The Analytic Class Number Formula

Gary Sivek gsivek@mit.edu

May 19, 2005

1 Introduction

In this paper we will use tools from analysis to provide an explicit formula for the class number of a number field. We will then examine an approach to evaluating the formula in the case of a quadratic field.

This paper assumes basic knowledge of number theory and only minimal complex analysis (what it means for a function to be analytic, how to find residues, and what an L-series is, including the zeta function). For an introduction to complex analysis, see for example [Ahl79], and for an introduction to algebraic number theory, read [Ste05]. In particular, we assume an understanding of the finiteness of the class group of a number field and concepts related to its proof.

2 The Formula

Here we prove the class number formula, which puts the class number of a number field in terms of its zeta function. The formula was originally proven in terms of the number of binary quadratic forms with a given determinant by Dirichlet, and was later proven for general number fields by Dedekind [Hil97].

2.1 Definitions

From this point on, K will be a number field of degree $n = [K : \mathbb{Q}]$ with ring of integers \mathcal{O}_K . The class group of K will be denoted \mathcal{C}_K . The units contained in \mathcal{O}_K will form a group of size ω_K , and K will have discriminant D_K . An ideal $\mathfrak{i} \subseteq \mathcal{O}_K$ will have norm $N(\mathfrak{i})$, which will be understood to be the K/\mathbb{Q} norm.

Pick any number field K with S real embeddings $\sigma_1, \ldots, \sigma_S$ and $T = \frac{1}{2}(n-S)$ pairs of complex embeddings $\tau_1, \overline{\tau_1}, \ldots, \tau_T, \overline{\tau_T}$. Let \mathcal{O}_K^* be the group of units of the ring of integers. By Dirichlet's Theorem, $\mathcal{O}_K \cong \mathbb{Z}^{S+T-1} \times U_{tor}$, where U_{tor} is a finite torsion group of even order, specifically the cyclic group of order ω_K ; let $\epsilon_1, \epsilon_2, \ldots, \epsilon_{S+T-1}$ be generators of the free abelian subgroup. We define the norm of an embedding to be $\|\alpha\|_i = |\sigma_i(\alpha)|$ for $1 \le i \le S$ and $\|\alpha\|_{S+j} = |\tau_j(\alpha)|^2$ for $1 \le j \le T$. We now construct the following $(S+T) \times (S+T-1)$ matrix:

$$A = \begin{pmatrix} \log \|\epsilon_1\|_1 & \log \|\epsilon_2\|_1 & \cdots & \log \|\epsilon_{S+T-1}\|_1 \\ \log \|\epsilon_1\|_2 & \log \|\epsilon_2\|_2 & \cdots & \log \|\epsilon_{S+T-1}\|_2 \\ \vdots & \vdots & \ddots & \vdots \\ \log \|\epsilon_1\|_{S+T} & \log \|\epsilon_1\|_{S+T} & \cdots & \log \|\epsilon_{S+T-1}\|_{S+T} \end{pmatrix}$$

Define A_i to be the $(S + T - 1) \times (S + T - 1)$ submatrix obtained by deleting the *i*th row of A. Then the *regulator* of K, denoted R_K , is given by $|\det A_i|$, which is independent of i.

We shall also define the space $\mathcal{L}^{S,T}$ to be the set of points $(x_1, \ldots, x_S; x_{S+1}, \ldots, x_{S+T})$, where the first S coordinates are real and the remaining T are complex. This space has dimension S + 2T = n over \mathbb{R} , since we have the basis vectors e_j for $1 \leq j \leq S$ and the basis vectors e_j and ie_j for $S + 1 \leq j \leq S + T$; as such, we shall at times treat it as a subspace of \mathbb{R}^n . With scalar multiplication as well as componentwise addition and multiplication of points, this forms a commutative ring and a linear space. Last, we define a norm on $\mathcal{L}^{S,T}$ as $\mathcal{N}(x) = |x_1 \cdots x_S| |x_{S+1}|^2 \cdots |x_{S+T}|^2$. This now gives us an injection $\phi : K \to \mathcal{L}^{S,T}$ defined by $\phi(\alpha) = (\sigma_1(\alpha), \ldots, \sigma_S(\alpha); \tau_1(\alpha), \ldots, \tau_T(\alpha))$; it is easy to show that ϕ is a homomorphism, and that $\mathcal{N}(\phi(\alpha)) = N(\alpha)$.

For convenience, denote in general $l_k(x) = \log |x_k|$ for $1 \le k \le S$ and $l_{S+k} = \log |x_{S+k}|^2$ for $1 \le k \le T$; we may then define for $x \in \mathcal{L}^{S,T}$ the vector $l(x) = (l_1(x), \ldots, l_{S+T}(x))$. The set of all points of $\mathcal{L}^{S,T}$ with nonzero components form a group under componentwise multiplication, and this mapping is a homomorphism onto the additive group of $\mathcal{L}^{S,T}$. If $\alpha \in K$ then write $l(\alpha) = l(\phi(\alpha))$; we note that the vectors $l(\epsilon_i)$ form the columns of Aabove. This geometric representation $l(\alpha)$ is called the *logarithmic representation* of α , and the sum of its components is equal to $\log |N(\alpha)|$.

2.2 The Zeta Function

Analytic number theory places heavy emphasis on the celebrated Riemann Zeta Function, which is the analytic continuation of the power series $\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$ to the entire complex plane except for the pole at s = 1. We define an analogue for number fields as:

$$\zeta_K(s) = \sum_{\mathbf{i}} \frac{1}{N(\mathbf{i})^s} \tag{1}$$

where i ranges over all distinct integral ideals in \mathcal{O}_K . Note that in the trivial case $K = \mathbb{Q}$ each ideal is generated by a distinct positive integer, so $\zeta_{\mathbb{Q}}(s) = \zeta(s)$. Euler also factored ζ into a product over all primes $p \in \mathbb{Z}$; here we have the analogous Euler product:

$$\zeta_K(s) = \prod_{\mathfrak{p}} \frac{1}{1 - N(\mathfrak{p})^{-s}}$$
(2)

where now \mathfrak{p} ranges over all prime ideals of \mathcal{O}_K . The proof of this equation is exactly the same as the standard proof for $\zeta_{\mathbb{Q}}$ because of the unique factorization of ideals in \mathcal{O}_K .

Yet another analogy with $\zeta_{\mathbb{Q}}$ is the convergence of the series. For $\zeta_{\mathbb{Q}}$ we have the following. **Theorem 1.** $\zeta(s)$ converges on $\{s \in \mathbb{C} : Re(s) > 1\}$, and $Res_{s=1}\zeta(s) = \lim_{s \to 1} (s-1)\zeta(s) = 1$. *Proof.* Let s = a + ib, with $a, b \in \mathbb{R}$ and a > 1. Then $\left|\frac{1}{k^s}\right| = \left|\frac{1}{k^a}k^{ib}\right| = \frac{1}{k^a}\left|e^{-ib\log k}\right| = \frac{1}{k^a}$. So

$$|\zeta(s)| = \left|\sum_{k=1}^{\infty} \frac{1}{k^s}\right| \le \sum_{k=1}^{\infty} \left|\frac{1}{k^s}\right| = \sum_{k=1}^{\infty} \frac{1}{k^a} = \zeta(a)$$

It therefore suffices to consider only real s > 1. Since $\frac{1}{k^s}$ monotonically decreases as a function of k when k is positive, we have

$$\frac{1}{(k+1)^s} < \int_k^{k+1} \frac{1}{x^s} dx < \frac{1}{k^s};$$

summing over all k gives $\zeta(s) - 1 < \int_1^\infty \frac{dx}{x^s} < \zeta(s)$, or $\zeta(s) - 1 < \frac{1}{s-1} < \zeta(s)$. Reducing this gives $\frac{1}{s-1} < \zeta(s) < \frac{1}{s-1} + 1$, from which the theorem follows.

Further details about $\zeta(s)$, such as its analytic continuation, are left to any standard text on analytic number theory.

The main focus of this paper is on the analogous result for an arbitrary ζ_K . This key theorem followed from the work of Dirichlet and Dedekind.

Theorem 2. $\zeta_K(s)$ converges for all $s \in \mathbb{C}$ satisfying Re(s) > 1, and at s = 1 it has residue given by

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^S (2\pi)^T R_K}{\omega_K |D_K|^{1/2}} h,$$

where $h = |\mathcal{C}_K|$ is the class number of K.

We will prove this following [BS66] and [Jar03], by splitting the sum as

$$\zeta_K(s) = \sum_{A \in \mathcal{C}_K} \left(\sum_{\mathbf{i} \in A} \frac{1}{N(\mathbf{i})^s} \right);$$

call the parenthesized sum $f_A(s)$. We will evaluate each $\lim_{s\to 1} (s-1)f_A(s)$ separately.

Choose $\mathfrak{a} \in A^{-1}$, so that for all $\mathfrak{i} \in A$, $\mathfrak{a}\mathfrak{i}$ is principal. Then multiplication by \mathfrak{a} gives a bijection between integral ideals in A and principal ideals divisible by \mathfrak{a} . Thus

$$f_A(s) = N(\mathfrak{a})^s \sum_{(\alpha):\mathfrak{a}\mid(\alpha)} \frac{1}{|N(\alpha)|^s}.$$
(3)

Let \mathcal{A} be a set of such α , where from each possible set of associate values we pick exactly one. Define $\Gamma = \phi(\mathfrak{a}) = \{x \in \mathcal{L}^{S,T} : x = \phi(b) \text{ for some } b \in \mathfrak{a}\}$, and similarly define $\Theta = \{x \in \mathcal{L}^{S,T} : x = \phi(b) \text{ for some } b \in \mathcal{A}\}$. Then

$$f_A(s) = N(\mathfrak{a})^s \sum_{\alpha \in \Theta} \frac{1}{|N(\alpha)|^s}.$$
(4)

We now must evaluate this sum, and we will do so geometrically.

2.3 Geometry of Number Fields

Lemma 3. Let X be a cone in \mathbb{R}^n and define a function $F : X \to \mathbb{R}_{>0}$ such that $x \in X$ and $\xi \in \mathbb{R}_{>0}$ implies $F(\xi x) = \xi^n F(x)$, and $\mathcal{F} = \{x \in X : F(x) \leq 1\}$ is bounded with $v = vol(\mathcal{F}) > 0$. Also, let $\Gamma \subseteq \mathbb{R}^n$ be a lattice with volume $\Delta = vol(\Gamma)$, which we take to mean the volume of the parallelepiped formed by basis vectors of Γ . Then

$$\zeta_{F,\Gamma}(s) = \sum_{x \in \Gamma \cap X} \frac{1}{F(x)^s}$$

converges on Re(s) > 1 and has $\lim_{s \to 1} (s-1)\zeta_{F,\Gamma}(s) = \frac{v}{\Delta}$.

Proof. For any positive real number r, we know $\operatorname{vol}(\frac{1}{r}\Gamma) = \frac{\Delta}{r^n}$. Thus $v = \operatorname{vol}(\mathcal{F}) = \lim_{r \to \infty} \left(\frac{\Delta}{r^n} \cdot \#\{\frac{1}{r}\Gamma \cap \mathcal{F}\}\right) = \Delta \lim_{r \to \infty} \frac{\#\{\frac{1}{r}\Gamma \cap \mathcal{F}\}}{r^n}$. But by the requirements on F, this numerator is also the number of points in $\{x \in \Gamma \cap X : F(x) \leq r^n\}$. Label the points of $\Gamma \cup X$ so that $0 \leq F(x_1) \leq F(x_2) \leq \ldots$ and define $r_k = F(x_k)^{1/n}$. If we define $\gamma(r) = \#\{\frac{1}{r}\Gamma \cap \mathcal{F}\}$, then by this choice of label we have that for $\varepsilon > 0$, $\gamma(r_k - \varepsilon) < k \leq \gamma(r_k)$. Dividing by r_k^n gives $\frac{\gamma(r_k - \varepsilon)}{(r_k - \varepsilon)^n} \left(\frac{r_k - \varepsilon}{r_k}\right)^n < \frac{k}{r_k^n} \leq \frac{\gamma(r_k)}{r_k^n}$. Since $r_k^n = F(x_k)$, taking the limit yields $\lim_{k \to \infty} \frac{k}{r_k^n} = \frac{v}{\Delta}$. Convergence of $\zeta_{F,\Gamma}$ is a simple exercise akin to the proof of Theorem 1. We may rewrite

Convergence of $\zeta_{F,\Gamma}$ is a simple exercise akin to the proof of Theorem 1. We may rewrite the function, though, as

$$\zeta_{F,\Gamma}(s) = \sum_{k=1}^{\infty} \frac{1}{F(x_k)^s}.$$
(5)

Now given $\varepsilon > 0$, by the above inequality there exists k_0 such that $k \ge k_0$ implies

$$\left(\frac{v}{\Delta} - \varepsilon\right)^s \frac{1}{k^s} < \frac{1}{F(x_k)^s} < \left(\frac{v}{\Delta} + \varepsilon\right)^s \frac{1}{k^s}.$$

Summing over all $k \ge k_0$, we multiply by (s-1) and let s approach 1 on the right to get

$$\left(\frac{v}{\Delta} - \varepsilon\right) \operatorname{Res}_{s=1}\zeta(s) \le \lim_{s \to 1} (s-1)\zeta_{F,\Gamma}(s) \le \left(\frac{v}{\Delta} + \varepsilon\right) \operatorname{Res}_{s=1}\zeta(s)$$

and the desired result follows.

We may now pick a suitable choice of F and X. Pick $\epsilon_1, \ldots, \epsilon_{S+T-1}$ to be fundamental units; i.e., as in the definition of the regulator of K. Define $\lambda = (1, \ldots, 1; 2, \ldots, 2)$. Then $\{\lambda, \phi(\varepsilon_1), \ldots, \phi(\varepsilon_{S+T-1})\}$ is a basis for \mathbb{R}^{S+T} (see [Ste05], §9), and we may write for $x \in \mathcal{L}^{S,T}$:

$$l(x) = c\lambda + c_1\phi(\varepsilon_1) + \ldots + c_{S+T-1}\phi(\varepsilon_{S+T-1})$$

where $c = \frac{1}{n} \log |N(x)|$. Define X to be the cone consisting of all x such that:

- 1. $N(x) \neq 0$.
- 2. The coefficients c_i satisfy $0 \le c_i < 1$ for all i.

3. $0 \leq \arg(x_1) < \frac{2\pi}{\omega_{\kappa}}$, where x_1 is the first component of x.

This is a cone because $l(cx) = (\log c)\lambda + l(x)$, preserving the coefficients of the $\phi(\varepsilon_i)$ terms, and $\arg(cx_1) = \arg(x_1)$.

Lemma 4. Let $\eta(\alpha) \subseteq \mathcal{O}_K$ be the set of all elements in \mathcal{O}_K which are associates of α (including α itself). Then exactly one member of $\eta(\alpha)$ has image in X.

Proof. To show this, we will show that given $y \in \mathbb{R}^n$ with nonzero norm, y can be written uniquely as $x \cdot \phi(\varepsilon)$, where $x \in X$ (multiplication is componentwise) and ε is a unit. Write $l(y) = c\lambda + c_1\phi(\varepsilon_1) + \ldots + c_{S+T-1}\phi(\varepsilon_{S+T-1})$. Split each c_i as $c_i = m_i + \mu_i$, where $m_i \in \mathbb{Z}$ and $0 \leq \mu_i < 1$, and write $u = \varepsilon_1^{m_1} \cdots \varepsilon_{S+T-1}^{m_{S+T-1}}$. Then define $z = y \cdot \phi(u^{-1})$, which has coefficients of each $\phi(\varepsilon_i)$ in the correct range. Now we can correct $\arg(z_1)$; let r be the unique integer such that $0 \leq \arg(z_1) - \frac{2\pi r}{\omega_k} < \frac{2\pi}{\omega_k}$, and choose a root of unity w such that $\sigma_1(w) = e^{\frac{2\pi i}{\omega_K}}$. Then $z \cdot \phi(w^{-r}) = y \cdot \phi(u^{-1})\phi(w^{-r}) \in X$, so we conclude that if this value is called x, then $y = x \cdot \phi(uw^r)$ as desired, and clearly this construction must be unique.

We now use the result of Lemma 4 to rewrite (4) as:

$$f_A(s) = N(\mathfrak{a})^s \sum_{x \in \Gamma \cap X} \frac{1}{N(x)^s}$$
(6)

which we may evaluate as in Lemma 3. We thus need $v = \operatorname{vol}(\{x \in X : N(x) \leq 1\})$ and $\Delta = \operatorname{vol}(\Gamma)$. Recall that here $\Gamma = \phi(\mathfrak{a}) = \{x \in \mathcal{L}^{S,T} : x = \phi(b) \text{ for some } b \in \mathfrak{a}\}.$

Lemma 5. $\Delta = N(\mathfrak{a})|D_K|^{1/2}$.

Proof. Let \mathfrak{a} be generated additively by $\alpha_1, \ldots, \alpha_n$, so that Γ is generated by $\phi(\alpha_1), \ldots, \phi(\alpha_n)$. Let B be the matrix with entries $(\rho_i \alpha_j)$, where ρ_i varies over all embeddings (real and complex) of K. Then $\operatorname{Disc}(\mathfrak{a}) = \det(B)^2 = N(\mathfrak{a})^2 D_K$. Also, let C be the matrix consisting of inner products $(\langle \phi(\alpha_i), \phi(\alpha_j) \rangle) = (\sum_{k=1}^n \tau_k(\alpha_i)\overline{\tau_k}(\alpha_j)) = B^T \overline{B}$. Thus $|\det C|^{1/2} = |\det B|$, and since $\operatorname{vol}(\Gamma) = |\det C|^{1/2} = \operatorname{Disc}(\mathfrak{a})^{1/2}$, we have $\operatorname{vol}(\Gamma) = N(\mathfrak{a})|D_K|^{1/2}$.

Lemma 6. $v = \frac{2^{S+T} \pi^T R_K}{\omega_K}$.

Proof. Let \mathcal{F} be this set whose volume we wish to compute. Define \mathcal{F}_k for $0 \leq k < \omega_K$ by applying the map $x \mapsto e^{\frac{2\pi k}{\omega_K}x}$ to \mathcal{F} ; since multiplication by a unit is volume-preserving, we have $\operatorname{vol}(\mathcal{F}) = \operatorname{vol}(\mathcal{F}_k)$. Define $\overline{\mathcal{F}}$ to be the intersection of $\bigcup_{k=0}^{\omega_K} \mathcal{F}_k$ with the subset $\{(x_1, \ldots, x_S; x_{S+1}, \ldots, x_{S+T}) : x_1 > 0, \ldots, x_S > 0\}$. Multiplying any point in $\overline{\mathcal{F}}$ by $(\pm 1, \ldots, \pm 1; 1, \ldots, 1)$ shows that $\operatorname{vol}(\mathcal{F}) = \frac{2^S}{\omega_K} \operatorname{vol}(\overline{\mathcal{F}})$, and so we will compute $\operatorname{vol}(\overline{\mathcal{F}})$ through multiple changes of variable.

First, we change from the (S+T)-dimensional complex space $\mathcal{L}^{S,T}$ to \mathbb{R}^n via the transformation which maps a point $(x_1, \ldots, x_S; x_{S+1}, \ldots, x_{S+T}) \in \overline{\mathcal{F}}$ to the real-valued point $(\rho_1, \ldots, \rho_S, \rho_{S+1}, \varphi_{S+1}, \ldots, \rho_{S+T}, \varphi_{S+T})$, where $\rho_j = |x_j|$ and $\varphi_j = \arg x_j$ for all j (we say $x_j = y_j + iz_j = \rho_j e^{i\varphi_j}$). A straightforward computation shows the Jacobian of this transformation to be $\rho_{S+1} \cdots \rho_{S+T}$. Then $\overline{\mathcal{F}}$ is given by the conditions $\rho_1 > 0, \ldots, \rho_{S+T} > 0$; $\prod_{j=1}^{S+T} \rho_j^{e_j} \leq 1$, where e_j is the *j*th coordinate of $\lambda = (1, \ldots, 1; 2, \ldots, 2)$; and $0 \leq \xi_k < 1$ in the formula for each *j*th coordinate of l(x):

$$\log \rho_j^{e_j} = \frac{e_j}{n} \log \left(\prod_{k=1}^{S+T} \rho_k^{e_k} \right) + \sum_{k=1}^{S+T-1} \xi_k l_j(\varepsilon_k).$$

These conditions do not restrict φ_j for any value $S + 1 \leq j \leq S + T$, so they take on all values in $[0, 2\pi)$. We now change variables again, replacing $\rho_1, \ldots, \rho_{S+T}$ with $\xi, \xi_1, \ldots, \xi_{S+T-1}$ according to

$$\log \rho_j^{e_j} = \frac{e_j}{n} \log \xi + \sum_{k=1}^{S+T-1} \xi_k l_j(\varepsilon_k) \tag{7}$$

Since the sum of the e_j is n, and $\sum_{j=1}^{S+T} l_j(\varepsilon_k) = 0$, we sum all the equations (7) and find $\xi = \prod_{j=1}^{S+T} \rho_j^{e_j}$. Thus $\overline{\mathcal{F}}$ is now defined by the conditions $0 < \xi \leq 1$ and $0 \leq \xi_k < 1$ for $1 \leq k \leq S + T$; clearly this set has positive volume now. This transformation has Jacobian

$$J = \begin{vmatrix} \frac{\rho_1}{n\xi} & \frac{\rho_1}{e_1} l_1(\varepsilon_1) & \cdots & \frac{\rho_1}{e_1} l_1(\varepsilon_{S+T-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\rho_{S_T}}{n\xi} & \frac{\rho_{S+T}}{e_{S+T}} l_{S+T}(\varepsilon_1) & \cdots & \frac{\rho_{S+T}}{e_{S+T}} l_{S+T}(\varepsilon_{S+T-1}) \end{vmatrix}$$
$$= \frac{\rho_1 \cdots \rho_{S+T}}{n\xi 2^T} \begin{vmatrix} e_1 & l_1(\varepsilon_1) & \cdots & l_1(\varepsilon_{S+T-1}) \\ \vdots & \vdots & \ddots & \vdots \\ e_{S+T} & l_{S+T}(\varepsilon_1) & \cdots & l_{S+T}(\varepsilon_{S+T-1}) \end{vmatrix}$$
$$= \frac{\rho_1 \cdots \rho_{S+T}}{n\xi 2^T} \begin{vmatrix} n & 0 & \cdots & 0 \\ e_2 & l_2(\varepsilon_1) & \cdots & l_2(\varepsilon_{S+T-1}) \\ \vdots & \vdots & \ddots & \vdots \\ e_{S+T} & l_{S+T}(\varepsilon_1) & \cdots & l_{S+T}(\varepsilon_{S+T-1}) \end{vmatrix}$$

This determinant is now exactly nR_K , so $J = \frac{\rho_1 \cdots \rho_{S+T}}{n(\rho_1 \cdots \rho_S \rho_{S+1}^2 \cdots \rho_{S+T}^2)2^T} \cdot nR_K = \frac{R_K}{2^T \rho_{S+1} \cdots \rho_{S+T}}$. We can now compute the volume of $\overline{\mathcal{F}}$:

$$\operatorname{vol}(\overline{\mathcal{F}}) = 2^{T} \int \cdots \int_{\overline{\mathcal{F}}} dx_{1} \cdots dx_{S} dy_{S+1} dz_{S+1} \cdots dy_{S+T} dz_{S+T}$$
$$= 2^{T} \int \cdots \int_{\overline{\mathcal{F}}} \rho_{S+1} \cdots \rho_{S+T} \cdot d\rho_{1} \cdots d\rho_{S+T} d\varphi_{S+1} \cdots d\varphi_{S+T}$$
$$= 2^{T} (2\pi)^{T} \int_{0}^{1} \cdots \int_{0}^{1} \rho_{S+1} \cdots \rho_{S+T} |J| d\xi d\xi_{1} \cdots \xi_{S+T-1}$$
$$= 2^{T} (2\pi)^{T} \frac{R_{K}}{2^{T}} = 2^{T} \pi^{T} R_{K}.$$

Thus $\operatorname{vol}(\mathcal{F}) = \frac{2^S}{\omega_K} \operatorname{vol}(\overline{\mathcal{F}}) = \frac{2^{S+T} \pi^T R_K}{\omega_K}$ as desired.

At last, we have our goal.

Proof of Theorem 2. Combining (6), Lemma 3, Lemma 5, and Lemma 6, we have that $\lim_{s\to 1}(s-1)f_A(s) = N(\mathfrak{a})\frac{2^{S+T}\pi^T R_K}{\omega_K N(\mathfrak{a})|D_K|^{1/2}} = \frac{2^{S+T}\pi^T R_K}{\omega_K |D_K|^{1/2}}$. Summing over each class $A \in \mathcal{C}_K$ gives $\lim_{s\to 1}(s-1)\zeta_K(s) = \frac{2^{S+T}\pi^T R_K}{\omega_K |D_K|^{1/2}}h$.

3 Applications

The most immediate (but unnecessary) application of the class number formula is for $K = \mathbb{Q}$. Here $\zeta_{\mathbb{Q}}(s)$ has residue 1 at s = 1 and values S = 1, T = 0, $R_K = 1$, $\omega_K = 2$ (corresponding to -1 and 1), and $D_K = 1$, from which we compute h = 1. This agrees with our knowledge that \mathbb{Z} is a principal ideal domain. We will now explore a less trivial application of this formula.

We can use (2) to write the class number formula in terms of a Dirichlet L-series. Assume $m \in \mathbb{Z}$ is square-free, and let $K = \mathbb{Q}(\sqrt{m})$ be a quadratic number field with discriminant D_K . If m = -1 then $\omega_K = 4$, and we know $\mathbb{Q}(i)$ to be a principal ideal domain (i.e., $h_K = 1$). If m = -3 then $\omega_K = 6$, and we also know this to have $h_K = 1$. Otherwise, it can be shown easily that if K/\mathbb{Q} is a quadratic extension, then $\omega_K = 2$, with ± 1 the only units in \mathcal{O}_K , so assume that K is not one of those two special cases. It can also be shown that $D_K = m$ if $m \equiv 1 \pmod{4}$ and $D_K = 4m$ otherwise.

First, suppose m > 0. Then S = 2 and T = 0, so we have $\lim_{s \to 1} (s - 1)\zeta_K(s) = \frac{4hR_K}{2\sqrt{D_K}} = \frac{2hR_K}{\sqrt{D_K}}$. By Dirichlet's theorem on units there is a unique (up to inversion) fundamental unit ε , and then $R_K = \log |\varepsilon|$. Thus $h = \frac{\sqrt{D_K}}{2\log|\varepsilon|} \lim_{s \to 1} (s - 1)\zeta_K(s)$. Second, suppose m < 0, so that S = 0 and T = 1. Then instead the residue of $\zeta_K(s)$ at

Second, suppose m < 0, so that S = 0 and T = 1. Then instead the residue of $\zeta_K(s)$ at s = 1 is $\frac{\pi R_K h}{\sqrt{-D_K}}$. Here, though, the entire group of units has rank S + T - 1 = 0 and so the regulator is the trivial determinant; that is, $R_K = 1$. So $h = \frac{\sqrt{|D_K|}}{\pi} \lim_{s \to 1} (s - 1)\zeta_K(s)$. We now wish to evaluate the limit factor, for which we need a lemma about Kronecker symbols.

Lemma 7. If $\left(\frac{D_K}{p}\right) = 1$, then (p) decomposes into a product of two distinct prime ideal factors. If $\left(\frac{D_K}{p}\right) = -1$, then (p) remains prime. Otherwise, if $\left(\frac{D_K}{p}\right) = 0$, then (p) is the square of a prime ideal.

Proof. We know that (p) has at most two prime factors. Suppose first that p does not divide D_K and that $\left(\frac{D_K}{p}\right) = 1$; then $x^2 \equiv D_K \pmod{4p}$ has a solution, which we will call a. Let $r = \frac{a-D_K}{2}$ and define $\mathfrak{p} = (p, r + \frac{D_K + \sqrt{D_K}}{2})$ and $\mathfrak{q} = (p, r + \frac{D_K - \sqrt{D_K}}{2})$. Set $w = \frac{a+\sqrt{D_K}}{2}$, which is the root of $x^2 - ax + tp$ for some $t \in \mathbb{Z}$ and so is an integer. However, w/p is not an integer, since that would imply $\frac{w-\overline{w}}{p}$ is an integer, as is $\left(\frac{w-\overline{w}}{p}\right)^2 = \frac{D_K}{p^2}$, a contradiction. Thus p divides neither w nor \overline{w} , but it does divide $w\overline{w} = tp$ and so (p) is not prime. An easy calculation verifies that $\mathfrak{pq} = (p)(p, r + \frac{D_K + \sqrt{D_K}}{2}, r + \frac{D_K - \sqrt{D_K}}{2}, \frac{a^2 - D_K}{4p}) = (p)$, since the

middle two generators in the right factor have difference $\sqrt{D_K}$ and so generate D_K , which is relatively prime to p, making that ideal equal to (1). We last check that $\mathfrak{p} \neq \mathfrak{q}$, subce $(\mathfrak{p},\mathfrak{q}) = (p, r + \frac{D_K + \sqrt{D_K}}{2}, r + \frac{D_K - \sqrt{D_K}}{2})$ again contains both p and D_K and so is (1).

Now suppose that $(p) = \mathfrak{pq}$ with $\mathfrak{p} \neq \mathfrak{q}$. Then $N(\mathfrak{p}) = p$, and $1, 2, \ldots, p-1$ are all distinct modulo \mathfrak{p} , so for some $r \in \mathbb{Z}$ we have $\frac{D_K + \sqrt{D_K}}{2} \equiv r \pmod{p}$, or $(2r - D_K)^2 \equiv D_K \pmod{4p}$. The same holds modulo $4\mathfrak{q}$ as well, and thus modulo 4p. But this implies that $\left(\frac{D_K}{p}\right) = 1$, so (p) decomposes into a product of distinct prime ideals if and only if $\left(\frac{D_K}{p}\right) = 1$.

On the other hand, we consider the case $p|D_K$ with p odd. Set $\mathbf{q} = (p, \frac{D_K + \sqrt{D_K}}{2})$; then $\overline{\mathbf{q}} = (p, \frac{D_K - \sqrt{D_K}}{2}) = (p, \frac{D_K - \sqrt{D_K}}{2} - D_K) = (p, \frac{D_K + \sqrt{D_K}}{2}) = \mathbf{q}$. But we then compute $\mathbf{q}^2 = \mathbf{q}\overline{\mathbf{q}} = (p)(p, \frac{D_K + \sqrt{D_K}}{2}, \frac{D_K + \sqrt{D_K}}{2}, \frac{D_K + \sqrt{D_K}}{4p}) = (p)$. Last, if $p = 2|D_K$, then we have two remaining cases: if $m \equiv 2 \pmod{4}$, then $(2) = (2, \sqrt{m})^2$, and if $m \equiv 3 \pmod{4}$, then $(2) = (2, 1 + \sqrt{m})^2$, and this completes the proof of the lemma.

Theorem 8.
$$\zeta_K(s) = \zeta(s)L(s,\chi)$$
, where $L(s,\chi) = \sum_{k=1}^{\infty} \left(\frac{D_K}{k}\right) k^{-s}$.

Proof. In the above statement, we have the character $\chi(k) = \left(\frac{D_K}{k}\right)$, which we must first show is nonprincipal. We know that the discriminant D_K , which is not a square, is either 0 or 1 (mod 4), and we split this into two cases. First, suppose $D_K \equiv 1 \pmod{4}$. Then write $D_K = p^a r$ where (p, r) = 1 and p, a, r are all odd. Pick a quadratic nonresidue smodulo p and solve $x \equiv s \pmod{p}$, $x \equiv 1 \pmod{|r|}$, respectively. Then we evaluate $\left(\frac{D_K}{x}\right) = \left(\frac{x}{|D_K|}\right) = \left(\frac{x}{p}\right)^a \left(\frac{x}{|r|}\right) = \left(\frac{s}{p}\right)^a = (-1)^a = -1$, so the character is nonprincipal. Second, suppose $D_K = 4^a b$ with b odd. The $b \equiv 3 \pmod{4}$ case falls to similar analysis with the system $x \equiv 3 \pmod{4}$, $x \equiv 1 \pmod{|b|}$, and x > 0. The remaining $b \equiv 1 \pmod{4}$ case requires only slightly more work; let $b = p^c q$ with p, c, q all odd and (p, q) = 1, choose a nonresidue s modulo p, and solve $x \equiv s \pmod{p}$, $x \equiv 1 \pmod{|q|}$, and $x \equiv 1 \pmod{2}$. This analysis shows that in all cases we may find x with $\left(\frac{D_K}{x}\right) = -1$.

Now we may use the Euler product and write:

$$\zeta_K(s) = \prod_{\mathfrak{p}} \frac{1}{1 - N(\mathfrak{p}^{-s})} = \prod_p \prod_{\mathfrak{p}|p} \frac{1}{1 - N(\mathfrak{p})^{-s}}$$

since each prime ideal \mathfrak{p} divides some rational prime ideal. If $\left(\frac{D_K}{p}\right) = 1$, then $(p) = \mathfrak{p}\mathfrak{q}$ splits, with $N(\mathfrak{p}) = N(\mathfrak{q}) = p$, so

$$\prod_{\mathfrak{p}|p} \frac{1}{1 - N(\mathfrak{p})^{-s}} = \frac{1}{1 - N(\mathfrak{p})^{-s}} \frac{1}{1 - N(\mathfrak{q})^{-s}} = \frac{1}{1 - p^{-s}} \frac{1}{1 - \left(\frac{D_K}{p}\right) p^{-s}}.$$

If instead $\left(\frac{D_K}{p}\right) = -1$, then (p) is prime with $N(p) = p^2$, so $\prod_{\mathfrak{p}|p} \frac{1}{1 - N(\mathfrak{p})^{-s}} = \frac{1}{1 - p^{-2s}} = \frac{1}{1 - p^{-s}} \frac{1}{1 - \left(\frac{D_K}{p}\right) p^{-s}}.$ Last, if $\left(\frac{D_K}{p}\right) = 0$, then $(p) = \mathfrak{p}^2$ with $N(\mathfrak{p}) = p$, and we get the same result as before for the product. Thus, by collapsing Euler products, we have the desired result:

$$\zeta_K(s) = \prod_p \left(1 - p^{-s}\right)^{-1} \prod_p \left(1 - \left(\frac{D_K}{p}\right) p^{-s}\right)^{-1} = \zeta(s) L(s, \chi).$$

Since $L(s, \chi)$ is nonprincipal, it does not have a pole at s = 1. Thus $\lim_{s \to 1} (s-1)\zeta_K(s) = \lim_{s \to 1} (s-1)\zeta(s)L(s, \chi) = \operatorname{Res}_{s=1}\zeta(s) \cdot L(1, \chi) = L(1, \chi)$ by Theorem 1. So we now have:

Theorem 9. Let *m* be a square-free integer which is neither -1 nor -3, and let $K = \mathbb{Q}(\sqrt{m})$. Then \mathcal{O}_K contains exactly two units, and so:

$$h = \begin{cases} \frac{\sqrt{D_K}}{2\log|\varepsilon|} L(1,\chi) & \text{if } m > 0\\ \frac{\sqrt{|D_K|}}{\pi} L(1,\chi) & \text{if } m < 0. \end{cases}$$

$$\tag{8}$$

There are many ways to reduce $L(1,\chi)$ to a finite sum; for example, Theorem 3.3 of §3 of [Ayo63] shows that for imaginary quadratic fields, $h = \frac{-1}{D_K} \sum_{r=1}^{|D_K|-1} r\left(\frac{D_K}{r}\right)$, and for real quadratic fields, $h = \frac{-1}{2\log|\varepsilon|} \sum_{r=1}^{D_K-1} \left(\frac{D_K}{r}\right) \log \sin \frac{\pi r}{D_K}$. We will conclude, though, with three examples where the L-series can be evaluated directly.

First, take $K = \mathbb{Q}(i)$. We must remember that this was one of our special cases ($\omega = 4$ instead of $\omega_K = 2$), so we actually have $h = \frac{\omega_K \sqrt{|D_K|}}{2\pi} L(1,\chi) = \frac{4\cdot 2}{2\pi} L(1,\chi) = \frac{4}{\pi} L(1,\chi)$. The L-series here evaluates to $L(1,\chi) = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots$, which we may recognize as Gregory's formula for $\arctan 1 = \frac{\pi}{4}$. Therefore we see that h = 1.

Second, take $K = \mathbb{Q}(\sqrt{5})$, with $D_K = 5$. Our formula produces $h = \frac{\sqrt{5}}{2\log \frac{1+\sqrt{5}}{2}}L(1,\chi)$; we then use generating function techniques to compute:

$$L(1,\chi) = \sum_{r=0}^{\infty} \left(\frac{1}{5r+1} - \frac{1}{5r+2} - \frac{1}{5r+3} + \frac{1}{5r+4} \right)$$

= $\int_{0}^{1} (1 - x - x^{2} + x^{3})(1 + x^{5} + x^{10} + x^{15} + \dots)dx$
= $\int_{0}^{1} \frac{1 - x - x^{2} + x^{3}}{1 - x^{5}} dx = 0.4304089410\dots$

from which we can evaluate h = 1. Note that this also suggests a more general way to compute h with finitely many terms for a quadratic field; the integral may even be approximated with any of a variety of fast approximation algorithms, since it should typically be obvious which is the expected integer value of h.

Third, the smallest such discriminant associated with a quadratic field with nontrivial class group is $D_K = -15$ for $K = \mathbb{Q}(\sqrt{-15})$. In this case, $h = \frac{\sqrt{15}}{\pi}L(1,\chi)$, and we compute

as before:

$$\begin{split} L(1,\chi) &= \sum_{r=0}^{\infty} \left(\frac{1}{15r+1} + \frac{1}{15r+2} + \frac{1}{15r+4} - \frac{1}{15r+7} + \frac{1}{15r+8} - \frac{1}{15r+11} - \frac{1}{15r+13} - \frac{1}{15r+14} \right) \\ &= \int_{0}^{1} \frac{1+x+x^{3}-x^{6}+x^{7}-x^{10}-x^{12}-x^{13}}{1-x^{15}} dx = 1.622311470 \dots \end{split}$$

from which we conclude correctly that h = 2. This can be verified using the extensive tables provided in [BS66].

References

[Ahl79]	L. V. Ahlfors, Complex Analysis, McGraw-Hill, Inc., 1979.
[Ayo63]	R. Ayoub, An Introduction to the Analytic Theory of Numbers, American Mathematical Society, 1963.
[BS66]	Z. I. Borevich and I. R. Shafarevich. <i>Number Theory</i> , translated by N. Greenleaf, Academic Press, Inc., 1966.
[Hil97]	D. Hilbert, Zahlbericht, 1897, translated by I. T. Adamson as The Theory of Algebraic Number Fields, Springer-Verlag Berlin Heidelberg, 1998.
[Jar03]	F. Jarvis, Zeta Functions of Number Fields I, http://www.sheffield.ac.uk/~pm1afj/courses/zeta/zeta_k1.ps.
[Lan70]	S. Lang, <i>Algebraic Number Theory</i> , Addison-Wesley Publishing Company, Inc., 1970.
[Ste05]	W. A. Stein, Introduction to Algebraic Number Theory, http://modular.fas.harvard.edu/129-05/notes/129.pdf.