Harvard Math 129: Algebraic Number Theory Homework Assignment 3

William Stein

Due: Thursday, March 3, 2005

The problems have equal point value, and multi-part problems are of the same value. There are five problems. In any problem where you use a computer, include in your solution the exact commands you type and their output. You may use any software, including (but not limited to) MAGMA and PARI.

1. Let $\varphi: R \rightarrow S$ be a homomorphism of (commutative) rings.
(a) Prove that if $I \subset S$ is an ideal, then $\varphi^{-1}(I)$ is an ideal of R.
(b) Prove moreover that if I is prime, then $\varphi^{-1}(I)$ is also prime.
2. Let \mathcal{O}_{K} be the ring of integers of a number field. The Zariski topology on the set $X=\operatorname{Spec}\left(\mathcal{O}_{K}\right)$ of all prime ideals of \mathcal{O}_{K} has closed sets the sets of the form

$$
V(I)=\{\mathfrak{p} \in X: \mathfrak{p} \mid I\}
$$

where I varies through all ideals of \mathcal{O}_{K}, and $\mathfrak{p} \mid I$ means that $I \subset \mathfrak{p}$.
(a) Prove that the collection of closed sets of the form $V(I)$ is a topology on X.
(b) Let Y be the subset of nonzero prime ideals of \mathcal{O}_{K}, with the induced topology. Use unique factorization of ideals to prove that the closed subsets of Y are exactly the finite subsets of Y along with the set Y.
(c) Prove that the conclusion of (a) is still true if \mathcal{O}_{K} is replaced by an order in \mathcal{O}_{K}, i.e., a subring that has finite index in \mathcal{O}_{K} as a \mathbb{Z}-module.
3. Explicitly factor the ideals generated by each of 2,3 , and 5 in the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$. (Thus you'll factor 3 separate ideals as products of prime ideals.) You may assume that the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ is $\mathbb{Z}[\sqrt[3]{2}]$, but do not simply use a computer command to do the factorizations.
4. Let $K=\mathbb{Q}\left(\zeta_{13}\right)$, where ζ_{13} is a primitive 13 th root of unity. Note that K has ring of integers $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{13}\right]$ (you do not have to prove this).
(a) Factor $2,3,5,7,11$, and 13 in the ring of integers \mathcal{O}_{K}. You may use a computer.
(b) For $p \neq 13$, find a conjectural relationship between the number of prime ideal factors of $p \mathcal{O}_{K}$ and the order of the reduction of p in $(\mathbb{Z} / 13 \mathbb{Z})^{*}$.
(c) Compute the minimal polynomial $f(x) \in \mathbb{Z}[x]$ of ζ_{13}. Reinterpret your conjecture as a conjecture that relates the degrees of the irreducible factors of $f(x)(\bmod p)$ to the order of p modulo 13. Does your conjecture remind you of quadratic reciprocity?
5. (a) Find by hand and with proof the ring of integers of each of the following two fields: $\mathbb{Q}(\sqrt{5}), \mathbb{Q}(i)$.
(b) Find the ring of integers of $\mathbb{Q}\left(x^{5}+7 x+1\right)$ using a computer.

