b ∈ Z, we see that this equation has no solutions,
so p2 can not be principal. By a similar argument, we see that p3 is not principal
either. Thus p2 and p3 define elements of order 2 in Cl(K).

Does the class of p2 equal the class of p3? Since p2 and p3 define classes of
order 2, we can decide this by finding the class of p2 · p3. We have

p2 · p3 = (2,
√
−6) · (3,

√
−6) = (6, 2

√
−6, 3

√
−6) ⊂ (

√
−6).

The ideals on both sides of the inclusion have norm 6, so by multiplicativity of the
norm, they must be the same ideal. Thus p2 · p3 = (

√
−6) is principal, so p2 and p3

represent the same element of Cl(K). We conclude that

Cl(K) = 〈p2〉 = Z/2Z.
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Chapter 9

Dirichlet’s Unit Theorem

In this chapter we will prove Dirichlet’s unit theorem, which is a structure theorem
for the group of units of the ring of integers of a number field. The answer is
remarkably simple: if K has r real and s pairs of complex conjugate embeddings,
then

O∗
K ≈ Zr+s−1 × T,

where T is a finite cyclic group.
Many questions can be encoded as questions about the structure of the group

of units. For example, Dirichlet’s unit theorem implies that the solutions to Pell’s
equation x2 − dy2 = 1 form a free abelian group of rank 1.

9.1 The Group of Units

Definition 9.1.1 (Unit Group). The group of units UK associated to a number
field K is the group of elements of OK that have an inverse in OK .

Theorem 9.1.2 (Dirichlet). The group UK is the product of a finite cyclic group
of roots of unity with a free abelian group of rank r+s−1, where r is the number of
real embeddings of K and s is the number of complex conjugate pairs of embeddings.

(Note that we will prove a generalization of Theorem 9.1.2 in Section 13.1 below.)
We prove the theorem by defining a map ϕ : UK → Rr+s, and showing that the

kernel of ϕ is finite and the image of ϕ is a lattice in a hyperplane in Rr+s. The
trickiest part of the proof is showing that the image of ϕ spans a hyperplane, and
we do this by a clever application of Blichfeld’s Lemma 8.1.5.

Remark 9.1.3. Theorem 9.1.2 is due to Dirichlet who lived 1805–1859. Thomas
Hirst described Dirichlet thus:

He is a rather tall, lanky-looking man, with moustache and beard about
to turn grey with a somewhat harsh voice and rather deaf. He was un-
washed, with his cup of coffee and cigar. One of his failings is forgetting
time, he pulls his watch out, finds it past three, and runs out without
even finishing the sentence.

87
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Koch wrote that:

... important parts of mathematics were influenced by Dirichlet. His
proofs characteristically started with surprisingly simple observations,
followed by extremely sharp analysis of the remaining problem.

I think Koch’s observation nicely describes the proof we will give of Theorem 9.1.2.

Units have a simple characterization in terms of their norm.

Proposition 9.1.4. An element a ∈ OK is a unit if and only if NormK/Q(a) = ±1.

Proof. Write Norm = NormK/Q. If a is a unit, then a−1 is also a unit, and 1 =
Norm(a)Norm(a−1). Since both Norm(a) and Norm(a−1) are integers, it follows
that Norm(a) = ±1. Conversely, if a ∈ OK and Norm(a) = ±1, then the equation
aa−1 = 1 = ±Norm(a) implies that a−1 = ±Norm(a)/a. But Norm(a) is the
product of the images of a in C by all embeddings of K into C, so Norm(a)/a is
also a product of images of a in C, hence a product of algebraic integers, hence an
algebraic integer. Thus a−1 ∈ K ∩ Z = OK , which proves that a is a unit.

Let r be the number of real and s the number of complex conjugate embeddings
of K into C, so n = [K : Q] = r + 2s. Define the log embedding

ϕ : UK → Rr+s

by
ϕ(a) = (log |σ1(a)|, . . . , log |σr+s(a)|).

(Here |z| is the usual absolute value of z = x + iy ∈ C, so |z| =
√

x2 + y2.)

Lemma 9.1.5. The image of ϕ lies in the hyperplane

H = {(x1, . . . , xr+s) ∈ Rr+s : x1 + · · · + xr + 2xr+1 + · · · + 2xr+s = 0}. (9.1.1)

Proof. If a ∈ UK , then by Proposition 9.1.4,
(

r∏

i=1

|σi(a)|
)

·
(

r+s∏

i=r+1

|σi(a)|2
)

= |NormK/Q(a)| = 1.

Taking logs of both sides proves the lemma.

Lemma 9.1.6. The kernel of ϕ is finite.

Proof. We have

Ker(ϕ) ⊂ {a ∈ OK : |σi(a)| = 1 for i = 1, . . . , r + s}
⊂ σ(OK) ∩ X,

where X is the bounded subset of Rr+s of elements all of whose coordinates have
absolute value at most 1. Since σ(OK) is a lattice (see Proposition 2.4.4), the
intersection σ(OK) ∩ X is finite, so Ker(ϕ) is finite.
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Lemma 9.1.7. The kernel of ϕ is a finite cyclic group.

Proof. This follows from the general fact that any finite subgroup G of the multi-
plicative group K∗ of a field is cyclic. Indeed, if n is the exponent of G, then every
element of G satisfies xn − 1. A polynomial of degree n over a field has at most n
roots, so G has order at most n, hence G is cyclic of order n.

To prove Theorem 9.1.2, it suffices to prove that Im(ϕ) is a lattice in the hyper-
plane H of (9.1.1), which we view as a vector space of dimension r + s − 1.

Define an embedding

σ : K ↪→ Rn (9.1.2)

given by σ(x) = (σ1(x), . . . , σr+s(x)), where we view C ∼= R×R via a+ bi 7→ (a, b).
Thus this is the embedding

x 7→
(
σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), Im(σr+1(x)), . . . ,Re(σr+s(x)), Im(σr+s(x))
)
.

Lemma 9.1.8. The image ϕ : UK → Rr+s is discrete.

Proof. We will show that for any bounded subset X of Rr+s, the intersection
ϕ(UK) ∩ X is finite. If X is bounded, then for any u ∈ Y = ϕ−1(X) ⊂ UK

the coordinates of σ(u) are bounded, since | log(x)| is bounded on bounded subsets
of [1,∞). Thus σ(Y ) is a bounded subset of Rn. Since σ(Y ) ⊂ σ(OK), and σ(OK)
is a lattice in Rn, it follows that σ(Y ) is finite; moreover, σ is injective, so Y is
finite. Thus ϕ(UK) ∩ X ⊂ ϕ(Y ) ∩ X is finite.

We will use the following lemma in our proof of Theorem 9.1.2.

Lemma 9.1.9. Let n ≥ 2 be an integer, suppose w1, . . . , wn ∈ R are not all equal,
and suppose A, B ∈ R are positive. Then there exist d1, . . . , dn ∈ R>0 such that

|w1 log(d1) + · · · + wn log(dn)| > B

and d1 · · · dn = A.

Proof. Order the wi so that w1 6= 0. By hypothesis there exists a wj such that
wj 6= w1, and again re-ordering we may assume that j = 2. Set d3 = · · · = dr+s = 1.
Then d1d2 = A and log(1) = 0, so

∣∣∣∣∣

r+s∑

i=1

wi log(di)

∣∣∣∣∣ = |w1 log(d1) + w2 log(d2)|

= |w1 log(d1) + w2 log(A/d1)|
= |(w1 − w2) log(d1) + w2 log(A)|

Since w1 6= w2, we have |(w1 − w2) log(d1) + w2 log(A)| → ∞ as d1 → ∞.
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Proof of Theorem 9.1.2. By Lemma 9.1.8, the image ϕ(UK) is discrete, so it remains
to show that ϕ(UK) spans H. Let W be the R-span of the image ϕ(UK), and note
that W is a subspace of H, by Lemma 9.1.5. We will show that W = H indirectly
by showing that if v 6∈ H⊥, where ⊥ is the orthogonal complement with respect to
the dot product on Rr+s, then v 6∈ W⊥. This will show that W⊥ ⊂ H⊥, hence that
H ⊂ W , as required.

Thus suppose z = (z1, . . . , zr+s) 6∈ H⊥. Define a function f : K∗ → R by

f(x) = z1 log |σ1(x)| + · · · + zr+s log |σr+s(x)|. (9.1.3)

Note that f = 0 if and only if z ∈ W⊥, so to show that z 6∈ W⊥ we show that there
exists some u ∈ UK with f(u) 6= 0.

Let

A =
√
|dK | ·

(
2

π

)s

∈ R>0.

Choose any positive real numbers c1, . . . , cr+s ∈ R>0 such that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A.

Let

S = {(x1, . . . , xn) ∈ Rn :

|xi| ≤ ci for 1 ≤ i ≤ r,

|x2
i + x2

i+s| ≤ c2
i for r < i ≤ r + s} ⊂ Rn.

Then S is closed, bounded, convex, symmetric with respect to the origin, and of
dimension r + 2s, since S is a product of r intervals and s discs, each of which has
these properties. Viewing S as a product of intervals and discs, we see that the
volume of S is

Vol(S) =
r∏

i=1

(2ci) ·
s∏

i=1

(πc2
i ) = 2r · πs · A.

Recall Blichfeldt’s Lemma 8.1.5, which asserts that if L is a lattice and S is
closed, bounded, etc., and has volume at least 2n · Vol(V/L), then S ∩ L contains
a nonzero element. To apply this lemma, we take L = σ(OK) ⊂ Rn, where σ is
as in (9.1.2). By Lemma 8.1.7, we have Vol(Rn/L) = 2−s

√
|dK |. To check the

hypothesis of Blichfeld’s lemma, note that

Vol(S) = 2r+s
√
|dK | = 2n2−s

√
|dK | = 2n Vol(Rn/L).

Thus there exists a nonzero element a in S ∩ σ(OK), so there is a nonzero a ∈ OK

such that |σi(a)| ≤ ci for 1 ≤ i ≤ r + s. We then have

|NormK/Q(a)| =

∣∣∣∣∣

r+2s∏

i=1

σi(a)

∣∣∣∣∣

=
r∏

i=1

|σi(a)| ·
s∏

i=r+1

|σi(a)|2

≤ c1 · · · cr · (cr+1 · · · cr+s)
2 = A.
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Since a ∈ OK is nonzero, we also have

|NormK/Q(a)| ≥ 1.

Moreover, if for any i ≤ r, we have |σi(a)| < ci

A , then

1 ≤ |NormK/Q(a)| < c1 · · ·
ci

A
· · · cr · (cr+1 · · · cr+s)

2 =
A

A
= 1,

a contradiction, so |σi(a)| ≥ ci

A for i = 1, . . . , r. Likewise, |σi(a)|2 ≥ c2i
A , for i =

r + 1, . . . , r + s. Rewriting this we have

ci

|σi(a)| ≥ A for i ≤ r and

(
ci

|σi(a)|

)2

≥ A for i = r + 1, . . . , r + s. (9.1.4)

Our overall strategy is to use an appropriately chosen a to construct a unit u ∈
UK such f(u) 6= 0. First, let b1, . . . , bm be representative generators for the finitely
many nonzero principal ideals of OK of norm at most A. Since |NormK/Q(a)| ≤ A,
we have (a) = (bj), for some j, so there is a unit u ∈ OK such that a = ubj .

Let

t = t(c1, . . . , cr+s) = z1 log(c1) + · · · + zr+s log(cr+s),

and recall f : K∗ → R defined in (9.1.3) above. We first show that

|f(u) − t| ≤ B = |f(bj)| + log(A) ·
(

r∑

i=1

|zi| +
1

2
·

s∑

i=r+1

|zi|
)

. (9.1.5)

We have

|f(u) − t| = |f(a) − f(bj) − t|
≤ |f(bj)| + |t − f(a)|
= |f(bj)| + |z1(log(c1) − log(|σ1(a)|)) + · · · + zr+s(log(cr+s) − log(|σr+s(a)|))|
= |f(bj)| + |z1 · log(c1/|σ1(a)|) + · · · + zr+s

2
· log((cr+s/|σr+s(a)|)2)|

≤ |f(bj)| + log(A) ·
(

r∑

i=1

|zi| +
1

2
·

s∑

i=r+1

|zi|
)

.

In the last step we use (9.1.4).

A wonderful property of (9.1.5) is that the bound B on the right hand side
does not depend on our choice of ci. For example, if we can choose positive real
numbers ci such that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A

|t(c1, . . . , cr+s)| > B,
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then |f(u) − t| ≤ B would imply that |f(u)| > 0, which is exactly what we aimed
to prove. If r + s = 1, then we are trying to prove that ϕ(UK) is a lattice in
R0 = Rr+s−1, which is automatically true, so assume r + s > 1. It is possible to
choose such ci such that |f(u) − t| > B, using Lemma 9.1.9. Write

z1 log(c1) + · · · + zr+s log(cr+s) =

z1 log(c1) + · · · + zr log(cr) +
1

2
· zr+1 log(c2

r+1) + · · · + 1

2
· zr+s log(c2

r+s)

= w1 log(d1) + · · · + wr log(dr) + wr+1 log(dr+1) + · · · + ·wr+s log(dr+s),

where wi = zi and di = ci for i ≤ r, and wi = 1
2zi and di = c2

i for r < i ≤ r + s,
The condition that z 6∈ H⊥ is that the wi are not all the same, and in our new
coordinates the lemma is equivalent to showing that |∑r+s

i=1 wi log(di)| > B, subject
to the condition that

∏r+s
i=1 di = A. But this is exactly what Lemma 9.1.9 shows. It

is thus possible to find a unit u such that |f(u)| > 0. Thus z 6∈ W⊥, so W⊥ ⊂ Z⊥,
whence Z ⊂ W , which finishes the proof Theorem 9.1.2.

9.2 Examples with MAGMA

9.2.1 Pell’s Equation

The Pell’s equation problem is, given square-free d > 0, to find all positive integer
solutions (x, y) to the equation x2 − dy2 = 1. Note that if x + y

√
d ∈ Q(

√
d), then

Norm(x + y
√

d) = (x + y
√

d)(x − y
√

d) = x2 − dy2.

The solutions to Pell’s equation thus form a finite-index subgroup of the group of
units in the ring of integers of Q(

√
d). Dirichlet’s unit theorem implies that for

any d the solutions to Pell’s equation form an infinite cyclic group, a fact that takes
substantial work to prove using only elementary number theory (for example, using
continued fractions).

We first solve Pell’s equation x2 − 5y2 = 1 with d = 5 by finding the units of a
field using Magma:

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-5);

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.1);

-1

> u := K!phi(G.2); u;
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1/2*(a + 1)

> u^2;

1/2*(a + 3)

> u^3;

a + 2

> Norm(u);

-1

> Norm(u^3);

-1

> Norm(u^6);

1

> fund := u^6;

> fund;

4*a + 9

> 9^2 - 5*4^2;

1

> fund^2;

72*a + 161

> fund^3;

1292*a + 2889

> fund^4;

23184*a + 51841

> fund^5;

416020*a + 930249

The MathSciNet review of [Len02] says: “This wonderful article begins with
history and some elementary facts and proceeds to greater and greater depth about
the existence of solutions to Pell equations and then later the algorithmic issues
of finding those solutions. The cattle problem is discussed, as are modern smooth
number methods for solving Pell equations and the algorithmic issues of representing
very large solutions in a reasonable way.”

The simplest solutions to Pell’s equation can be huge, even when d is quite small.
Read Lenstra’s paper for some examples from over two thousand years ago.

K<a> := NumberField(x^2-NextPrime(10^7));

> G, phi := UnitGroup(K);

> K!phi(G.2);

1635802598803463282255922381210946254991426776931429155067472530\

003400641003657678728904388162492712664239981750303094365756\

106316392723776016806037958837914778176119741840754457028237\

899759459100428895693238165048098039*a +

517286692885814967470170672368346798303629034373575202975075\

605058714958080893991274427903448098643836512878351227856269\

086856679078304979321047765031073345259902622712059164969008\

6336036036403311756634562204182936222240930
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9.2.2 Examples with Various Signatures

In this section we give examples for various (r, s) pairs. First we consider K = Q(i).

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2+1);

> Signature(K);

0 1 // r=0, s=1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/4

Defined on 1 generator

Relations:

4*G.1 = 0

> K!phi(G.1);

-a

The Signature command returns the number of real and complex conjugate em-
beddings of K into C. The command UnitGroup, which we used above, returns
the unit group UK as an abstract abelian group and a homomorphism UK → OK .
Note that we have to bang (!) into K to get the units as elements of K.

Next we consider K = Q( 3
√

2).

> K<a> := NumberField(x^3-2);

> Signature(K);

1 1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.2);

-a + 1

The Conjugates command returns the sequence (σ1(x), . . . , σr+2s(x)) of all embed-
dings of x ∈ K into C. The Logs command returns the sequence

(log(|σ1(x)|), . . . , log(|σr+s(x)|)).

Continuing the above example, we have

> Conjugates(K!phi(G.2));

[ -0.25992104989487316476721060727822835057025146470099999999995,

1.6299605249474365823836053036391141752851257323513843923104 -

1.09112363597172140356007261418980888132587333874018547370560*i,

1.6299605249474365823836053036391141752851257323513843923104 +
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1.09112363597172140356007261418980888132587333874018547370560*i ]

> Logs(K!phi(G.2)); // image of infinite order unit -- generates a lattice

[ -1.34737734832938410091818789144565304628306227332099999999989\

, 0.6736886741646920504590939457228265231415311366603288999999 ]

> Logs(K!phi(G.1)); // image of -1

[ 0.E-57, 0.E-57 ]

Let’s try a field such that r + s − 1 = 2. First, one with r = 0 and s = 3:

> K<a> := NumberField(x^6+x+1);

> Signature(K);

0 3

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

a

> u2 := K!phi(G.3); u2;

-2*a^5 - a^3 + a^2 + a

> Logs(u1);

[ 0.11877157353322375762475480482285510811783185904379239999998,

0.048643909752673399635150940533329986148342128393119899999997,

-0.16741548328589715725990574535618509426617398743691229999999 ]

> Logs(u2);

[ 1.6502294567845884711894772749682228152154948421589999999997,

-2.09638539134527779532491660083370951943382108902299999999997,

0.44615593456068932413543932586548670421832624686433469999994 ]

Notice that the log image of u1 is clearly not a real multiple of the log image
of u2 (e.g., the scalar would have to be positive because of the first coefficient, but
negative because of the second). This illustrates the fact that the log images of u1

and u2 span a two-dimensional space.

Next we compute a field with r = 3 and s = 0. (A field with s = 0 is called
totally real.)

> K<a> := NumberField(x^3 + x^2 - 5*x - 1);

> Signature(K);

3 0

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators
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Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

1/2*(a^2 + 2*a - 1)

> u2 := K!phi(G.3); u2;

a

> Logs(u1);

[ 1.16761574692758757159598251863681302946987760474899999999995,

-0.39284872458139826129179862583435951875841422643044369999996,

-0.7747670223461893103041838928024535107114633783181766999998 ]

> Logs(u2);

[ 0.6435429462288618773851817227686467257757954024463081999999,

-1.6402241503223171469101505551700850575583464226669999999999,

0.9966812040934552695249688324014383317825510202205498999998 ]

A field with r = 0 is called totally complex. For example, the cyclotomic fields
Q(ζn) are totally complex, where ζn is a primitive nth root of unity. The degree of
Q(ζn) over Q is ϕ(n) and r = 0, so s = ϕ(n)/2 (assuming n > 2).

> K := CyclotomicField(11); K;

Cyclotomic Field of order 11 and degree 10

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/22 + Z + Z + Z + Z

Defined on 5 generators

Relations:

22*G.1 = 0

> u := K!phi(G.2); u;

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^3 + zeta_11^2 + zeta_11 + 1

> Logs(u);

[ -1.25656632417872848745322215929976803991663080388899999999969,

0.6517968940331400079717923884685099182823284402303273999999,

-0.18533004655986214094922163920197221556431542171819269999999,

0.5202849820300749393306985734118507551388955065272236999998,

0.26981449467537568109995283662137958205972227885009159999993 ]

> K!phi(G.3);

zeta_11^9 + zeta_11^7 + zeta_11^6 + zeta_11^5 + zeta_11^4 +

zeta_11^3 + zeta_11^2 + zeta_11 + 1

> K!phi(G.4);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^3 + zeta_11^2 + zeta_11

> K!phi(G.5);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^2 + zeta_11 + 1
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How far can we go computing unit groups of cyclotomic fields directly with
Magma?

> time G,phi := UnitGroup(CyclotomicField(13));

Time: 2.210

> time G,phi := UnitGroup(CyclotomicField(17));

Time: 8.600

> time G,phi := UnitGroup(CyclotomicField(23));

.... I waited over 10 minutes (usage of 300MB RAM) and gave up.
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Chapter 10

Decomposition and Inertia

Groups

In this chapter we will study extra structure in the case when K is Galois over Q.
We’ll learn about Frobenius elements, the Artin symbol, decomposition groups,
and how the Galois group of K is related to Galois groups of residue class fields.
These are the basic structures needed to attach L-function to representations of
Gal(Q/Q).

10.1 Galois Extensions

In this section we give a survey without proofs of the basic facts about Galois
extensions of Q that will be needed in the rest of this chapter.

Suppose K ⊂ C is a number field. Then K is Galois if every field homomorphism
K → C has image K, or equivalently, # Aut(K) = [K : Q]. More generally, we
have the following definition.

Definition 10.1.1 (Galois). An extension K/L of number fields is Galois if
# Aut(K/L) = [K : L], where Aut(K/L) is the group of automorphisms of K
that fix L. We write Gal(K/L) = Aut(K/L).

For example, Q is Galois (over itself), any quadratic extension K/L is Galois,
since it is of the form L(

√
a), for some a ∈ L, and the nontrivial embedding is

induced by
√

a 7→ −√
a, so there is always one nontrivial automorphism. If f ∈ L[x]

is an irreducible cubic polynomial, and a is a root of f , then one proves in a course
in Galois theory that L(a) is Galois over L if and only if the discriminant of f is
a perfect square in L. “Random” number fields of degree bigger than 2 are rarely
Galois.

If K ⊂ C is a number field, then the Galois closure Kgc of K is the field
generated by all images of K under all embeddings in C (more generally, if K/L
is an extension, the Galois closure of K over L is the field generated by images of
embeddings K → C that are the identity map on L). If K = Q(a), then Kgc is

99
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the field generated by all of the conjugates of a, and is hence Galois over Q, since
the image under an embedding of any polynomial in the conjugates of a is again a
polynomial in conjugates of a.

How much bigger can the degree of Kgc be as compared to the degree of K =
Q(a)? There is an embedding of Gal(Kgc/Q) into the group of permutations of the
conjugates of a. If a has n conjugates, then this is an embedding Gal(Kgc/Q) ↪→ Sn,
where Sn is the symmetric group on n symbols, which has order n!. Thus the degree
of the Kgc over Q is a divisor of n!. Also one can prove that the Galois group is a
transitive subgroup of Sn, which constrains the possibilities further. When n = 2,
we recover the fact that quadratic extensions are Galois. When n = 3, we see that
the Galois closure of a cubic extension is either the cubic extension or a quadratic
extension of the cubic extension.

One can show that the Galois closure of a cubic extension is obtained by ad-
joining the square root of the discriminant. For an extension K of degree 5, it is
“frequently” the case that the Galois closure has degree 120, and in fact it is a
difficult and interesting problem to find examples of degree 5 extension in which
the Galois closure has degree smaller than 120 (according to Magma: the only
possibilities for the order of a transitive proper subgroup of S5 are 5, 10, 20, and
60; there are five transitive subgroups of S5 out of the total of 19 subgroups of S5).

Let n be a positive integer. Consider the field K = Q(ζn), where ζn = e2πi/n is a
primitive nth root of unity. If σ : K → C is an embedding, then σ(ζn) is also an nth
root of unity, and the group of nth roots of unity is cyclic, so σ(ζn) = ζm

n for some
m which is invertible modulo n. Thus K is Galois and Gal(K/Q) ↪→ (Z/nZ)∗.
However, [K : Q] = ϕ(n), so this map is an isomorphism. (Remark: Taking a
limit using the maps Gal(Q/Q) → Gal(Q(ζpr)/Q), we obtain a homomorphism
Gal(Q/Q) → Z∗

p, which is called the p-adic cyclotomic character.)

Compositums of Galois extensions are Galois. For example, the biquadratic field
K = Q(

√
5,
√
−1) is a Galois extension of Q of degree 4.

Fix a number field K that is Galois over a subfield L. Then the Galois group
G = Gal(K/L) acts on many of the object that we have associated to K, including:

• the integers OK ,

• the units UK ,

• the group of fractional ideals of OK ,

• the class group Cl(K), and

• the set Sp of prime ideals P lying over a given prime p of OL.

In the next section we will be concerned with the action of Gal(K/L) on Sp, though
actions on each of the other objects, especially Cl(K), is also of great interest.
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10.2 Decomposition of Primes: efg = n

If I ⊂ OK is any ideal in the ring of integers of a Galois extension K of Q and
σ ∈ Gal(K/Q), then

σ(I) = {σ(x) : x ∈ I}
is also an ideal of OK .

Fix a prime p ⊂ OK and write pOK = Pe1

1 · · ·Peg
g , so Sp = {P1, . . . ,Pg}.

Definition 10.2.1 (Residue class degree). Suppose P is a prime of OK lying
over p. Then the residue class degree of P is

fP/p = [OK/P : OL/p],

i.e., the degree of the extension of residue class fields.

If M/K/L is a tower of field extensions and q is a prime of M over P, then

fq/p = [OM/q : OL/p] = [OM/q : OK/P] · [OK/P : OL/p] = fq/P · fP/p,

so the residue class degree is multiplicative in towers.
Note that if σ ∈ Gal(K/L) and P ∈ Sp, then σ induces an isomorphism of finite

fields OK/P → OK/σ(P) that fixes the common subfield OL/p. Thus the residue
class degrees of P and σ(P) are the same. In fact, much more is true.

Theorem 10.2.2. Suppose K/L is a Galois extension of number fields, and let p be
a prime of OL. Write pOK =

∏g
i=1 Pei

i , and let fi = fPi/p. Then G = Gal(K/L)
acts transitively on the set Sp of primes Pi. Moreover,

e1 = · · · = eg, f1 = · · · = fg,

and efg = [K : L], where e is the common value of the ei and f is the common
value of the fi.

Proof. For simplicity, we will give the proof only in the case L = Q, but the proof
works in general. Suppose p ∈ Z and pOK = pe1

1 · · · peg
g , and S = {p1, . . . , pg}. We

will first prove that G acts transitively on S. Let p = pi for some i. Recall that
we proved long ago, using the Chinese Remainder Theorem (Theorem 6.1.5) that
there exists a ∈ p such that (a)/p is an integral ideal that is coprime to pOK . The
product

I =
∏

σ∈G

σ((a)/p) =
∏

σ∈G

(σ(a))OK

σ(p)
=

(NormK/Q(a))OK∏

σ∈G

σ(p)
(10.2.1)

is a nonzero integral OK ideal since it is a product of nonzero integral OK ideals.
Since a ∈ p we have that NormK/Q(a) ∈ p ∩ Z = pZ. Thus the numerator of the
rightmost expression in (10.2.1) is divisible by pOK . Also, because (a)/p is coprime
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to pOK , each σ((a)/p) is coprime to pOK as well. Thus I is coprime to pOK . Thus
the denominator of the rightmost expression in (10.2.1) must also be divisibly by
pOK in order to cancel the pOK in the numerator. Thus we have shown that for
any i,

g∏

j=1

p
ej

j = pOK

∣∣∣
∏

σ∈G

σ(pi).

By unique factorization, since every pj appears in the left hand side, we must have
that for each j there is a σ with σ(pi) = pj .

Choose some j and suppose that k 6= j is another index. Because G acts
transitively, there exists σ ∈ G such that σ(pk) = pj . Applying σ to the factorization
pOK =

∏g
i=1 pei

i , we see that

g∏

i=1

p
ei

i =

g∏

i=1

σ(pi)
ei .

Taking ordpj
on both sides and using unique factorization, we get ej = ek. Thus

e1 = e2 = · · · = eg.

As was mentioned right before the statement of the theorem, for any σ ∈ G we
have OK/pi

∼= OK/σ(pi), so by transitivity f1 = f2 = · · · = fg. Since OK is a
lattice in K, we have, upon apply CRT, that

[K : Q] = dimZ OK = dimFp OK/pOK

= dimFp

(
g⊕

i=1

OK/p
ei

i

)
=

g∑

i=1

eifi = efg,

which completes the proof.

The rest of this section illustrates the theorem for quadratic fields and a cubic
field and its Galois closure.

10.2.1 Quadratic Extensions

Suppose K/Q is a quadratic field. Then K is Galois, so for each prime p ∈ Z we
have 2 = efg. There are exactly three possibilities:

• Ramified: e = 2, f = g = 1: The prime p ramifies in OK , so pOK =
p2. There are only finitely many such primes, since if f(x) is the minimal
polynomial of a generator for OK , then p ramifies if and only if f(x) has a
multiple root modulo p. However, f(x) has a multiple root modulo p if and
only if p divides the discriminant of f(x), which is nonzero because f(x) is
irreducible over Z. (This argument shows there are only finitely many ramified
primes in any number field. In fact, the ramified primes are exactly the ones
that divide the discriminant.)
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• Inert: e = 1, f = 2, g = 1: The prime p is inert in OK , so pOK = p is prime.
It is a nontrivial theorem that this happens half of the time, as we will see
illustrated below for a particular example.

• Split: e = f = 1, g = 2: The prime p splits in OK , in the sense that
pOK = p1p2 with p1 6= p2. This happens the other half of the time.

For example, let K = Q(
√

5), so OK = Z[γ], where γ = (1 +
√

5)/2. Then p = 5 is
ramified, since 5OK = (

√
5)2. More generally, the order Z[

√
5] has index 2 in OK ,

so for any prime p 6= 2 we can determine the factorization of p in OK by finding
the factorization of the polynomial x2 − 5 ∈ Fp[x]. The polynomial x2 − 5 splits as
a product of two distinct factors in Fp[x] if and only if e = f = 1 and g = 2. For

p 6= 2, 5 this is the case if and only if 5 is a square in Fp, i.e., if
(

5
p

)
= 1, where

(
5
p

)

is +1 if 5 is a square mod p and −1 if 5 is not. By quadratic reciprocity,

(
5

p

)
= (−1)

5−1

2
· p−1

2 ·
(p

5

)
=

(p

5

)
=

{
+1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5).

Thus whether p splits or is inert in OK is determined by the residue class of p modulo
5. It is a theorem of Dirichlet, which was massively generalized by Chebotarev, that
p ≡ ±1 half the time and p ≡ ±2 the other half the time.

10.2.2 The Cube Root of Two

Suppose K/Q is not Galois. Then ei, fi, and g are defined for each prime p ∈ Z,
but we need not have e1 = · · · = eg or f1 = · · · = fg. We do still have that∑g

i=1 eifi = n, by the Chinese Remainder Theorem.
For example, let K = Q( 3

√
2). We know that OK = Z[ 3

√
2]. Thus 2OK = ( 3

√
2)3,

so for 2 we have e = 3 and f = g = 1. Next, working modulo 5 we have

x3 − 2 = (x + 2)(x2 + 3x + 4) ∈ F5[x],

and the quadratic factor is irreducible. Thus

5OK = (5,
3
√

2 + 2) · (5,
3
√

2
2
+ 3

3
√

2 + 4).

Thus here e1 = e2 = 1, f1 = 1, f2 = 2, and g = 2. Thus when K is not Galois we
need not have that the fi are all equal.

10.3 The Decomposition Group

Suppose K is a number field that is Galois over Q with group G = Gal(K/Q). Fix
a prime p ⊂ OK lying over p ∈ Z.

Definition 10.3.1 (Decomposition group). The decomposition group of p is the
subgroup

Dp = {σ ∈ G : σ(p) = p} ⊂ G.
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It also makes sense to define decomposition groups for relative extensions K/L,
but for simplicity and to fix ideas in this section we only define decomposition groups
for a Galois extension K/Q.

Let kp = OK/p denote the residue class field of p. In this section we will prove
that there is an exact sequence

1 → Ip → Dp → Gal(kp/Fp) → 1,

where Ip is the inertia subgroup of Dp, and #Ip = e. The most interesting part of
the proof is showing that the natural map Dp → Gal(kp/Fp) is surjective.

We will also discuss the structure of Dp and introduce Frobenius elements, which
play a crucial roll in understanding Galois representations.

Recall from Theorem 10.2.2 that G acts transitively on the set of primes p lying
over p. Thus the decomposition group is the stabilizer in G of p. The orbit-stabilizer
theorem implies that [G : Dp] equals the cardinality of the orbit of p, which by
Theorem 10.2.2 equals the number g of primes lying over p, so [G : Dp] = g.

Lemma 10.3.2. The decomposition subgroups Dp corresponding to primes p lying
over a given p are all conjugate as subgroups of G.

Proof. We have
τ−1στp = p ⇐⇒ στp = τp,

so
σ ∈ Dτp ⇐⇒ τ−1στ ∈ Dp.

Thus
σ ∈ Dp ⇐⇒ τστ−1 ∈ Dτp.

Thus τDpτ
−1 = Dτp.

The decomposition group is useful because it allows us to see the extension K/Q
as a tower of extensions, such that at each step in the tower we understand well the
splitting behavior of the primes lying over p.

We characterize the fixed field of D = Dp as follows.

Proposition 10.3.3. The fixed field

KD = {a ∈ K : σ(a) = a for all σ ∈ D}

of D is the smallest subfield L ⊂ K such that p ∩ OL such that g(K/L) = 1.

Proof. First suppose L = KD, and note that by Galois theory Gal(K/L) ∼= D, and
by Theorem 10.2.2, the group D acts transitively on the primes of K lying over
p ∩ OL. One of these primes is p, and D fixes p by definition, so there is only
one prime of K lying over p ∩ OL, i.e., g = 1. Conversely, if L ⊂ K is such that
p∩OL has g = 1, then Gal(K/L) fixes p (since it is the only prime over p∩OL), so
Gal(K/L) ⊂ D, hence KD ⊂ L.
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Thus p does not split in going from KD to K—it does some combination of
ramifying and staying inert. To fill in more of the picture, the following proposition
asserts that p splits completely and does not ramify in KD/Q.

Proposition 10.3.4. Fix a Galois number field K of Q, let p be a prime lying over p
with decomposition group D, and set L = KD. Let e = e(L/Q), f = f(L/Q), g =
g(L/Q) be for L/Q and p. Then e = f = 1, g = [L : Q], e(K/Q) = e(K/L) and
f(K/Q) = f(K/L).

Proof. As mentioned right after Definition 10.3.1, the orbit-stabilizer theorem im-
plies that g(K/Q) = [G : D], and by Galois theory [G : D] = [L : Q]. Thus by
Proposition 10.3.3 g(K/L) = 1, so by Theorem 10.2.2,

e(K/L) · f(K/L) = [K : L] = [K : Q]/[L : Q]

=
e(K/Q) · f(K/Q) · g(K/Q)

[L : Q]
= e(K/Q) · f(K/Q).

Now e(K/L) ≤ e(K/Q) and f(K/L) ≤ f(K/Q), so we must have e(K/L) =
e(K/Q) and f(K/L) = f(K/Q). Since e(K/Q) = e(K/L) · e(L/Q) and f(K/Q) =
f(K/L) · f(L/Q), it follows that f(L/Q) = f(L/Q) = 1.

10.3.1 Galois groups of finite fields

Each σ ∈ D = Dp acts in a well-defined way on the finite field kp = OK/p, so we
obtain a homomorphism

ϕ : Dp → Gal(Fp/Fp).

We pause for a moment and derive a few basic properties of Gal(Fp/Fp), which are
general properties of Galois groups for finite fields. Let f = [kp : Fp].

The group Aut(Fp/Fp) contains the element Frobp defined by

Frobp(x) = xp,

because (xy)p = xpyp and

(x + y)p = xp + pxp−1y + · · · + yp ≡ xp + yp (mod p).

The group k∗
p is cyclic (see proof of Lemma 9.1.7), so there is an element a ∈ k∗

p of

order pf −1, and kp = Fp(a). Then Frobn
p (a) = apn

= a if and only if (pf −1) | pn−1
which is the case preciselywhen f | n, so the order of Frobp is f . Since the order of
the automorphism group of a field extension is at most the degree of the extension,
we conclude that Aut(Fp/Fp) is generated by Frobp. Also, since Aut(Fp/Fp) has
order equal to the degree, we conclude that kp/Fp is Galois, with group Gal(Fp/Fp)
cyclic of order f generated by Frobp. (Another general fact: Up to isomorphism
there is exactly one finite field of each degree. Indeed, if there were two of degree f ,
then both could be characterized as the set of roots in the compositum of xpf − 1,
hence they would be equal.)
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10.3.2 The Exact Sequence

Because Dp preserves p, there is a natural reduction homomorphism

ϕ : Dp → Gal(kp/Fp).

Theorem 10.3.5. The homomorphism ϕ is surjective.

Proof. Let ã ∈ kp be an element such that kp = Fp(a). Lift ã to an algebraic integer
a ∈ OK , and let f =

∏
σ∈Dp

(x−σ(a)) ∈ KD[x] be the characteristic polynomial of a

over KD. Using Proposition 10.3.4 we see that f reduces to the minimal polynomial

f̃ =
∏

(x − σ̃(a)) ∈ Fp[x] of ã (by the Proposition the coefficients of f̃ are in Fp,
and ã satisfies f̃ , and the degree of f̃ equals the degree of the minimal polynomial

of ã). The roots of f̃ are of the form σ̃(a), and the element Frobp(a) is also a root

of f̃ , so it is of the form σ̃(a). We conclude that the generator Frobp of Gal(kp/Fp)
is in the image of ϕ, which proves the theorem.

Definition 10.3.6 (Inertia Group). The inertia group is the kernel Ip of Dp →
Gal(kp/Fp).

Combining everything so far, we find an exact sequence of groups

1 → Ip → Dp → Gal(kp/Fp) → 1. (10.3.1)

The inertia group is a measure of how p ramifies in K.

Corollary 10.3.7. We have #Ip = e(p/p), where p is a prime of K over p.

Proof. The sequence (10.3.1) implies that #Ip = (#Dp)/f(K/Q). Applying Propo-
sitions 10.3.3–10.3.4, we have

#Dp = [K : L] =
[K : Q]

g
=

efg

g
= ef.

Dividing both sides by f = f(K/Q) proves the corollary.

We have the following characterization of Ip.

Proposition 10.3.8. Let K/Q be a Galois extension with group G, and let p be a
prime of OK lying over a prime p. Then

Ip = {σ ∈ G : σ(a) = a (mod p) for all a ∈ OK}.

Proof. By definition Ip = {σ ∈ Dp : σ(a) = a (mod p) for all a ∈ OK}, so it suffices
to show that if σ 6∈ Dp, then there exists a ∈ OK such that σ(a) 6≡ a (mod p). If
σ 6∈ Dp, then σ−1 6∈ Dp, so σ−1(p) 6= p. Since both are maximal ideals, there exists
a ∈ p with a 6∈ σ−1(p), i.e., σ(a) 6∈ p. Thus σ(a) 6≡ a (mod p).



10.4. FROBENIUS ELEMENTS 107

10.4 Frobenius Elements

Suppose that K/Q is a finite Galois extension with group G and p is a prime
such that e = 1 (i.e., an unramified prime). Then I = Ip = 1 for any p | p, so
the map ϕ of Theorem 10.3.5 is a canonical isomorphism Dp

∼= Gal(kp/Fp). By
Section 10.3.1, the group Gal(kp/Fp) is cyclic with canonical generator Frobp. The
Frobenius element corresponding to p is Frobp ∈ Dp. It is the unique element of G
such that for all a ∈ OK we have

Frobp(a) ≡ ap (mod p).

(To see this argue as in the proof of Proposition 10.3.8.) Just as the primes p and
decomposition groups Dp are all conjugate, the Frobenius elements corresponding
to primes p | p are all conjugate as elements of G.

Proposition 10.4.1. For each σ ∈ G, we have

Frobσp = σ Frobp σ−1.

In particular, the Frobenius elements lying over a given prime are all conjugate.

Proof. Fix σ ∈ G. For any a ∈ OK we have Frobp(σ
−1(a)) − σ−1(a)p ∈ p. Ap-

plying σ to both sides, we see that σ Frobp(σ
−1(a)) − ap ∈ σp, so σ Frobp σ−1 =

Frobσp.

Thus the conjugacy class of Frobp in G is a well-defined function of p. For
example, if G is abelian, then Frobp does not depend on the choice of p lying

over p and we obtain a well defined symbol
(

K/Q
p

)
= Frobp ∈ G called the Artin

symbol. It extends to a homomorphism from the free abelian group on unramified
primes p to G. Class field theory (for Q) sets up a natural bijection between abelian
Galois extensions of Q and certain maps from certain subgroups of the group of
fractional ideals for Z. We have just described one direction of this bijection, which
associates to an abelian extension the Artin symbol (which is a homomorphism).
The Kronecker-Weber theorem asserts that the abelian extensions of Q are exactly
the subfields of the fields Q(ζn), as n varies over all positive integers. By Galois
theory there is a correspondence between the subfields of Q(ζn), which has Galois
group (Z/nZ)∗, and the subgroups of (Z/nZ)∗, so giving an abelian extension K
of Q is exactly the same as giving an integer n and a subgroup of H ⊂ (Z/nZ)∗.

The Artin reciprocity map p 7→
(

K/Q
p

)
is then p 7→ [p] ∈ (Z/nZ)∗/H.

10.5 Galois Representations, L-series and a Conjecture

of Artin

The Galois group Gal(Q/Q) is an object of central importance in number theory,
and much of number theory is the study of this group. A good way to study a group
is to study how it acts on various objects, that is, to study its representations.
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Endow Gal(Q/Q) with the topology which has as a basis of open neighborhoods
of the origin the subgroups Gal(Q/K), where K varies over finite Galois extensions
of Q. (Note: This is not the topology got by taking as a basis of open neighbor-
hoods the collection of finite-index normal subgroups of Gal(Q/Q).) Fix a positive
integer n and let GLn(C) be the group of n×n invertible matrices over C with the
discrete topology.

Definition 10.5.1. A complex n-dimensional representation of Gal(Q/Q) is a con-
tinuous homomorphism

ρ : Gal(Q/Q) → GLn(C).

For ρ to be continuous means that if K is the fixed field of Ker(ρ), then K/Q
is finite Galois. We have a diagram

Gal(Q/Q)
ρ

//

''NNNNNNNNNNN
GLn(C)

Gal(K/Q)

ρ′

88qqqqqqqqqqq

Remark 10.5.2. Continuous implies that the image of ρ is finite, but the converse
is not true. Using Zorn’s lemma, one can show that there are homomorphisms
Gal(Q/Q) → {±1} with image of order 2 that are not continuous, since they do
not factor through the Galois group of any finite Galois extension.

Fix a Galois representation ρ and let K be the fixed field of ker(ρ), so ρ factors
through Gal(K/Q). For each prime p ∈ Z that is not ramified in K, there is an
element Frobp ∈ Gal(K/Q) that is well-defined up to conjugation by elements of
Gal(K/Q). This means that ρ′(Frobp) ∈ GLn(C) is well-defined up to conjuga-
tion. Thus the characteristic polynomial Fp(x) ∈ C[x] of ρ′(Frobp) is a well-defined
invariant of p and ρ. Let

Rp(x) = xdeg(Fp) · Fp(1/x) = 1 + · · · + det(Frobp) · xdeg(Fp)

be the polynomial obtain by reversing the order of the coefficients of Fp. Following
E. Artin [Art23, Art30], set

L(ρ, s) =
∏

p unramified

1

Rp(p−s)
. (10.5.1)

We view L(ρ, s) as a function of a single complex variable s. One can prove that
L(ρ, s) is holomorphic on some right half plane, and extends to a meromorphic
function on all C.

Conjecture 10.5.3 (Artin). The L-function of any continuous representation

Gal(Q/Q) → GLn(C)

is an entire function on all C, except possibly at 1.
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This conjecture asserts that there is some way to analytically continue L(ρ, s)
to the whole complex plane, except possibly at 1. (A standard fact from complex
analysis is that this analytic continuation must be unique.) The simple pole at
s = 1 corresponds to the trivial representation (the Riemann zeta function), and if
n ≥ 2 and ρ is irreducible, then the conjecture is that ρ extends to a holomorphic
function on all C.

The conjecture is known when n = 1. When n = 2 and the image of ρ in
PGL2(C) is a solvable group, the conjecture is known, and is a deep theorem of
Langlands and others (see [Lan80]), which played a crucial roll in Wiles’s proof of
Fermat’s Last Theorem. When n = 2 and the image of ρ in PGL2(C) is not solv-
able, the only possibility is that the projective image is isomorphic to the alternating
group A5. Because A5 is the symmetry group of the icosahedron, these representa-
tions are called icosahedral. In this case, Joe Buhler’s Harvard Ph.D. thesis [Buh78]
gave the first example in which ρ was shown to satisfy Conjecture 10.5.3. There
is a book [Fre94], which proves Artin’s conjecture for 7 icosahedral representation
(none of which are twists of each other). Kevin Buzzard and the author proved
the conjecture for 8 more examples [BS02]. Subsequently, Richard Taylor, Kevin
Buzzard, Nick Shepherd-Barron, and Mark Dickinson proved the conjecture for
an infinite class of icosahedral Galois representations (disjoint from the examples)
[BDSBT01]. The general problem for n = 2 is still open, but Taylor and others are
making amazing progress toward it.
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Chapter 11

Elliptic Curves, Galois

Representations, and

L-functions

The rest of this book is about elliptic curves and their interplay with algebraic
number theory. Our approach will be less systematic and more a survey than the
first part of this book. The goal is to take you to the forefront of research, but
assuming many basic facts that can be found, e.g., in [Sil92].

11.1 Groups Attached to Elliptic Curves

Definition 11.1.1 (Elliptic Curve). An elliptic curve over a field K is a genus
one curve E over K equipped with a point O ∈ E(K) defined over K.

We will not define genus in this book, except to note that a nonsingular curve
over K has genus one if and only if over K it can be realized as a nonsingular plane
cubic curve. Moreover, one can show (using the Riemann-Roch formula) that a
genus one curve with a rational point can always be defined by a projective cubic

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 11.1.1: The Elliptic Curve y2 = x3 + x over Z/7Z
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0
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Figure 11.1.2: The Elliptic Curve y2 = x3 + x over R

equation of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3.

In affine coordinates this becomes

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (11.1.1)

Thus one presents an elliptic curve by giving a Weierstrass equation (11.1.1).
Figure 11.1.1 contains the graph of an elliptic curve over F7, and Figure 11.1.2

contains a graph of the real points on an elliptic curve defined over Q.

11.1.1 Abelian Groups Attached to Elliptic Curves

If E is an elliptic curve over K, then we give the set E(K) of all K-rational points
on E the structure of abelian group with identity element O. If we embed E in the
projective plane, then this group is determined by the condition that three points
sum to the zero element O if and only if they lie on a common line. See Figure 11.1.3
for an example, in which (0, 2) and (1, 0) add to (3, 4) in the group law.

That the above condition defines an abelian group structure on E(K) is not
obvious (the trickiest part is seeing that the operation is associative). The best way
to understand the group operation on E(K) is to view E(K) as a class group, very
similar to class groups of number fields. Let Div(E/K) be the free abelian group
on the points of E, which is analogous to the group of fractional ideals of a number
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Figure 11.1.3: The Group Law: (1, 0) + (0, 2) = (3, 4) on y2 = x3 − 5x + 4

field. We call the elements of Div(E/K) divisors. Let Pic(E/K) be the quotient of
Div(E/K) by the principal divisors, i.e., the divisors associted to rational functions
f ∈ K(E)∗ via

f 7→ (f) =
∑

P

ordP (f)[P ].

Note that the principal divisor associated to f is analogous to the principal fractional
ideal associated to a nonzero element of a number field. The definition of ordP (f)
is analogous to the “power of P that divides the principal ideal generated by f”.
Define the class group Pic(E/K) to be the quotient of the divisors by the principal
divisors, so we have an exact sequence:

0 → K(E)∗/K∗ → Div(E/K) → Pic(E/K) → 0.

A key difference between elliptic curves and algebraic number fields is that the
principal divisors in the context of elliptic curves all have degree 0, i.e., the sum
of the coefficients of the divisor (f) is always 0. This might be a familiar fact to
you: the number of zeros of a nonzero rational function on a projective curve equals
the number of poles, counted with multiplicity. If we let Div0(E/K) denote the
subgroup of divisors of degree 0, then we have an exact sequence

0 → K(E)∗/K∗ → Div0(E/K) → Pic0(E/K) → 0.

To connect this with the group law on E(K), note that there is a natural map

E(K) → Pic0(E/K), P 7→ [P −O].
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Using the Riemann-Roch theorem, one can prove that this map is a bijection, which
is moreover an isomorphism of abelian groups. Thus really when we discuss the
group of K-rational points on an E, we are talking about the class group Pic0(E/K).

Recall that we proved (Theorem 8.1.2) that the class group Cl(OK) of a number
field is finite. The group Pic0(E/K) = E(K) of an elliptic curve can be either finite
(e.g., for y2 + y = x3 −x+1) or infinite (e.g., for y2 + y = x3 −x), and determining
which is the case for any particular curve is one of the central unsolved problems
in number theory.

Also, if L/K is an arbitrary extension of fields, and E is an elliptic curve over K,
then there is a natural inclusion homomorphism E(K) ↪→ E(L). Thus instead of
just obtaining one group attached to an elliptic curve, we obtain a whole collection,
one for each extension of L. Even more generally, if S/K is an arbitrary scheme,
then E(S) is a group, and the association S 7→ E(S) defines a functor from the
category of schemes to the category of groups.

11.1.2 A Formula for Adding Points

We close this section with an explicit formula for adding two points in E(K). If E
is an elliptic curve over a field K, given by an equation y2 = x3 + ax + b, then we
can compute the group addition using the following algorithm.

Algorithm 11.1.2 (Elliptic Curve Group Law). Given P1, P2 ∈ E(K), this
algorithm computes the sum R = P1 + P2 ∈ E(K).

1. [One Point O] If P1 = O set R = P2 or if P2 = O set R = P1 and terminate.
Otherwise write Pi = (xi, yi).

2. [Negatives] If x1 = x2 and y1 = −y2, set R = O and terminate.

3. [Compute λ] Set λ =

{
(3x2

1 + a)/(2y1) if P1 = P2,

(y1 − y2)/(x1 − x2) otherwise.
Note: If y1 = 0 and P1 = P2, output O and terminate.

4. [Compute Sum] Then R =
(
λ2 − x1 − x2,−λx3 − ν

)
, where ν = y1−λx1 and x3

is the x coordinate of R.

11.1.3 Other Groups

There are other abelian groups attached to elliptic curves, such as the torsion sub-
group E(K)tor of elements of E(K) of finite order. When K is a number field,
there is a mysterious group called the Shafarevich-Tate group X(E/K) attached
to E. It’s definition involves Galois cohomology, so we wait until Chapter 12 to
define it. There are also component groups attached to E, one for each prime of
OK . These groups all come together in the Birch and Swinnerton-Dyer conjecture
(see Conjecture ??).
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11.2 Galois Representations Attached to Elliptic Curves

Let E be an elliptic curve over a number field K. In this section we attach repre-
sentations of GK = Gal(K/K) to E, and use them to define the L-function L(E, s).

Fix an integer n. The group structure on E is defined by algebraic formulas
with coefficients that are elements of K, so the subgroup

E[n] = {R ∈ E(K) : nR = O}

is invariant under the action of GK . We thus obtain a homomorphism

ρE,n : GK → Aut(E[n]).

It is a fact, which we will not prove in this book, that for any positive integer n,
the group E[n] is isomorphic as an abstract abelian group to (Z/nZ)2. There are
various related ways to see why this is true. One is to use the Weierstrass ℘-theory
to parametrize E(C) by the the complex numbers, i.e., to find an isomorphism
C/Λ ∼= E(C), where Λ is a lattice in C and the isomorphism is given by z 7→
(℘(z), ℘′(z)) with respect to an appropriate choice of coordinates on E(C). It is
then an easy exercise to verify that (C/Λ)[n] ∼= (Z/nZ)2.

Another way to understand E[n] is to use that E(C)tor is isomorphic to the
quotient

H1(E(C),Q)/ H1(E(C),Z)

of homology groups and that the homology of a curve of genus g is isomorphic to
Z2g. Then

E[n] ∼= (Q/Z)2[n] = (Z/nZ)2.

If n = p is a prime, then upon chosing a basis for the two-dimensional Fp-vector
space E[p], we obtain an isomorphism Aut(E[p]) ∼= GL2(Fp). We thus obtain a
two-dimensional representation

ρE,p : GK → GL2(Fp),

which is continuous if GL2(Fp) has the discrete topology, because the field

K(E[p]) = {x, y : (x, y) ∈ E[p]}

is a Galois extension of K of finite degree.
In order to attach an L-function to E, one could try to embed GL2(Fp) into

GL2(C) and use the construction of Artin L-functions from Section 10.5, but this
approach depends on the choice of p, and does not “capture the essence” of E, in
that there can be many elliptic curves with exactly the same mod p representation
(though I think for p ≥ 23 there are conjecturally only finitely many). Instead,
we pass to a p-adic limit as follows. For each power pn of p, we have a Galois
representation ρE,pn . The inverse limit of these representations is a continuous
homomorphism

ρE,p : GK → Aut(lim←−E[pn]) ∼= GL2(Zp),
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where Zp is the ring of p-adic integers. The composition of this homomorphism with
the reduction map GL2(Zp) → GL2(Fp) is the representation ρE,p, which we defined
above, which is why we denoted it by ρE,p. We next try to mimic the construction
of L(ρ, s) from Section 10.5 in the context of a p-adic Galois representation ρE,p.

Definition 11.2.1 (Tate module). The p-adic Tate module of E is

Tp(E) = lim←−E[pn].

Let M be the fixed field of ker(ρE,p). The image of ρE,p is infinite, so M is
an infinite extension of K. Fortunately, one can prove that M is ramified at only
finitely many primes (the primes of bad reduction for E and p). If ` is a prime of K,
let D` be a choice of decomposition group for some prime p of M lying over `, and
let I` be the inertia group. We haven’t defined inertia and decomposition groups for
infinite Galois extensions, but the definitions are almost the same: choose a prime of
OM over `, and let D` be the subgroup of Gal(M/K) that leaves p invariant. Then
the submodule Tp(E)I` of inertia invariants is a module for D` and the characteristic
polynomial F`(x) of Frob` on Tp(E)I` is well defined (since inertia acts trivially).
Let R`(x) be the polynomial obtained by reversing the coefficients of F`(x). One
can prove that R`(x) ∈ Z[x] and that R`(x), for ` 6= p does not depend on the
choice of p. Define R`(x) for ` = p using a different prime q 6= p, so the definition
of R`(x) does not depend on the choice of p.

Definition 11.2.2. The L-series of E is

L(E, s) =
∏

`

1

R`(`−s)
.

A prime p of OK is a prime of good reduction for E if there is an equation for E
such that E mod p is an elliptic curve over OK/p.

If K = Q and ` is a prime of good reduction for E, then one can show that that
R`(`

−s) = 1 − a``
−s + `1−2s, where a` = ` + 1 − #Ẽ(F`) and Ẽ is the reduction of

a local minimal model for E modulo `. (There is a similar statement for K 6= Q.)
One can prove using fairly general techniques that the product expression for

L(E, s) defines a holomorphic function in some right half plane of C, i.e., the product
converges for all s with Re(s) > α, for some real number α.

Conjecture 11.2.3. The function L(E, s) extends to a holomorphic function on
all C.

11.2.1 Modularity of Elliptic Curves over Q

Fix an elliptic curve E over Q. In this section we will explain what it means for E
to be modular, and note the connection with Conjecture 11.2.3 from the previous
section.

First, we give the general definition of modular form (of weight 2). The complex
upper half plane is h = {z ∈ C : Im(z) > 0}. A cuspidal modular form f of level N
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(of weight 2) is a holomorphic function f : h → C such that limz→i∞ f(z) = 0 and
for every integer matrix

(
a b
c d

)
with determinant 1 and c ≡ 0 (mod N), we have

f

(
az + b

cz + d

)
= (cz + d)−2f(z).

For each prime number ` of good reduction, let a` = ` + 1 − #Ẽ(F`). If ` is a
prime of bad reduction let a` = 0, 1,−1, depending on how singular the reduction Ẽ
of E is over F`. If Ẽ has a cusp, then a` = 0, and a` = 1 or −1 if Ẽ has a node; in
particular, let a` = 1 if and only if the tangents at the cusp are defined over F`.

Extend the definition of the a` to an for all positive integers n as follows. If
gcd(n, m) = 1 let anm = an · am. If pr is a power of a prime p of good reduction, let

apr = apr−1 · ap − p · apr−2 .

If p is a prime of bad reduction let apr = (ap)
r.

Attach to E the function

fE(z) =
∞∑

n=1

ane2πiz.

It is an extremely deep theorem that fE(z) is actually a cuspidal modular form,
and not just some random function.

The following theorem is called the modularity theorem for elliptic curves over Q.
Before it was proved it was known as the Taniyama-Shimura-Weil conjecture.

Theorem 11.2.4 (Wiles, Brueil, Conrad, Diamond, Taylor). Every elliptic
curve over Q is modular, i.e, the function fE(z) is a cuspidal modular form.

Corollary 11.2.5 (Hecke). If E is an elliptic curve over Q, then the L-function
L(E, s) has an analytic continuous to the whole complex plane.
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Chapter 12

Galois Cohomology

12.1 Group Cohomology

12.1.1 Group Rings

Let G be a finite group. The group ring Z[G] of G is the free abelian group on
the elements of G equipped with multiplication given by the group structure on G.
Note that Z[G] is a commutative ring if and only if G is commutative.

For example, the group ring of the cyclic group Cn = 〈a〉 of order n is the free
Z-module on 1, a, . . . , an−1, and the multiplication is induced by aiaj = ai+j =
ai+j (mod n) extended linearly. For example, in Z[C3] we have

(1 + 2a)(1 − a2) = 1 − a2 + 2a − 2a3 = 1 + 2a − a2 − 2 = −1 + 2a − a2.

You might think that Z[C3] is isomorphic to the ring Z[ζ3] of integers of Q(ζ3), but
you would be wrong, since the ring of integers is isomorphic to Z2 as abelian group,
but Z[C3] is isomorphic to Z3 as abelian group. (Note that Q(ζ3) is a quadratic
extension of Q.)

12.2 Modules and Group Cohomology

Let A be a G module. This means that A is an abelian group equipped with a left
action of G, i.e., a group homomorphism G → Aut(A), where Aut(A) denotes the
group of bijections A → A that preserve the group structure on A. Alternatively, A
is a module over the ring Z[G] in the usual sense of module. For example, Z with the
trivial action is a module over any group G, as is Z/mZ for any positive integer m.
Another example is G = (Z/nZ)∗, which acts via multiplication on Z/nZ.

For each integer n ≥ 0 there is an abelian group Hn(G, A) called the nth coho-
mology group of G acting on A. The general definition is somewhat complicated,
but the definition for n ≤ 1 is fairly concrete. For example, the 0th cohomology
group

H0(G, A) = {x ∈ A : σx = x for all σ ∈ G} = GA

119
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is the subgroup of elements of A that are fixed by every element of G.
The first cohomology group

H1(G, A) = C1(G, A)/B1(G, A)

is the group of 1-cocycles modulo 1-coboundaries, where

C1(G, A) = {f : G → A such that f(στ) = f(σ) + σf(τ)}

and if we let fa : G → A denote the set-theoretic map fa(σ) = σ(a) − a, then

B1(G, A) = {fa : a ∈ A}.

There are also explicit, and increasingly complicated, definitions of Hn(G, A) for
each n ≥ 2 in terms of certain maps G × · · · × G → A modulo a subgroup, but we
will not need this.

For example, if A has the trivial action, then B1(G, A) = 0, since σa − a =
a − a = 0 for any a ∈ A. Also, C1(G, A) = Hom(G, A). If A = Z, then since G is
finite there are no nonzero homomorphisms G → Z, so H1(G,Z) = 0.

If X is any abelian group, then

A = Hom(Z[G], X)

is a G-module. We call a module constructed in this way co-induced.
The following theorem gives three properties of group cohomology, which uniquely

determine group cohomology.

Theorem 12.2.1. Suppose G is a finite group. Then

1. We have H0(G, A) = AG.

2. If A is a co-induced G-module, then Hn(G, A) = 0 for all n ≥ 1.

3. If 0 → A → B → C → 0 is any exact sequence of G-modules, then there is a
long exact sequence

0 → H0(G, A) → H0(G, B) → H0(G, C) → H1(G, A) → · · ·

· · · → Hn(G, A) → Hn(G, B) → Hn(G, C) → Hn+1(G, A) → · · ·

Moreover, the functor Hn(G,−) is uniquely determined by these three properties.

We will not prove this theorem. For proofs see [Cp86, Atiyah-Wall] and [Ser79,
Ch. 7]. The properties of the theorem uniquely determine group cohomology, so
one should in theory be able to use them to deduce anything that can be deduced
about cohomology groups. Indeed, in practice one frequently proves results about
higher cohomology groups Hn(G, A) by writing down appropriate exact sequences,
using explicit knowledge of H0, and chasing diagrams.
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Remark 12.2.2. Alternatively, we could view the defining properties of the theorem
as the definition of group cohomology, and could state a theorem that asserts that
group cohomology exists.

Remark 12.2.3. For those familiar with commutative and homological algebra, we
have

Hn(G, A) = Extn
Z[G](Z, A),

where Z is the trivial G-module.

Remark 12.2.4. One can interpret H2(G, A) as the group of equivalence classes of
extensions of G by A, where an extension is an exact sequence

0 → A → M → G → 1

such that the induced conjugation action of G on A is the given action of G on A.
(Note that G acts by conjugation, as A is a normal subgroup since it is the kernel
of a homomorphism.)

12.2.1 Example Application of the Theorem

For example, let’s see what we get from the exact sequence

0 → Z
m−→ Z → Z/mZ → 0,

where m is a positive integer, and Z has the structure of trivial G module. By
definition we have H0(G,Z) = Z and H0(G,Z/mZ) = Z/mZ. The long exact
sequence begins

0 → Z
m−→ Z → Z/mZ → H1(G,Z)

m−→ H1(G,Z) → H1(G,Z/mZ) → H2(G,Z)
m−→ H2(G,Z) → · · ·

From the first few terms of the sequence and the fact that Z surjects onto Z/mZ, we
see that [m] on H1(G,Z) is injective. This is consistent with our observation above
that H1(G,Z) = 0. Using this vanishing and the right side of the exact sequence
we obtain an isomorphism

H1(G,Z/mZ) ∼= H2(G,Z)[m].

As we observed above, when a group acts trivially the H1 is Hom, so

H2(G,Z)[m] ∼= Hom(G,Z/mZ). (12.2.1)

One can prove that for any n > 0 and any module A that the group Hn(G, A)
has exponent dividing #G (see Remark 12.3.4). Thus (12.2.1) allows us to under-
stand H2(G,Z), and this comprehension arose naturally from the properties that
determine Hn.
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12.3 Inflation and Restriction

Suppose H is a subgroup of a finite group G and A is a G-module. For each n ≥ 0,
there is a natural map

resH : Hn(G, A) → Hn(H, A)

called restriction. Elements of Hn(G, A) can be viewed as classes of n-cocycles,
which are certain maps G × · · · × G → A, and the restriction maps restricts these
cocycles to H × · · · × H.

If H is a normal subgroup of G, there is also an inflation map

infH : Hn(G/H, AH) → Hn(G, A),

given by taking a cocycle f : G/H × · · · × G/H → AH and precomposing with the
quotient map G → G/H to obtain a cocycle for G.

Proposition 12.3.1. Suppose H is a normal subgroup of G. Then there is an exact
sequence

0 → H1(G/H, AH)
infH−−−→ H1(G, A)

resH−−−→ H1(H, A).

Proof. Our proof follows [Ser79, pg. 117] closely.
We see that res ◦ inf = 0 by looking at cochains. It remains to prove that infH

is injective and that the image of infH is the kernel of resH .

1. That infH is injective: Suppose f : G/H → AH is a cocycle whose image in
H1(G, A) is equivalent to 0 modulo coboundaries. Then there is an a ∈ A
such that f(σ) = σa − a, where we identify f with the map G → A that is
constant on the costs of H. But f depends only on the costs of σ modulo H,
so σa − a = στa − a for all τ ∈ H, i.e., τa = a (as we see by adding a to
both sides and multiplying by σ−1).Thus a ∈ AH , so f is equivalent to 0 in
H1(H, AH).

2. The image of infH contains the kernel of resH : Suppose f : G → A is a
cocycle whose restriction to H is a coboundary, i.e., there is a ∈ A such that
f(τ) = τa − a for all τ ∈ H. Subtracting the coboundary g(σ) = σa − a for
σ ∈ G from f , we may assume f(τ) = 0 for all τ ∈ H. Examing the equation
f(στ) = f(σ)+σf(τ) with τ ∈ H shows that f is constant on the cosets of H.
Again using this formula, but with σ ∈ H and τ ∈ G, we see that

f(τ) = f(στ) = f(σ) + σf(τ) = σf(τ),

so the image of f is contained in AH . Thus f defines a cocycle G/H → AH ,
i.e., is in the image of infH .

This proposition will be useful when proving the weak Mordell-Weil theorem.
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Example 12.3.2. The sequence of Proposition 12.3.1 need not be surjective on the
right. For example, suppose H = A3 ⊂ S3, and let S3 act trivially on the cyclic
group C = Z/3Z. Using the Hom interpretation of H1, we see that H1(S3/A3, C) =
H1(S3, C) = 0, but H1(A3, C) has order 3.

Remark 12.3.3. On generalization of Proposition 12.3.1 is to a more complicated
exact sequence involving the “transgression map” tr:

0 → H1(G/H, AH)
infH−−−→ H1(G, A)

resH−−−→ H1(H, A)G/H tr−→ H2(G/H, AH) → H2(G, A).

Another generalization of Proposition 12.3.1 is that if Hm(H, A) = 0 for 1 ≤ m < n,
then there is an exact sequence

0 → Hn(G/H, AH)
infH−−−→ Hn(G, A)

resH−−−→ Hn(H, A).

Remark 12.3.4. If H is a not-necessarily-normal subgroup of G, there are also maps

coresH : Hn(H, A) → Hn(G, A)

for each n. For n = 0 this is the trace map a 7→ ∑
σ∈G/H σa, but the definition for

n ≥ 1 is more involved. One has coresH ◦ resH = [#(G/H)]. Taking H = 1 we see
that for each n ≥ 1 the group Hn(G, A) is annihilated by #G.

12.4 Galois Cohomology

Suppose L/K is a finite Galois extension of fields, and A is a module for Gal(L/K).
Put

Hn(L/K, A) = Hn(Gal(L/K), A).

Next suppose A is a module for the group Gal(Ksep/K) and for any extension L
of K, let

A(L) = {x ∈ A : σ(x) = x all σ ∈ Gal(Ksep/L)}.
We think of A(L) as the group of elements of A that are “defined over L”. For
each n ≥ 0, put

Hn(L/K, A) = Hn(Gal(L/K), A(L)).

Also, put
Hn(K, A) = lim−→

L/K

Hn(L/K, A(L)),

where L varies over all finite Galois extensions of K. (Recall: Galois means normal
and separable.)

Example 12.4.1. The following are examples of Gal(Q/Q)-modules:

Q, Q
∗
, Z, Z

∗
, E(Q), E(Q)[n], Tate`(E),

where E is an elliptic curve over Q.
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Theorem 12.4.2 (Hilbert 90). We have H1(K, K
∗
) = 0.

Proof. See [Ser79]. The main input to the proof is linear independence of automor-
phism and a clever little calculation.



Chapter 13

The Weak Mordell-Weil

Theorem

13.1 Kummer Theory of Number Fields

Suppose K is a number field and fix a positive integer n. Consider the exact sequence

1 → µn → K
∗ n−→ K

∗ → 1.

The long exact sequence is

1 → µn(K) → K∗ n−→ K∗ → H1(K, µn) → H1(K, K
∗
) = 0,

where H1(K, K
∗
) = 0 by Theorem 12.4.2.

Assume now that the group µn of nth roots of unity is contained in K. Using
Galois cohomology we obtain a relatively simple classification of all abelian exten-
sions of K with Galois group cyclic of order dividing n. Moreover, since the action
of Gal(K/K) on µn is trivial, by our hypothesis that µn ⊂ K, we see that

H1(K, µn) = Hom(Gal(K/K), µn).

Thus we obtain an exact sequence

1 → µn → K∗ n−→ K∗ → Hom(Gal(K/K), µn) → 1,

or equivalently, an isomorphism

K∗/(K∗)n ∼= Hom(Gal(K/K), µn),

By Galois theory, homomorphisms Gal(K/K) → µn (up to automorphisms of µn)
correspond to cyclic abelian extensions of K with Galois group a subgroup of the
cyclic group µn of order n. Unwinding the definitions, what this says is that every
cyclic abelian extension of K of degree dividing n is of the form K(a1/n) for some
element a ∈ K.
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One can prove via calculations with discriminants, etc. that K(a1/n) is unram-
ified outside n and and the primes that divide Norm(a). Moreover, and this is a
much bigger result, one can combine this with facts about class groups and unit
groups to prove the following theorem:

Theorem 13.1.1. Suppose K is a number field with µn ⊂ K, where n is a positive
integer. Then the maximal abelian exponent n extension L of K unramified outside
a finite set S of primes is of finite degree.

Sketch of Proof. We may enlarge S, because if an extension is unramified outside a
set larger than S, then it is unramified outside S.

We first argue that we can enlarge S so that the ring

OK,S = {a ∈ K∗ : ordp(aOK) ≥ 0 all p 6∈ S} ∪ {0}

is a principal ideal domain. Note that for any S, the ring OK,S is a Dedekind domain.
Also, the condition ordp(aOK) ≥ 0 means that in the prime ideal factorization of
the fractional ideal aOK , we have that p occurs to a nonnegative power. Thus we
are allowing denominators at the primes in S. Since the class group of OK is finite,
there are primes p1, . . . , pr that generate the class group as a group (for example,
take all primes with norm up to the Minkowski bound). Enlarge S to contain the
primes pi. Note that the ideal piOK,S is the unit ideal (we have pm

i = (α) for
some m ≥ 1; then 1/α ∈ OK,S , so (piOK,S)m is the unit ideal, hence piOK,S is the
unit ideal by unique factorization in the Dedekind domain OK,S .) Then OK,S is a
principal ideal domain, since every ideal of OK,S is equivalent modulo a principal
ideal to a product of ideals piOK,S . Note that we have used that the class group of
OK is finite.

Next enlarge S so that all primes over nOK are in S. Note that OK,S is still a
PID. Let

K(S, n) = {a ∈ K∗/(K∗)n : n | ordp(a) all p 6∈ S}.
Then a refinement of the arguments at the beginning of this section show that L is
generated by all nth roots of the elements of K(S, n). It thus sufficies to prove that
K(S, n) is finite.

There is a natural map

φ : O∗
K,S → K(S, n).

Suppose a ∈ K∗ is a representative of an element in K(S, n). The ideal aOK,S has
factorization which is a product of nth powers, so it is an nth power of an ideal.
Since OK,S is a PID, there is b ∈ OK,S and u ∈ O∗

K,S such that

a = bn · u.

Thus u ∈ O∗
K,S maps to [a] ∈ K(S, n). Thus φ is surjective.

Recall that we proved Dirichlet’s unit theorem (see Theorem 9.1.2), which asserts
that the group O∗

K is a finitely generated abelian group of rank r + s − 1. More
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generally, we now show that O∗
K,S is a finitely generated abelian group of rank

r + s + #S − 1. Once we have shown this, then since K(S, n) is torsion group that
is a quotient of a finitely generated group, we will conclude that K(S, n) is finite,
which will prove the theorem.

Thus it remains to prove that O∗
K,S has rank r + s − 1 + #S. Let p1, . . . , pn be

the primes in S. Define a map φ : O∗
K,S → Zn by

φ(u) = (ordp1
(u), . . . , ordpn(u)).

First we show that Ker(φ) = O∗
K . We have that u ∈ Ker(φ) if and only if u ∈ O∗

K,S

and ordpi
(u) = 0 for all i; but the latter condition implies that u is a unit at each

prime in S, so u ∈ O∗
K . Thus we have an exact sequence

1 → O∗
K → O∗

K,S
φ−→ Zn.

Next we show that the image of φ has finite index in Zn. Let h be the class number
of OK . For each i there exists αi ∈ OK such that ph

i = (αi). But αi ∈ O∗
K,S since

ordp(αi) = 0 for all p 6∈ S (by unique factorization). Then

φ(αi) = (0, . . . , 0, h, 0, . . . , 0).

It follows that (hZ)n ⊂ Im(φ), so the image of φ has finite index in Zn. It follows
that O∗

K,S has rank equal to r + s − 1 + #S.

13.2 Proof of the Weak Mordell-Weil Theorem

Suppose E is an elliptic curve over a number field K, and fix a positive integer n.
Just as with number fields, we have an exact sequence

0 → E[n] → E
n−→ E → 0.

Then we have an exact sequence

0 → E[n](K) → E(K)
n−→ E(K) → H1(K, E[n]) → H1(K, E)[n] → 0.

From this we obtain a short exact sequence

0 → E(K)/nE(K) → H1(K, E[n]) → H1(K, E)[n] → 0. (13.2.1)

Now assume, in analogy with Section 13.1, that E[n] ⊂ E(K), i.e., all n-torsion
points are defined over K. Then

H1(K, E[n]) = Hom(Gal(K/K), (Z/nZ)2),

and the sequence (13.2.1) induces an inclusion

E(K)/nE(K) ↪→ Hom(Gal(K/K), (Z/nZ)2). (13.2.2)



128 CHAPTER 13. THE WEAK MORDELL-WEIL THEOREM

Explicitly, this homomorphism sends a point P to the homomorphism defined as
follows: Choose Q ∈ E(K) such that nQ = P ; then send each σ ∈ Gal(K/K) to
σ(Q)−Q ∈ E[n] ∼= (Z/nZ)2. Given a point P ∈ E(K), we obtain a homomorphism
ϕ : Gal(K/K) → (Z/nZ)2, whose kernel defines an abelian extension L of K that
has exponent n. The amazing fact is that L can be ramified at most at the primes of
bad reduction for E and the primes that divide n. Thus we can apply theorem 13.1.1
to see that there are only finitely many such L.

Theorem 13.2.1. If P ∈ E(K) is a point, then the field L obtained by adjoining to
K all coordinates of all choices of Q = 1

nP is unramified outside n and the primes
of bad reduction for E.

Sketch of Proof. First one proves that if p - n is a prime of good reduction for E,
then the natural reduction map π : E(K)[n] → Ẽ(OK/p) is injective. The argument
that π is injective uses “formal groups”, whose development is outside the scope
of this course. Next, as above, σ(Q) − Q ∈ E(K)[n] for all σ ∈ Gal(K/K). Let
Ip ⊂ Gal(L/K) be the inertia group at p. Then by definition of interia group, Ip

acts trivially on Ẽ(OK/p). Thus for each σ ∈ Ip we have

π(σ(Q) − Q) = σ(π(Q)) − π(Q) = π(Q) − π(Q) = 0.

Since π is injective, it follows that σ(Q) = Q for σ ∈ Ip, i.e., that Q is fixed under
all Ip. This means that the subfield of L generated by the coordinates of Q is
unramified at p. Repeating this argument with all choices of Q implies that L is
unramified at p.

Theorem 13.2.2 (Weak Mordell-Weil). Let E be an elliptic curve over a number
field K, and let n be any positive integer. Then E(K)/nE(K) is finitely generated.

Proof. First suppose all elements of E[n] have coordinates in K. Then the homo-
morphism (13.2.2) provides an injection of E(K)/nE(K) into

Hom(Gal(K/K), (Z/nZ)2).

By Theorem 13.2.1, the image consists of homomorphisms whose kernels cut out
an abelian extension of K unramified outside n and primes of bad reduction for E.
Since this is a finite set of primes, Theorem 13.1.1 implies that the homomorphisms
all factor through a finite quotient Gal(L/K) of Gal(Q/K). Thus there can be only
finitely many such homomorphisms, so the image of E(K)/nE(K) is finite. Thus
E(K)/nE(K) itself is finite, which proves the theorem in this case.

Next suppose E is an elliptic curve over a number field, but do not make the
hypothesis that the elements of E[n] have coordinates in K. Since the group E[n](C)
is finite and its elements are defined over Q, the extension L of K got by adjoining
to K all coordinates of elements of E[n](C) is a finite extension. It is also Galois,
as we saw when constructing Galois representations attached to elliptic curves. By
Proposition 12.3.1, we have an exact sequence

0 → H1(L/K, E[n](L)) → H1(K, E[n]) → H1(L, E[n]).
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The kernel of the restriction map H1(K, E[n]) → H1(L, E[n]) is finite, since it
is isomorphic to the finite group cohomology group H1(L/K, E[n](L)). By the
argument of the previous paragraph, the image of E(K)/nE(K) in H1(L, E[n])
under

E(K)/nE(K) ↪→ H1(K, E[n])
res−−→ H1(L, E[n])

is finite, since it is contained in the image of E(L)/nE(L). Thus E(K)/nE(K) is
finite, since we just proved the kernel of res is finite.



130 CHAPTER 13. THE WEAK MORDELL-WEIL THEOREM



Chapter 14

Exercises

1. Let A =




1 2 3
4 5 6
7 8 9


.

(a) Find the Smith normal form of A.

(b) Prove that the cokernel of the map Z3 → Z3 given by multiplication
by A is isomorphic to Z/3Z ⊕ Z.

2. Show that the minimal polynomial of an algebraic number α ∈ Q is unique.

3. Which of the following rings have infinitely many prime ideals?

(a) The integers Z.

(b) The ring Z[x] of polynomials over Z.

(c) The quotient ring C[x]/(x2005 − 1).

(d) The ring (Z/6Z)[x] of polynomials over the ring Z/6Z.

(e) The quotient ring Z/nZ, for a fixed positive integer n.

(f) The rational numbers Q.

(g) The polynomial ring Q[x, y, z] in three variables.

4. Which of the following numbers are algebraic integers?

(a) The number (1 +
√

5)/2.

(b) The number (2 +
√

5)/2.

(c) The value of the infinite sum
∑∞

n=1 1/n2.

(d) The number α/3, where α is a root of x4 + 54x + 243.

5. Prove that Z is not noetherian.

6. Prove that the ring Z is not noetherian, but it is integrally closed in its field of
fraction, and every nonzero prime ideal is maximal. Thus Z is not a Dedekind
domain.

131



132 CHAPTER 14. EXERCISES

7. Let K be a field.

(a) Prove that the polynomial ring K[x] is a Dedekind domain.

(b) Is Z[x] a Dedekind domain?

8. Let OK be the ring of integers of a number field. Let FK denote the abelian
group of fractional ideals of OK .

(a) Prove that FK is torsion free.

(b) Prove that FK is not finitely generated.

(c) Prove that FK is countable.

(d) Conclude that if K and L are number fields, then there exists an isomor-
phism of groups FK ≈ FL.

9. From basic definitions, find the rings of integers of the fields Q(
√

11) and
Q(

√
13).

10. Factor the ideal (10) as a product of primes in the ring of integers of Q(
√

11).
You’re allowed to use a computer, as long as you show the commands you use.

11. Let OK be the ring of integers of a number field K, and let p ∈ Z be a prime
number. What is the cardinality of OK/(p) in terms of p and [K : Q], where
(p) is the ideal of OK generated by p?

12. Give an example of each of the following, with proof:

(a) A non-principal ideal in a ring.

(b) A module that is not finitely generated.

(c) The ring of integers of a number field of degree 3.

(d) An order in the ring of integers of a number field of degree 5.

(e) The matrix on K of left multiplication by an element of K, where K is
a degree 3 number field.

(f) An integral domain that is not integrally closed in its field of fractions.

(g) A Dedekind domain with finite cardinality.

(h) A fractional ideal of the ring of integers of a number field that is not an
integral ideal.

13. Let ϕ : R → S be a homomorphism of (commutative) rings.

(a) Prove that if I ⊂ S is an ideal, then ϕ−1(I) is an ideal of R.

(b) Prove moreover that if I is prime, then ϕ−1(I) is also prime.
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14. Let OK be the ring of integers of a number field. The Zariski topology on the
set X = Spec(OK) of all prime ideals of OK has closed sets the sets of the
form

V (I) = {p ∈ X : p | I},
where I varies through all ideals of OK , and p | I means that I ⊂ p.

(a) Prove that the collection of closed sets of the form V (I) is a topology on
X.

(b) Let Y be the subset of nonzero prime ideals of OK , with the induced
topology. Use unique factorization of ideals to prove that the closed
subsets of Y are exactly the finite subsets of Y along with the set Y .

(c) Prove that the conclusion of (a) is still true if OK is replaced by an order
in OK , i.e., a subring that has finite index in OK as a Z-module.

15. Explicitly factor the ideals generated by each of 2, 3, and 5 in the ring of
integers of Q( 3

√
2). (Thus you’ll factor 3 separate ideals as products of prime

ideals.) You may assume that the ring of integers of Q( 3
√

2) is Z[ 3
√

2], but do
not simply use a computer command to do the factorizations.

16. Let K = Q(ζ13),where ζ13 is a primitive 13th root of unity. Note that K has
ring of integers OK = Z[ζ13].

(a) Factor 2, 3, 5, 7, 11, and 13 in the ring of integers OK . You may use a
computer.

(b) For p 6= 13, find a conjectural relationship between the number of prime
ideal factors of pOK and the order of the reduction of p in (Z/13Z)∗.

(c) Compute the minimal polynomial f(x) ∈ Z[x] of ζ13. Reinterpret your
conjecture as a conjecture that relates the degrees of the irreducible fac-
tors of f(x) (mod p) to the order of p modulo 13. Does your conjecture
remind you of quadratic reciprocity?

17. (a) Find by hand and with proof the ring of integers of each of the following
two fields: Q(

√
5), Q(i).

(b) Find the ring of integers of Q(x5 + 7x + 1) using a computer.

18. Let p be a prime. Let OK be the ring of integers of a number field K, and
suppose a ∈ OK is such that [OK : Z[a]] is finite and coprime to p. Let f(x)
be the minimal polynomial of a. We proved in class that if the reduction
f ∈ Fp[x] of f factors as

f =
∏

gei

i ,

where the gi are distinct irreducible polynomials in Fp[x], then the primes
appearing in the factorization of pOK are the ideals (p, gi(a)). In class, we
did not prove that the exponents of these primes in the factorization of pOK

are the ei. Prove this.
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19. Let a1 = 1 + i, a2 = 3 + 2i, and a3 = 3 + 4i as elements of Z[i].

(a) Prove that the ideals I1 = (a1), I2 = (a2), and I3 = (a3) are coprime in
pairs.

(b) Compute #Z[i]/(I1I2I3).

(c) Find a single element in Z[i] that is congruent to n modulo In, for each
n ≤ 3.

20. Find an example of a field K of degree at least 4 such that the ring OK of
integers of K is not of the form Z[a] for any a ∈ OK .

21. Let p be a prime ideal of OK , and suppose that OK/p is a finite field of
characteristic p ∈ Z. Prove that there is an element α ∈ OK such that
p = (p, α). This justifies why PARI can represent prime ideals of OK as
pairs (p, α). (More generally, if I is an ideal of OK , we can choose one of the
elements of I to be any nonzero element of I.)

22. (*) Give an example of an order O in the ring of integers of a number field
and an ideal I such that I cannot be generated by 2 elements as an ideal.
Does the Chinese Remainder Theorem hold in O? [The (*) means that this
problem is more difficult than usual.]

23. For each of the following three fields, determining if there is an order of dis-
criminant 20 contained in its ring of integers:

K = Q(
√

5), K = Q(
3
√

2), and . . .

K any extension of Q of degree 2005. [Hint: for the last one, apply the exact
form of our theorem about finiteness of class groups to the unit ideal to show
that the discriminant of a degree 2005 field must be large.]

24. Prove that the quantity Cr,s in our theorem about finiteness of the class group
can be taken to be

(
4
π

)s n!
nn , as follows (adapted from [SD01, pg. 19]): Let S

be the set of elements (x1, . . . , xn) ∈ Rn such that

|x1| + · · · |xr| + 2
r+s∑

v=r+1

√
x2

v + x2
v+s ≤ 1.

(a) Prove that S is convex and that M = n−n, where

M = max{|x1 · · ·xr ·(x2
r+1+x2

(r+1)+s) · · · (x2
r+s+x2

n)| : (x1, . . . , xn) ∈ S}.

[Hint: For convexity, use the triangle inequality and that for 0 ≤ λ ≤ 1,
we have

λ
√

x2
1 + y2

1 + (1 − λ)
√

x2
2 + y2

2

≥
√

(λx1 + (1 − λ)x2)2 + (λy1 + (1 − λ)y2)2
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for 0 ≤ λ ≤ 1. In polar coordinates this last inequality is

λr1 + (1 − λ)r2 ≥
√

λ2r2
1 + 2λ(1 − λ)r1r2 cos(θ1 − θ2) + (1 − λ)2r2

2,

which is trivial. That M ≤ n−n follows from the inequality between the
arithmetic and geometric means.

(b) Transforming pairs xv, xv+s from Cartesian to polar coordinates, show
also that v = 2r(2π)sDr,s(1), where

D`,m(t) =

∫
· · ·

∫

R`,m(t)
y1 · · · ymdx1 · · · dx`dy1 · · · dym

and R`,m(t) is given by xρ ≥ 0 (1 ≤ ρ ≤ `), yρ ≥ 0 (1 ≤ ρ ≤ m) and

x1 + · · · + x` + 2(y1 + · · · + ym) ≤ t.

(c) Prove that

D`,m(t) =

∫ t

0
D`−1,m(t − x)dx =

∫ t/2

0
D`,m−1(t − 2y)ydy

and deduce by induction that

D`,m(t) =
4−mt`+2m

(` + 2m)!

25. Let K vary through all number fields. What torsion subgroups (UK)tor actu-
ally occur?

26. If UK ≈ Zn × (UK)tor, we say that UK has rank n. Let K vary through all
number fields. What ranks actually occur?

27. Let K vary through all number fields such that the group UK of units of K is
a finite group. What finite groups UK actually occur?

28. Let K = Q(ζ5).

(a) Show that r = 0 and s = 2.

(b) Find explicit generators for the group of units of UK .

(c) Draw an illustration of the log map ϕ : UK → R2, including the hyper-
plane x1+x2 = 0 and the lattice in the hyperplane spanned by the image
of UK .

29. Let K be a number field. Prove that p | dK if and only if p ramifies in K.
(Note: This fact is proved in many books.)
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30. Using Zorn’s lemma, one can show that there are homomorphisms Gal(Q/Q) →
{±1} with finite image that are not continuous, since they do not factor
through the Galois group of any finite Galois extension. [Hint: The extension
Q(

√
d, d ∈ Q∗/(Q∗)2) is an extension of Q with Galois group X ≈ ∏

F2. The
index-two open subgroups of X correspond to the quadratic extensions of Q.
However, Zorn’s lemma implies that X contains many index-two subgroups
that do not correspond to quadratic extensions of Q.]

31. (a) Give an example of a finite nontrivial Galois extension K of Q and a
prime ideal p such that Dp = Gal(K/Q).

(b) Give an example of a finite nontrivial Galois extension K of Q and a
prime ideal p such that Dp has order 1.

(c) Give an example of a finite Galois extension K of Q and a prime ideal p

such that Dp is not a normal subgroup of Gal(K/Q).

(d) Give an example of a finite Galois extension K of Q and a prime ideal p

such that Ip is not a normal subgroup of Gal(K/Q).

32. Let S3 by the symmetric group on three symbols, which has order 6.

(a) Observe that S3
∼= D3, where D3 is the dihedral group of order 6, which

is the group of symmetries of an equilateral triangle.

(b) Use (32a) to write down an explicit embedding S3 ↪→ GL2(C).

(c) Let K be the number field Q( 3
√

2, ω), where ω3 = 1 is a nontrivial cube
root of unity. Show that K is a Galois extension with Galois group
isomorphic to S3.

(d) We thus obtain a 2-dimensional irreducible complex Galois representation

ρ : Gal(Q/Q) → Gal(K/Q) ∼= S3 ⊂ GL2(C).

Compute a representative matrix of Frobp and the characteristic polyno-
mial of Frobp for p = 5, 7, 11, 13.

33. Look up the Riemann-Roch theorem in a book on algebraic curves.

(a) Write it down in your own words.

(b) Let E be an elliptic curve over a field K. Use the Riemann-Roch theorem
to deduce that the natural map

E(K) → Pic0(E/K)

is an isomorphism.

34. Suppose G is a finite group and A is a finite G-module. Prove that for any q,
the group Hq(G, A) is a torsion abelian group of exponent dividing the order
#A of A.
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35. Let K = Q(
√

5) and let A = UK be the group of units of K, which is a module
over the group G = Gal(K/Q). Compute the cohomology groups H0(G, A)
and H1(G, A). (You shouldn’t use a computer, except maybe to determine
UK .)

36. Let K = Q(
√
−23) and let C be the class group of Q(

√
−23), which is a

module over the Galois group G = Gal(K/Q). Determine H0(G, C) and
H1(G, C).

37. Let E be the elliptic curve y2 = x3 + x + 1. Let E[2] be the group of points
of order dividing 2 on E. Let

ρE,2 : Gal(Q/Q) → Aut(E[2])

be the mod 2 Galois representation associated to E.

(a) Find the fixed field K of ker(ρE,2).

(b) Is ρE,2 surjective?

(c) Find the group Gal(K/Q).

(d) Which primes are ramified in K?

(e) Let I be an inertia group above 2, which is one of the ramified primes.
Determine E[2]I explicitly for your choice of I. What is the characteristic
polynomial of Frob2 acting on E[2]I .

(f) What is the characteristic polynomial of Frob3 acting on E[2]?

(g) Let K be a number field. Prove that there is a finite set S of primes of K
such that

OK,S = {a ∈ K∗ : ordp(aOK) ≥ 0 all p 6∈ S} ∪ {0}

is a prinicipal ideal domain. The condition ordp(aOK) ≥ 0 means that in
the prime ideal factorization of the fractional ideal aOK , we have that p

occurs to a nonnegative power.

(h) Let a ∈ K and n a positive integer. Prove that L = K(a1/n) is unramified
outside the primes that divide n and the norm of a. This means that if p

is a prime of OK , and p is coprime to n NormL/K(a)OK , then the prime
factorization of pOL involves no primes with exponent bigger than 1.

(i) Write down a proof of Hilbert’s Theorem 90, formulated as the statement
that for any number field K, we have

H1(K, K
∗
) = 0.
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