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1 Introduction

This paper is intended as an introduction to the field Qp of p-adic numbers, and some of
the ways in which it relates to the theory we have been building up over the course of the
semester. We will leave a few small facts unproven, in the interest of being able to attack
larger things without getting bogged down in all the gory details of norms and topology.
The content of the paper is divided into three sections, the first of which will introduce the
reader to the p-adic numbers and motivate their further study, and the next two of which are
intended give the reader some perspective on how some the topics we studied this semester
about Number Fields relate to the p-adics, and what similar theory we can build up around
Qp.

Much of this paper, and in particular the construction of Qp, Hensel’s Lemma, and the
sections on extensions of norms and the generalized ring of integers, follows more or less
loosely the presentation in Koblitz [3]. The section on viewing Zp as a tree is from Holly [1].
Some of the random little facts such as ep ∈ Qp and the generalization of | · |p in Section 3.4
came from [5].

2 The p-adic Numbers

There are various ways to construct the p-adic numbers. One very intuitive one involves
defining Zp to be the projective limit of Z/pnZ for a prime p with n going to infinity, and
then taking Qp to be the fraction field of that limit, which is an integral domain. We choose
to construct them here by defining Qp to be the completion of Q with respect to the p-
adic norm (which we will define soon), because the concept of the non-archimedean norm
will ultimately prove useful in proving things about the extension fields of Qp. Still, it is
useful to know the alternate definitions of Zp and Qp, which is closely related to the p-ary
representation of Qp that we will discuss below.
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2.1 Non-Archimedean Norms

In the same way that the real numbers are typically constructed as the completion of the
rationals with respect to the usual, intuitive Euclidean metric, we will construct Qp by taking
the completion of Q with respect to a metric induced by a more exotic norm, which we will
denote | · |p, and refer to as the p-adic norm on Q. We begin with the definition of a norm
on a field.

Definition 2.1.1 (Norm on a Field). A norm | · | on the field F is a map from F to R≥0

such that for all x, y ∈ F :

1. |x| = 0 iff x = 0.

2. |x · y| = |x| · |y|.

3. (triangle inequality) |x + y| ≤ |x|+ |y|.

The usual absolute value (which we will denote | · |∞) is one example of a norm on Q with
which we are all familiar. However, there are other possible norms on Q, for instance the
”trivial norm” which sends 0 to 0 and everything else to 1. The trivial norm thus defined is
a norm on every field F .

As another example, if we fix some prime p, we can define a norm | · |p as follows: If
x = a

b
6= 0 in lowest terms, we can alternately write x = pn a′

b′ for some n ∈ Z and with a′

and b′ relatively prime to p, by dividing out the highest power of p dividing either a or b.
Then we just define |x|p = p−n (|0|p = 0). n here can also be written as ordp(x). This is an
odd norm, so to give it concreteness we evaluate some examples below:

|7|7 =
1

7∣∣∣∣ 1

49

∣∣∣∣
7

= 49

|5|7 = 1

|21|7 =
1

7∣∣∣∣51

35

∣∣∣∣
7

= 7

So that, in general, a rational number is p-adically ”larger” when higher powers of p
divide its denominator, and p-adically ”smaller” when higher powers divide its numerator.
Note in particular that |n|p ≤ 1 for all n ∈ Z.

Proposition 2.1.2. | · |p is a norm on Q.
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Proof. It is trivial that | · |p satisfies conditions 1 and 2 of the definition of a norm, and we
can actually prove an even stronger version of the triangle inequality, the equation

|x + y|p ≤ max(|x|p, |y|p)

The above is trivial when x or y is 0, so assume that both are nonzero and assume that
|x|p ≥ |y|p. Then x = pn a

b
and y = pm c

d
with n ≤ m and a, b, c, d all relatively prime to p, so

that we have

|x + y|p = |pn ad + bcpm−n

bd
|p

= |pn| · | 1

bd
| · |ad + bcpm−n|

≤ p−n

= |x|p
= max(|x|p, |y|p)

where the inequality step comes from the fact that bd is relatively prime to p and ad+bcpm−n

is an integer.

We have a natural metric dp(x, y) = |x− y|p induced by the p-adic norm, which in turn
induces a metric topology on Q.

Norms which satisfy the stronger triangle inequality above are called non-archimedean
norms. Norms that do not are called, unsurprisingly, archimedean. There is a nice theorem
by Ostrowski, which we will not prove here, classifying all nontrivial norms on Q.

Theorem 2.1.3 (Ostrowski). Every nontrivial norm on Q is equivalent to | · |p for p = ∞
or p some prime.

where two norms | · |1 and | · |2 are defined to be equivalent if they induce the same
topology, or alternately if there exists α ∈ R such that, ∀x ∈ Q, |x|1 = |x|α2 .

2.2 Qp

Now we are ready to define Qp to be the set of all equivalence classes of Cauchy sequences
of rational numbers {an}∞n=1 with the relation

{an} ∼ {bn} ⇔ {an − bn} −→ 0

We further define the operations {an} · {bn} = {an · bn}, {an} + {bn} = {an + bn},
1

{an} = { 1
an
}, −{an} = {−an}, and |{an}|p = limn→∞ |an|p. It is not difficult to prove the

continuity of these operations with respect to the p-adic norm, though we will not do so
here. Neither will we prove that Qp is complete, though that is also true. It follows easily
from these definitions that the extension of | · |p is a non-archimedean norm on Qp.
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At this point, we may want to ask whether or not Q was already complete with respect
to the p-adic norm. In fact it is not; we can see this by considering the number 6, which has
a unique square root ni modulo every positive power 5i of 5 (we can show this using Hensel’s
Lemma, which we introduce later, in Section 2.6). Thus, if the sequence (ni)

∞
i=1 converges to

x ∈ Q, we would have |6−x2|p = limi→∞ |6− n2
i |p, but 6−n2

i ≡ 0 (mod pi), ∀i, so this limit
is 0 and consequently x2 = 6. In other words, we would have constructed a rational square
root of 6. Since this is impossible, it must be that the sequence of ni has no limit in Q.

Though we can construct Qp with the p-adic norm, there are much better ways to think
about its elements in practice. It can be shown, for instance, that any Cauchy sequence in
Qp that does not converge to 0 is equivalent to a unique sequence of the form(

n∑
i=k

ai · pi

)∞
n=k

with 0 ≤ ai < p ∀i, k ∈ Z, and ak > 0. This is the sequence of partial sums of the infinite
sum

∑∞
i=k ai · pi, so we may as well think of x as being ”equal” to that infinite sum, and

think of Qp as the set of infinite sums of that form. Note that these sums converge because
the norms of the sums of remaining terms get p-adically smaller and smaller as the powers
of p that divide them get higher and higher. We can also use the multiplicative and additive
properties of our non-archimedean norm | · |p to deduce that |x|p = p−k.

Alternately, we can divide out x by pk and note that any nonzero p-adic number x may
be expressed as

x =
∞∑

i=k

ai · pi = pk ·
∞∑
i=0

ai+k · pi = pk · u

where we use the letter u because the p-adic numbers of the form u =
∑∞

i=0 ai · pi with
a0 6= 0 are exactly those for which |u|p = 1, which we will see later are the units of the ring
of p-adic integers Zp.

Note that this is equivalent to the idea that a real number may be represented by an
infinite decimal expansion, which can be understood as an infinite sum of digits times smaller
and smaller powers of 10, except that the decimal representation is not unique; for instance,
1.0 = 0.9. This comparison inspires the idea of a representation of a p-adic as a ”p-ary”
expansion that is finite on the right and goes off to infinity on the left. For instance, the 5-ary
representation of 17 = 2 + 3 · 5 would be . . . 00032. We will see more of this representation
in the next section.

2.3 Arithmetic in Qp

We can add, subtract, and multiply in the p-adics with the p-ary representations just like
we do in the reals with decimal notation, with the same notions of carrying and borrowing.
For instance, in Q5,
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. . . 131.23

+ . . . 442.122

= . . . 123.402

There are repeating decimals in Qp just like in R. For instance, consider 1/3 = 0.333 . . .
in R. By comparison, the 2-ary representation in Q2 is 1/3 = . . . 0101011.0, which we can
compute by solving 3X − 1 ≡ 0 modulo successively higher and higher powers of 2 (3 has
inverse 1 mod 2, 3 mod 4 and mod 8, 11 mod 16 and mod 32, 43 mod 64 and mod 128, and
so on).

2.4 Zp

We now introduce the concept of Zp, the set of p-adic integers. Zp is just the set of p-
adic numbers x with |x|p ≤ 1 (or equivalently, 0 and those whose p-ary representations
terminate to the left of the decimal point). Since | · |p is multiplicative, the group of units
Z×p are exactly the x for which |x|p = 1 (or equivalently, those whose p-ary representations
have their rightmost nonzero digit in the ”ones” place). Since we have for all x 6= 0 that
x = pm ·u, we can alternately say that the nonzero p-adic integers are those for which m ≥ 0
and the units are those for which m = 0. That Zp is a ring follows from the properties of
the non-archimedean norm, and the ideals of Zp are the powers of pZp, Zp’s only ideal. We
will see generalizations of these concepts later in Section 3.2.

Note that Zp∩Q is not just Z, though it does contain Z: for instance, 1/2 = . . . 1112.0 in
Q3 is not only an integer but a unit (this is not surprising since 2 = . . . 0002.0 is also a unit).
In fact, Zp ∩Q consists of all rational numbers whose denominators in lowest terms are not
divisible by p, and Z×p ∩ Q is those whose numerators and denomators in lowest terms are
both not divisible by p.

2.5 Fun with the p-adic Topology

The p-adic topology is an exotic one with some strange consequences, and requires us to
forget all of the geometric intuition we have from working with | · |∞. To illustrate this, we
will consider the differences between non-archimedean and archimedean geometry.

First, note that in the proof of Proposition 2.1.2, if n is strictly less than m, we actually
have equality, i.e.

|x + y|p = max(|x|p, |y|p) (1)

because then we have

p|bcpm−n ⇒ p 6 | (ad + bcpm−n) ⇒ |ad + bcpm−n|p = 1
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This is known as the ”isosceles triangle principle,” because it implies, with our stronger
triangle inequality, that for any three points x, y, and z, the larger two of dp(x, y), dp(y, z),
and dp(x, z) must be the same: in other words, every triangle is isosceles!

A further implication of this fact is that if y, z ∈ B(x, r), the ball of radius r centered at
x, then dp(y, z) ≤ max(dp(x, y), dp(x, z)) < r ⇒ z ∈ B(y, r). Thus we see that z ∈ B(x, r) ⇔
z ∈ B(y, r), so that we have

∀y ∈ B(x, r), B(y, r) = B(x, r)

in other words, that every point in a ball is the center of that ball!
Another nice corollary of this fact is that if two balls intersect, they are concentric, sharing

a center at their point of intersection; therefore one is entirely contained in the other.
These facts seem completely counterintuitive if we make any attempt to analogize Qp to

R; however, Holly suggests another model which can be of help in this matter. She suggests
we think of a p-ary ”tree” of infinite depth, with each p-adic number being a ”leaf” infinitely
far down on the tree, essentially the limit of a path down the tree, where at the nth step,
we choose the ath

n child to go to next. Then, the ”distance” between two p-adic numbers
is inversely proportional to how far down the tree is their lowest common ancestor. To
generalize this to Qp is more difficult; we must imagine a tree that extends infinitely up and
down, with some depth 0 in the middle of the tree. This is not as easy to picture, so since
we know any finite set of numbers must all be contained in some pkZp, which is topologically
the same as Zp, we will only consider Zp for now.

Now, we can easily see that the right way to re-envision a ball in this analogy is to let
B(x, r) be the set of all descendants of any sufficiently low ancestor of x, which is the same
as saying all descendants of the highest sufficiently low ancestor. In other words, a ball is the
set of all common ancestors of any node of the tree with finite depth. It becomes clear with
this definition of a ball why all points in a ball are centers of that ball; any descendant of
the node defining the ball is clearly a center of that ball. Furthermore, if two balls intersect,
the node defining one ball must be a descendant of the node defining the other ball. Thus,
the ball of the descendant node is totally contained in the ball of the ancestor node.

The isosceles triangle principle also becomes obvious when we consider that given three
points, x, y, and z, either their paths all split at the same depth in the tree (in which case
the triangle is equilateral), or (w.l.o.g.) x splits off from the others earlier and the other two
split off later, in which case x is equally far from the other two, which are closer to each
other than they are to x, and the triangle is isosceles.

This topological analogy of Zp is closely related to the fact that Zp has the topology of
the Cantor Set as a subspace of R.

2.6 Hensel’s Lemma: the p-adic Newton’s Method

One question which naturally arises with the p-adics is, how can we tell if a given polynomial
has a root in the p-adics? In most cases, as we will see, the answer is not actually too
difficult to arrive at. Since any polynomial equation with coefficients in the p-adic numbers
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can become a polynomial equation with coefficients in the p-adic integers by multiplying
all the coefficients by a suitable power of p, we will consider the limited case of whether
such equations have solutions in Zp (we can easily generalize this to ask whether the same
polynomial has roots in pkZp, by replacing every X in the polynomial with pkX and asking
whether the resulting polynomial has roots in Zp).

We can see without too much difficulty that if the reduction of a polynomial has no root
in Zp/pZp, then it has no root in Zp, but it is not immediately clear that the converse is
true. In fact, we can prove the converse if we add an additional hypothesis. The following
theorem was proven by Hensel and is very useful.

Theorem 2.6.1 (Hensel’s Lemma). Let f(X) =
∑m

j=0 cjX
j be a polynomial with coeffi-

cients in Zp, and let f ′(X) =
∑m

j=0 jcjX
j−1 be its derivative. Suppose f(a0) ≡ 0 (mod p)

and f ′(a0) 6≡ 0 (mod p). Then a0 lifts to a unique p-adic integer root of f(X).

Proof. We will prove this by showing (by induction) that there is a unique sequence of
integers {an}∞n=0 beginning with a0 (considered now as an integer between 0 and p− 1) such
that for all n,

• f(
∑n

i=0 aip
i) ≡ 0 (mod pn+1)

• 0 ≤ an < p

Note that this claim is equivalent to the theorem since we are essentially finding a unique
infinite p-ary expansion . . . a3a2a1a0.0 for a root of f(X) whose reduction modulo p is a0

(more precisely, the partial sums are a Cauchy sequence in Q and any other solution must
be equivalent as a Cauchy sequence to the sequence of partial sums).

Now, on to proving the claim. We have the claim for n = 0 by hypothesis, so we need
only consider the inductive step. Suppose we have a0, . . . , an−1, for some n, which all satisfy
the claim. Let S = f(

∑n−1
i=0 aip

i). Then we have, for any an which could possibly satisfy the
claim, working modulo pn+1

f(
n∑

i=0

aip
i) = f(S + anp

n)

=
m∑

j=0

cj (S + anp
n)j

=
m∑

j=0

(
cjS

j + jcjS
j−1anp

n + termsdivisibleby pn+1
)

≡
m∑

j=0

cjS
j +

(
m∑

j=0

jcjS
j−1

)
anp

n

= f(S) + f ′(S)anp
n

≡ 0

7



Now, we have that f(S) ≡ 0 (mod pn) by our induction hypothesis, so we may divide

both sides of the congruence by pn to obtain the congruence −f(S)
pn ≡ f ′(S)an (mod p). Since

f ′(S) ≡ f ′(a0) 6≡ 0 (mod p), this congruence has a unique solution an. So the claim is proved
and the theorem follows.

Note that the converse is not true; for instance f(X) = X2 does not satisfy the hypotheses
of Theorem 2.6.1, but it certainly has a root, 0, in Zp for every p. Roots modulo p which
also give nonzero derivative modulo p are called nonsingular roots.

Now we can see how to find a root of f(X) = X2 − 6 in Z5. Just observing that f(X)
has nonsingular roots at 1 and 4, modulo 5, is enough to prove that f(X) has exactly two
roots in Z5. Furthermore, we can actually approximate these with arbitrary precision by
solving the equation modulo 5n, or by finding the ai with the iterative procedure given for
Theorem 2.6.1. Let’s work this as an example, approximating the root which is congruent
to 4 modulo 5. Note that f ′(X) = 2X. For the first step we have, modulo 25

f(4 + 5a1) ≡ f(4) + f ′(4) · 5a1 ≡ 0( mod 25)

or in other words

a1 ≡ −f(4)/5

f ′(4)
( mod 5)

Since f(4) = 10 and f ′(4) = 8 ≡ 3, we have a1 ≡ 1. For the next step, S = 9, so we have

a2 ≡ −f(9)/25

f ′(9)
( mod 5)

f(9) = 75 and f ′(9) ≡ f ′(4) ≡ 3, so we get a3 ≡ 4. Now, we notice we can just replace
− 1

f ′(S)
with 3, since it is always congruent to 3 modulo 5. To continue, we get

a3 ≡ 3f(109)/125 ≡ 0; S = 109

a4 ≡ 3f(109)/625 ≡ 2; S = 1359

a5 ≡ 3f(1359)/3125 ≡ 3; S = 10734

and with very little work we have found a solution to X2− 6 = 0( mod 15625), which is
a pretty good approximation (within a ball of radius 1/15625) to a known square root of 6
in Z5! We can actually write, using our 5-ary representation,

√
11.0 = . . . 32041.0

Approximation using Hensel’s Lemma is frequently referred to as the ”p-adic Newton’s
Method” because it is very similar in that it iteratively computes − f(xn)

f ′(xn)
to approximate a

real root of a polynomial equation. This gives an algorithm for approximating any polyno-
mial within precision ε in O((log ε)2) time, where one log factor comes from the number of
repetitions of the procedure and the other comes from the size of the numbers the computer
must do arithmetic on.
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3 Extensions of Qp

Recall that though R may be complete, it is not algebraically closed. We need to adjoin
some complex element to it before we get C, the algebraic closure.

It is also true that Qp is not actually algebraically closed; that is Qp 6= Qp. To see this
fact, consider the polynomial f(X) = X2 − n for some prime p > 2 and 0 < n < p not a
square in Z/pZ. That polynomial may only be satisfied by a square root of n, but none may
exist because if x2 = (pm · u)2 = n then m = 0 and therefore

x2 = u2 = (a0 + a1 · p + a2 · p2 + · · · )2 ∈ a2
0 + pZp

but n 6≡ a2
0 so x2 6= n.

Just like we can adjoin roots of irreducible polynomials with coefficients in Q to get finite
extensions of Q, which we call number fields, we can similarly adjoin roots of irreducible
polynomials with coefficients in Qp to Qp to get finite extensions of Qp. In this section we
will examine some of the properties of the fields that result from this process.

3.1 Extending the p-adic Norm

We will say that a norm on an extension Kp ⊃ Qp extends | · |p if its restriction to Qp is just
| · |p. First, note that Qp has characteristic 0, so extensions of it have many of the same useful
properties that extensions of Q have, for instance, all are separable and all are generated
by a primitive element. One thing that we will find useful when dealing with an algebraic
number field is being able to extend our non-archimedean norm | · |p to an arbitrary finite
extension Kp (and in general to Qp).

We will ultimately prove in this section that there is a unique way to extend | · |p to
any finite extension Kp, which actually gives us a unique extension to Qp. To do this, we
will first show that there is no more than one way to extend the norm to any given finite
extension, then we will prove a proposition about how the extended norm must be defined
if it exists, and culminate with a proof that it does exist.

It will be helpful here to introduce the concept of a norm on a vector space.

Definition 3.1.1 (Norm on a Vector Space). A norm Let F be a field with norm | · |,
and let V be a vector space over F . A norm on V is a map ‖·‖ from V to R≥0 such that for
all x ∈ F , u, v ∈ V :

1. ‖v‖ = 0 iff v = 0.

2. ‖xv‖ = |x| · ‖v‖.

3. (triangle inequality) ‖u + v‖ ≤ ‖u‖+ ‖v‖.

We say that two norms on a vector space V , ‖v‖1 and ‖v‖2, are equivalent if there exist
two real numbers c1, c2 > 0 such that ∀v ∈ V ,

c1 ‖v‖1 ≤ ‖v‖2 ≤ c2 ‖v‖1
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Like the definition of equivalence for the field, this definition of equivalence comes from the
fact that two norms induce the same topology on V if and only if they are equivalent.

We will first show that all vector space norms on V over Qp are equivalent, and then that
unequal but equivalent vector space norms cannot both be field norms on V = K which
actually extend F ’s norm (it follows from the definition of a vector space norm that if V
is actually a field, then a field norm which extends the norm on F is also trivially a vector
space norm).

We will need to use the fact here that Qp is locally compact. This follows from observing
that Zp is compact, so for all k ∈ Z, pkZp is compact, and every point in Qp lies in some
pkZp. Zp is compact because it has the same topology of the Cantor set, which, as a subspace
of R, is closed (a complement of a union of open itervals) and bounded.

Theorem 3.1.2. Let V be a vector space over F , and let F be locally compact and with
norm | · |. Then all norms on V are equivalent.

Proof. Fix the basis {v1, . . . , vn} for V and consider the ”sup-norm”, which is defined by

‖a1v1 + · · ·+ anvn‖sup = max
i

(|ai|)

Now, it is not too hard to check that the sup-norm is a norm, so we need only to show
that any other norm ‖ · ‖ on V is equivalent to the sup-norm.

To obtain an upper bound for ‖ · ‖ in terms of the sup-norm, we choose the constant
C = n maxi(‖vi‖) and we can observe that

‖a1v1 + · · ·+ anvn‖ ≤ ‖a1‖‖v1‖+ · · ·+ ‖an‖‖vn‖
≤ n max

i
(‖vi‖) max

i
(‖ai‖)

≤ C‖a1v1 + · · ·+ anvn‖sup

To show the lower bound we need the following lemma.

Lemma 3.1.3. Let U = {v ∈ V : ‖v‖sup = 1}. For any norm ‖·‖ on V , ‖·‖ is bounded away
from 0 on the subset U ; that is, there exists a positive number ε such that ε ≤ ‖u‖ , ∀v ∈ U

This lemma is not too interesting, but it is proved in Koblitz [3], and it is the step for
which we need local compactness of F .

Using the lemma, the rest of the proof follows easily, since we then have, on U , ε‖v‖sup ≤
‖v‖sup. But then we have it for all v = (a1, . . . , an) ∈ V , since v

max(ai)
∈ U and therefore

ε
∥∥∥ v

max(ai)

∥∥∥
sup

≤
∥∥∥ v

max(ai)

∥∥∥ and multiplying by |max(ai)|p gives the desired result.

So on all of V we have ε‖v‖sup ≤ ‖v‖ ≤ n maxi(‖vi‖)‖v‖sup and the theorem is proved.

Corollary 3.1.4. Let K be a finite extension of a locally compact field F , where | · |F is a
norm on F . There is at most one norm on K which extends | · |F .
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Proof. Suppose we had two field norms ‖ · ‖1 and ‖ · ‖2 which are not identical, i.e. ∃α ∈ K
such that ‖α‖1 < ‖α‖2. They are equivalent in the vector space sense so there is a positive
constant c such that for all x ∈ K, ‖x‖1 ≥ c‖x‖2. But after fixing c, we may choose N
sufficiently large to get ‖α‖N

1 < c‖α‖N
2 . This is a contradiction, so the two were not both

field norms.

Now, let NK/F (α) be the old ”norm” from K down to F (note this notion of norm is
different from the field norm we seek; the shared nomenclature is just an unhappy coinci-
dence).

Proposition 3.1.5. If Kp is a finite extension of Qp, with norm ‖·‖ that extends | · |p, and

α ∈ Kp is nonzero, then ‖α‖ = |NKp/Qp(α)|1/[Kp:Qp]
p .

Proof. Consider some element α in some Galois extension Kp of Qp, and suppose we have
a correct extension ‖·‖p of | · |p to Kp. Now let σ be some Qp-automorphism of Kp, and

consider the map ‖·‖′p = ‖·‖p ◦ σ, which is, of course, also a field norm on Kp which also
extends | · |p.

Now we get to apply Corollary 3.1.4 to conclude that in fact ‖·‖′p = ‖·‖p, allowing us to
conclude that all conjugates of α must have the same norm as α. Noting that NK/Qp(α) is
an element of Qp, we have, if α has n conjugates (including itself),

|NK/Qp(α)|p =
∥∥NK/Qp(α)

∥∥
p

=

∥∥∥∥∥∥
∏

σ∈Gal(K/Qp)

σ(α)

∥∥∥∥∥∥
p

=
∏

‖σ(α)‖

= ‖α‖[K:Qp]

Note that ‖α‖p is independent of what extension field we take its norm in, since if L

extends K extends F and α ∈ K we have NL/F (α) =
(
NK/F (α)

)[L:K]
. This is a good thing,

since if a norm on L extends F , the restriction of that norm to K had also better extend F .
Thus, we can drop the condition that K is Galois (since for any K we could extend to K’s
splitting field, which is an extension of K, and prove the fact for the splitting field).

Now, we have shown exactly what form the extension of | · |p must take, but we still do
not know for sure whether what we have is even a norm at all.

Theorem 3.1.6. Let K be a finite extension of Qp. The function | · |p given by Proposi-
tion 3.1.5 is the unique non-archimedean field norm on K which extends the p-adic norm on
Qp.
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Proof. To begin with, we can dispense with the following easy-to-check facts:

• The restriction to Qp is the p-adic norm.

• If | · |p is a norm, it is the unique one that extends Qp.

• |α|p = 0 ⇔ α = 0.

• | · |p is multiplicative.

Now, what remains, which is the difficult part, is to show the non-archimedean triangle
inequality, namely that

|α + β|p ≤ max(|α|p, |β|p)
This takes some doing, and we will not prove it here, but there is a relatively succinct

proof in Koblitz [3].

3.2 The Ring of Integers, the Unit Group, and the Maximal Ideal

Now it makes sense to consider the analog of the ring of integers of a number field. In fact,
we do have something called the ring of integers in an algebraic extension of Qp. The reader
will recall that our definition of the integers of a number field came from the notion of the
integral closure of Z in a number field K, which was in turn integrally closed in K, its field
of fractions. We can then very naturally define the ring of integers A in K ⊃ Qp to be the
integral closure of Zp in K. In fact, it turns out that there is a very simple condition for the
integral closure of K, similar to the condition for membership in Zp.

Proposition 3.2.1. Let K be a finite extension of Qp. Then the ring of integers of K is

A = {x ∈ K : |x|p ≤ 1}

Proof. A is clearly a subring of K, from the additive and multiplicative properties of the
non-archimedean norm. We must show that everything in A is an integer, and conversely,
there are no integers outside of A.

First, consider α ∈ A. Then α’s conjugates are all in A (since they have the same norm
as α), and since all the coefficients of α’s minimal polynomial over Qp are sums of products
of conjugates of α, they also must lie in the ring A, but since they are all p-adic numbers,
they lie in A ∩Qp = Zp, so α is an integer.

Conversely, consider any integer α whose monic irreducible polynomial is f(X) = Xn +
an−1X

n−1 + · · · + a1X + a0, with coefficients in Zp (i.e., the coefficients all have norm less
than or equal to 1). Then we have the following expression:

αn = an−1α
n−1 + · · ·+ a1α + a0

from which, using the properties of the non-archimedean norm, we derive

|α|np ≤ max
i<m

(|aiα
i|p) ≤ max

i<m
(|α|ip)

which would not be possible if |α|p were larger than 1

12



Proposition 3.2.2. Let Kp be a finite extension of Qp. Then the group of units of A is

A× = {x ∈ Kp : |x|p = 1}

Proof. Since |x−1|p = |x|−1
p , we have that for integers x, x−1 ∈ A ⇔ |x|p ≥ 1 ⇔ |x|p = 1

A is also sometimes known as the valuation ring of | · |p in K.

Proposition 3.2.3. Let Kp be a finite extension of Qp. Then the ring of integers has a
unique maximal ideal, which is

M = {x ∈ Kp : |x|p < 1}

Furthermore, A/M is a finite extension of Fp of degree at most [K : Qp].

Proof. The first statement follows from the fact that, because every single element of A that
is not a unit is an element of M , M contains every ideal of A except for the unit ideal. Note
that M ∩ Zp = pZp.

To prove the second statement, first observe that we have a natural inclusion Fp ≈
Zp/pZp ↪→ A/M given by a + pZp 7→ a + M . This is well-defined and injective since for
a, a′ ∈ Zp, a− a′ ∈ Zp ⇔ a− a′ ∈ M . Therefore, A/M is an extension of Fp.

Furthermore, the degree must be finite and no greater than n = [K : Qp], since given
n+1 elements of A/M , we can lift them to n+1 elements in A ⊂ K, which must be linearly
dependent over Qp.

If pk is the largest power of p dividing all the coefficients of the dependence relation, then
if we multiply all coefficients by p−k, we have another dependence relation whose coefficients
are all in Zp but are not all in pZp. Projecting all the lifts and the coefficients back into
A/M , we have a dependence relation on the original elements whose coefficients are all in
Zp/pZp and are not all 0. Thus, the dimension of A/M as a vector space over Zp/pZp ≈ Fp

does not exceed [K : Qp].

We call A/M the residue field of K. Note that as a finite extension of Fp, it has order pf

for f < n and its unit group is cyclic of order pf − 1. Further, note that the unit group A×

consists of the elements of the pf − 1 nonzero cosets u + M in A/M , so in a sense ”most”
elements of A are units.

3.3 Finite Extensions of Qp Are Complete

It is a nice fact that finite extensions of the p-adic numbers are complete. To continue our
analogy with the real numbers, note that this is trivially true of the reals, since the only
algebraic extension of R is C. This is because C is a 2-dimensional vector space over R, and
hence the only subspaces of C containing R are C and R themselves.

Theorem 3.3.1. Let K be a finite extension of Qp of degree m, and let | · |p be the uniquely
defined norm on K which extends the p-adic norm. Then K is complete with respect to | · |p.
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Proof. This is true because K has the product topology as a finite-dimensional vector space
over Qp; that is, if we fix a basis and map the sequence {vn}∞n=1 to {(x1,n, x2,n, . . . xm,n)}∞n=1.
Each of the sequences of projections {πi(vn)}∞n=1 = {xi,n}∞n=1 converges to some x∗i by com-
pleteness of Qp, so the vn converge to v∗ = (x∗1, . . . , x

∗
m).

The fact that K has the product topology follows from Theorem 3.1.2, which implies
that the the extended norm ‖ · ‖p is equivalent to the sup-norm, which yeilds the product
topology on K.

Unfortunately this is not the case for infinite extensions; in particular, Qp, the algebraic
closure of Qp, is not complete with respect to the extended norm, which arises from setting
|α|p to be the norm of α in Qp(α). (We can easily check that this is a norm by observing
that any two given elements α, β of Qp both lie in the finite extension Qp(α, β) and have
the same norms, so it is sufficient to know that the three conditions for norm hold in all the
finite extensions between Qp and Qp). However, if we take the completion of Qp, which we
denote Ωp, then finally we get something that is complete and algebraically closed. For this
reason, Ωp is frequently called ”the p-adic analog of C.”

Amazingly, the Axiom of Choice implies that Ωp is actually isomorphic to C, but there
is no known explicit isomorphism between the two.

Again, the situation is much cleaner if we replace Qp with R, since the algebraic closure
of R, C, is just a quadratic extension and is complete with respect to the archimedean norm
on the C that extends | · |∞, which is just the complex modulus.

3.4 p-adic Norms of Number Fields

Thus far, we have only considered the perspective of completing Q with respect to a non-
archimedean norm and then taking algebraic extensions. But what if we turned this order
backwards: that is, what if we started with a number field K and then took its completion
with respect to any non-archimedean norm? This is a more complicated case, but the result
of this process is in fact a finite extension of Qp.

To generalize the definition of our p-adic norm, consider any Dedekind domain D (for
instance the ring of integers of a number field K) and let K be it’s field of fractions. Then
if p is a nonzero prime ideal of D, for any nonzero x ∈ K, xD is then a fractional ideal with
some unique prime ideal factorization. We may define |x|p = ([D : p])− ordp(x), where ordp(x)
is the exponent of p in the prime factorization of (x). If we then complete K with respect
to | · |p, we get a field Kp, the correct generalization of the p-adic numbers. When K is a
number field, this does turn out to be a finite extension of Qp, where p lies over p.

3.5 Examples

To cap off our journey, we might like to consider some examples of finite extensions of Qp

and work with them a bit.
First, we may consider an extension which exists for every single p. This is Qp(

√
p), a

quadratic extension. Since |√p|p = 1/
√

p and Qp has no elements of norm not equal to an
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integral power of p,
√

p must not be an element of Qp.
There is another extension of the p-adic numbers that we might be surprised to find at

first: Qp(e), where e is the base of the natural logarithm. This is because ep ∈ Qp for p > 2,
which is clear from the expansion of ep:

ep = 1 + p/1! + p2/2! + p3/3! + · · ·

Note that the denominator keeps acquiring higher powers of p at a rate of 1/p+1/p2+1/p3+
· · · = 1/(p−1), but this is absorbed by the numerator, which gains 1 power of p per term, so
the terms still get smaller and smaller and the series still converges. For p = 2, e4Q2. Thus
e is actually algebraic over Qp for all p.

It is a fact, which is not easy to prove, that there are only finitely many extension fields
of Qp of any given degree n. We will attempt to make this fact at least plausible by proving
it for quadratic extensions and finding all quadratic extensions of Q3.

First, we consider all quadratic extensions of Qp for general p and note that the quadratic
formula applies in any field of characteristic 0; that is, given any quadratic polynomial
aX2 + bX + c = 0 (with a 6= 0), solving the equation for X is equivalent to finding a square
root of b2 − 4ac:

aX2 + bX + c = 0 ⇔ 4a2X2 + 4abX + b2 = b2 − 4ac

⇔ (2aX + b)2 = b2 − 4ac

And the last equation can be solved whenever a square root of b2 − 4ac exists.
Thus, we have reduced to the polynomials of the form f(X) = X2 − a. The quadratic

extensions of Qp are exactly the fields obtained by adjoining square roots of elements for
which no square root exists in Qp. We may further note that b2 = a ⇔ (pkb)2 = p2ka for
any k ∈ Z, and therefore adjoining a square root of p2ka gives the same field as adjoining
a square root of a. Thus, any quadratic extension of Qp is equivalent to one obtained by
adjoining a square root of some a ∈ Zp − p2Zp.

Now we must use something called Krasner’s Lemma:

Theorem 3.5.1 (Krasner’s Lemma). Suppose that α and β are elements of Qp, the
algebraic closure of Qp with the canonical non-archimedean extension norm. Then if β is
closer to α than any of α’s conjugates, then K(α) ⊂ K(β).

Proof. This proof closely follows that in [2]. First, let L = Qp(β) and suppose that α 6∈ L,
so that [L(α) : L] > 1. Then, there is at least one L-automorphism of Qp σ which does not

fix α. We know that all conjugates of an element in Qp have the same p-adic norm, so we
have

|σ(β)− σ(α)|p = |σ(β − α)|p = |β − α|p
But since σ is an L-automorphism, σ(β) = β and we have

|β − σ(α)|p = |β − α|p
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But then we have, by our strong triangle inequality, that

|α− σ(α)|p ≤ max(|β − α|p, |β − σ(α)|p) = |β − α|p

Which contradicts our initial assumption, that β was closer to α than any of α’s conjugates!
Thus our assumption must have been false and the theorem is proved.

Note that if both K(α) and K(β) are extensions of the same degree over Qp, then the
conclusion implies further that K(α) = K(β).

Krasner’s Lemma is a step in showing the fact that in general that there are only finitely
many extensions of Qp of degree n, but for now we will just use it in the special case we are
considering.

Now, we are equipped to show the following corollary:

Corollary 3.5.2. Let p > 2, and let α and β be square roots of elements of Zp − p2Zp. If
α2 ≡ β2( mod p|α2|p), then K(α) = K(β).

Proof. Assume the opposite; then [K : Qp] = 4 and Gal(K/Qp) consists of the four maps
which send α + β to α + β, −α + β, α− β, and −α− β. Since α’s only conjugate is −α, we
have that the closest distance between conjugates is

|α− (−α)|p = |2α|p = |α|p

since 2 is a unit in Zp. But the distance between α and β is

|α− β|p = |N(α− β)|1/4
p

= |(α− β)(α + β)(−α− β)(−α + β)|p
= |(α2 − β2)2|1/4

p

= |α2 − β2|1/2
p

≤
(

1

p
|α2|p

)1/2

= |α|p/(
√

p)

< |α− (−α)|p

Therefore, Krasner’s Lemma applies and the two extensions must be the same after all,
contradicting our assumption.

Note that this corollary implies that there are only finitely many quadratic extensions of
Qp for odd p. This proof can be generalized to p = 2 if we tighten the hypothesis so that
α2 ≡ β2( mod p3|α2|p).

To apply the corollary above for p = 3, note that an element of Z3 − 9Z3 is either a unit
(in which case its norm, and its square root’s norm, are 1) or three times a unit (in which
case the norm of its square root is 1/

√
(3)). In the first case, it means we need only consider
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one unit from each congruence class modulo 3; in the second case, we need only consider one
element from each congruence class modulo 9. In other words, since we have square roots
of 1 and 0 already in Q3 we have shown that there are finitely many quadratic extensions
of Q3, and in fact that a complete list (with possible repetition) is Q3(

√
2), Q3(

√
3), and

Q3(
√

6). Note that either all of these are equal or all three are distinct, since
√

2 ·
√

3 =
√

6.
In fact, it must be the case that all three are distinct because Q3(

√
2) has no elements

of norm 1/
√

3 = |
√

3|3 in it. To see this observe that

|a + b
√

2|23 = |N(a + b
√

2)|3
= |(a + b

√
2)(a− b

√
2)|3

= |a2 − 2b2|3
≤ max(|a|23, |b|23)

since 2 is a unit. We want to show that the above is an even power of 3.
If |a|3 6= |b|3, then the isosceles triangle principle implies that

|a + b
√

2|3 = max(|a|3, |b|3)

and we are done. If |a|3 = |b|3 = 3k then we have, for some a0, b0 ∈ {1,−1} and some
u, v ∈ U , a = 3−k(a0 + 3u) and b = 3−k(b0 + 3v), so that we have

|a + b
√

2|23 = |a2 − 2b2|3
= |3−2k

(
(a0 + 3u)2 − 2(b0 + 3v)2

)
|3

= 32k|a2
0 − 2b2

0 + 3(2a0u + 3u2 − 4b0 + 3v2)|3
= 32k| − 1 + 3(· · · )|3
= 32k

and we are done.
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