Harvard Math 129: Algebraic Number Theory Homework Assignment 9

William Stein

Due: Thursday, April 28, 2005

The problems have equal point value (except 4 below), and multi-part problems are of the same value. In any problem where you use a computer, include in your solution the exact commands you type and their output. You may use any software, including (but not limited to) MAGMA and PARI.

1. Suppose G is a finite group and A is a finite G-module. Prove that for any q, the group $\mathrm{H}^{q}(G, A)$ is a torsion abelian group of exponent dividing the order \# A of A.
2. Let $K=\mathbb{Q}(\sqrt{5})$ and let $A=U_{K}$ be the group of units of K, which is a module over the group $G=\operatorname{Gal}(K / \mathbb{Q})$. Compute the cohomology groups $\mathrm{H}^{0}(G, A)$ and $\mathrm{H}^{1}(G, A)$. (You shouldn't use a computer, except maybe to determine U_{K}.)
3. Let $K=\mathbb{Q}(\sqrt{-23})$ and let C be the class group of $\mathbb{Q}(\sqrt{-23})$, which is a module over the Galois group $G=\operatorname{Gal}(K / \mathbb{Q})$. Determine $\mathrm{H}^{0}(G, C)$ and $\mathrm{H}^{1}(G, C)$. (Use of a computer is fine.)
4. [This problem is double credit, i.e., it counts as two problems.] Let E be the elliptic curve $y^{2}=x^{3}+x+1$. Let $E[2]$ be the group of points of order dividing 2 on E. Let

$$
\bar{\rho}_{E, 2}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}(E[2])
$$

be the $\bmod 2$ Galois representation associated to E.
(a) Find the fixed field K of $\operatorname{ker}\left(\bar{\rho}_{E, 2}\right)$.
(b) Is $\bar{\rho}_{E, 2}$ surjective?
(c) Find the $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$.
(d) Which primes are ramified in K ?
(e) Let I be an inertia group above 2, which is one of the ramified primes. Determine $E[2]^{I}$ explicitly for your choice of I. What is the characteristic polynomial of Frob $_{2}$ acting on $E[2]^{I}$.
(f) What is the characteristic polynomial of Frob_{3} acting on $E[2]$?

