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1 Introduction

In this paper we will use tools from analysis to provide an explicit formula for the class
number of a number field. We will then examine an approach to evaluating the formula in
the case of a quadratic field.

This paper assumes basic knowledge of number theory and only minimal complex analysis
(what it means for a function to be analytic, how to find residues, and what an L-series is,
including the zeta function). For an introduction to complex analysis, see for example
[Ahl79], and for an introduction to algebraic number theory, read [Ste05]. In particular, we
assume an understanding of the finiteness of the class group of a number field and concepts
related to its proof.

2 The Formula

Here we prove the class number formula, which puts the class number of a number field
in terms of its zeta function. The formula was originally proven in terms of the number
of binary quadratic forms with a given determinant by Dirichlet, and was later proven for
general number fields by Dedekind [Hil97].

2.1 Definitions

From this point on, K will be a number field of degree n = [K : Q] with ring of integers OK .
The class group of K will be denoted CK . The units contained in OK will form a group of
size ωK , and K will have discriminant DK . An ideal i ⊆ OK will have norm N(i), which will
be understood to be the K/Q norm.

Pick any number field K with S real embeddings σ1, . . . , σS and T = 1
2
(n − S) pairs of

complex embeddings τ1, τ1, . . . , τT , τT . Let O∗
K be the group of units of the ring of integers.

By Dirichlet’s Theorem, OK
∼= ZS+T−1 × Utor, where Utor is a finite torsion group of even

order, specifically the cyclic group of order ωK ; let ǫ1, ǫ2, . . . , ǫS+T−1 be generators of the free
abelian subgroup. We define the norm of an embedding to be ‖α‖i = |σi(α)| for 1 ≤ i ≤ S
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and ‖α‖S+j = |τj(α)|2 for 1 ≤ j ≤ T . We now construct the following (S + T )× (S + T − 1)
matrix:

A =











log ‖ǫ1‖1 log ‖ǫ2‖1 · · · log ‖ǫS+T−1‖1

log ‖ǫ1‖2 log ‖ǫ2‖2 · · · log ‖ǫS+T−1‖2
...

...
. . .

...
log ‖ǫ1‖S+T log ‖ǫ1‖S+T · · · log ‖ǫS+T−1‖S+T











Define Ai to be the (S +T −1)× (S +T −1) submatrix obtained by deleting the ith row
of A. Then the regulator of K, denoted RK , is given by | detAi|, which is independent of i.

We shall also define the space LS,T to be the set of points (x1, . . . , xS; xS+1, . . . , xS+T ),
where the first S coordinates are real and the remaining T are complex. This space has
dimension S +2T = n over R, since we have the basis vectors ej for 1 ≤ j ≤ S and the basis
vectors ej and iej for S + 1 ≤ j ≤ S + T ; as such, we shall at times treat it as a subspace
of Rn. With scalar multiplication as well as componentwise addition and multiplication of
points, this forms a commutative ring and a linear space. Last, we define a norm on LS,T as
N (x) = |x1 · · ·xS ||xS+1|2 · · · |xS+T |2. This now gives us an injection φ : K → LS,T defined
by φ(α) = (σ1(α), . . . , σS(α); τ1(α), . . . , τT (α)); it is easy to show that φ is a homomorphism,
and that N (φ(α)) = N(α).

For convenience, denote in general lk(x) = log |xk| for 1 ≤ k ≤ S and lS+k = log |xS+k|2
for 1 ≤ k ≤ T ; we may then define for x ∈ LS,T the vector l(x) = (l1(x), . . . , lS+T (x)).
The set of all points of LS,T with nonzero components form a group under componentwise
multiplication, and this mapping is a homomorphism onto the additive group of LS,T . If
α ∈ K then write l(α) = l(φ(α)); we note that the vectors l(ǫi) form the columns of A
above. This geometric representation l(α) is called the logarithmic representation of α, and
the sum of its components is equal to log |N(α)|.

2.2 The Zeta Function

Analytic number theory places heavy emphasis on the celebrated Riemann Zeta Function,
which is the analytic continuation of the power series ζ(s) =

∑∞
k=1

1
ks to the entire complex

plane except for the pole at s = 1. We define an analogue for number fields as:

ζK(s) =
∑

i

1

N(i)s
(1)

where i ranges over all distinct integral ideals in OK . Note that in the trivial case K = Q

each ideal is generated by a distinct positive integer, so ζQ(s) = ζ(s). Euler also factored ζ
into a product over all primes p ∈ Z; here we have the analogous Euler product:

ζK(s) =
∏

p

1

1 − N(p)−s
(2)
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where now p ranges over all prime ideals of OK . The proof of this equation is exactly the
same as the standard proof for ζQ because of the unique factorization of ideals in OK .

Yet another analogy with ζQ is the convergence of the series. For ζQ we have the following.

Theorem 1. ζ(s) converges on {s ∈ C : Re(s) > 1}, and Ress=1ζ(s) = lims→1(s−1)ζ(s) = 1.

Proof. Let s = a + ib, with a, b ∈ R and a > 1. Then
∣

∣

1
ks

∣

∣ =
∣

∣

1
kakib

∣

∣ = 1
ka

∣

∣e−ib log k
∣

∣ = 1
ka . So

|ζ(s)| =

∣

∣

∣

∣

∣

∞
∑

k=1

1

ks

∣

∣

∣

∣

∣

≤
∞
∑

k=1

∣

∣

∣

∣

1

ks

∣

∣

∣

∣

=
∞
∑

k=1

1

ka
= ζ(a).

It therefore suffices to consider only real s > 1. Since 1
ks monotonically decreases as a

function of k when k is positive, we have

1

(k + 1)s
<

∫ k+1

k

1

xs
dx <

1

ks
;

summing over all k gives ζ(s) − 1 <
∫∞
1

dx
xs < ζ(s), or ζ(s) − 1 < 1

s−1
< ζ(s). Reducing this

gives 1
s−1

< ζ(s) < 1
s−1

+ 1, from which the theorem follows.

Further details about ζ(s), such as its analytic continuation, are left to any standard text
on analytic number theory.

The main focus of this paper is on the analogous result for an arbitrary ζK . This key
theorem followed from the work of Dirichlet and Dedekind.

Theorem 2. ζK(s) converges for all s ∈ C satisfying Re(s) > 1, and at s = 1 it has residue
given by

lim
s→1

(s − 1)ζK(s) =
2S(2π)TRK

ωK |DK |1/2
h,

where h = |CK | is the class number of K.

We will prove this following [BS66] and [Jar03], by splitting the sum as

ζK(s) =
∑

A∈CK

(

∑

i∈A

1

N(i)s

)

;

call the parenthesized sum fA(s). We will evaluate each lims→1(s − 1)fA(s) separately.
Choose a ∈ A−1, so that for all i ∈ A, ai is principal. Then multiplication by a gives a

bijection between integral ideals in A and principal ideals divisible by a. Thus

fA(s) = N(a)s
∑

(α):a|(α)

1

|N(α)|s . (3)

Let A be a set of such α, where from each possible set of associate values we pick exactly
one. Define Γ = φ(a) = {x ∈ LS,T : x = φ(b) for some b ∈ a}, and similarly define
Θ = {x ∈ LS,T : x = φ(b) for some b ∈ A}. Then

fA(s) = N(a)s
∑

α∈Θ

1

|N(α)|s . (4)

We now must evaluate this sum, and we will do so geometrically.
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2.3 Geometry of Number Fields

Lemma 3. Let X be a cone in Rn and define a function F : X → R>0 such that x ∈ X
and ξ ∈ R>0 implies F (ξx) = ξnF (x), and F = {x ∈ X : F (x) ≤ 1} is bounded with
v = vol(F) > 0. Also, let Γ ⊆ Rn be a lattice with volume ∆ = vol(Γ), which we take to
mean the volume of the parallelepiped formed by basis vectors of Γ. Then

ζF,Γ(s) =
∑

x∈Γ∩X

1

F (x)s

converges on Re(s) > 1 and has lims→1(s − 1)ζF,Γ(s) = v
∆
.

Proof. For any positive real number r, we know vol(1
r
Γ) = ∆

rn . Thus v = vol(F) =

limr→∞
(

∆
rn · #{1

r
Γ ∩ F}

)

= ∆ limr→∞
#{ 1

r
Γ∩F}
rn . But by the requirements on F , this nu-

merator is also the number of points in {x ∈ Γ∩X : F (x) ≤ rn}. Label the points of Γ∪X
so that 0 ≤ F (x1) ≤ F (x2) ≤ . . . and define rk = F (xk)

1/n. If we define γ(r) = #{1
r
Γ ∩ F},

then by this choice of label we have that for ε > 0, γ(rk − ε) < k ≤ γ(rk). Dividing by rn
k

gives γ(rk−ε)
(rk−ε)n

(

rk−ε
rk

)n

< k
rn
k
≤ γ(rk)

rn
k

. Since rn
k = F (xk), taking the limit yields limk→∞

k
rn
k

= v
∆

.

Convergence of ζF,Γ is a simple exercise akin to the proof of Theorem 1. We may rewrite
the function, though, as

ζF,Γ(s) =

∞
∑

k=1

1

F (xk)s
. (5)

Now given ε > 0, by the above inequality there exists k0 such that k ≥ k0 implies

( v

∆
− ε
)s 1

ks
<

1

F (xk)s
<
( v

∆
+ ε
)s 1

ks
.

Summing over all k ≥ k0, we multiply by (s − 1) and let s approach 1 on the right to get

( v

∆
− ε
)

Ress=1ζ(s) ≤ lim
s→1

(s − 1)ζF,Γ(s) ≤
( v

∆
+ ε
)

Ress=1ζ(s)

and the desired result follows.

We may now pick a suitable choice of F and X. Pick ǫ1, . . . , ǫS+T−1 to be fundamental
units; i.e., as in the definition of the regulator of K. Define λ = (1, . . . , 1; 2, . . . , 2). Then
{λ, φ(ε1), . . . , φ(εS+T−1)} is a basis for RS+T (see [Ste05], §9), and we may write for x ∈ LS,T :

l(x) = cλ + c1φ(ε1) + . . . + cS+T−1φ(εS+T−1)

where c = 1
n

log |N(x)|. Define X to be the cone consisting of all x such that:

1. N(x) 6= 0.

2. The coefficients ci satisfy 0 ≤ ci < 1 for all i.
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3. 0 ≤ arg(x1) < 2π
ωK

, where x1 is the first component of x.

This is a cone because l(cx) = (log c)λ + l(x), preserving the coefficients of the φ(εi) terms,
and arg(cx1) = arg(x1).

Lemma 4. Let η(α) ⊆ OK be the set of all elements in OK which are associates of α
(including α itself). Then exactly one member of η(α) has image in X.

Proof. To show this, we will show that given y ∈ Rn with nonzero norm, y can be written
uniquely as x · φ(ε), where x ∈ X (multiplication is componentwise) and ε is a unit. Write
l(y) = cλ+ c1φ(ε1)+ . . .+ cS+T−1φ(εS+T−1). Split each ci as ci = mi +µi, where mi ∈ Z and
0 ≤ µi < 1, and write u = εm1

1 · · · εmS+T−1

S+T−1 . Then define z = y ·φ(u−1), which has coefficients
of each φ(εi) in the correct range. Now we can correct arg(z1); let r be the unique integer

such that 0 ≤ arg(z1) − 2πr
ωk

< 2π
ωk

, and choose a root of unity w such that σ1(w) = e
2πi
ωK .

Then z · φ(w−r) = y · φ(u−1)φ(w−r) ∈ X, so we conclude that if this value is called x, then
y = x · φ(uwr) as desired, and clearly this construction must be unique.

We now use the result of Lemma 4 to rewrite (4) as:

fA(s) = N(a)s
∑

x∈Γ∩X

1

N(x)s
(6)

which we may evaluate as in Lemma 3. We thus need v = vol({x ∈ X : N(x) ≤ 1}) and
∆ = vol(Γ). Recall that here Γ = φ(a) = {x ∈ LS,T : x = φ(b) for some b ∈ a}.
Lemma 5. ∆ = N(a)|DK |1/2.

Proof. Let a be generated additively by α1, . . . , αn, so that Γ is generated by φ(α1), . . . , φ(αn).
Let B be the matrix with entries (ρiαj), where ρi varies over all embeddings (real and com-
plex) of K. Then Disc(a) = det(B)2 = N(a)2DK . Also, let C be the matrix consisting of
inner products (〈φ(αi), φ(αj)〉) = (

∑n
k=1 τk(αi)τk(αj)) = BT B. Thus | det C|1/2 = | detB|,

and since vol(Γ) = | det C|1/2 = Disc(a)1/2, we have vol(Γ) = N(a)|DK |1/2.

Lemma 6. v = 2S+T πT RK

ωK
.

Proof. Let F be this set whose volume we wish to compute. Define Fk for 0 ≤ k < ωK by

applying the map x 7→ e
2πk
ωK x to F ; since multiplication by a unit is volume-preserving,

we have vol(F) = vol(Fk). Define F to be the intersection of ∪ωK
k=0Fk with the sub-

set {(x1, . . . , xS; xS+1, . . . , xS+T ) : x1 > 0, . . . , xS > 0}. Multiplying any point in F by

(±1, . . . ,±1; 1, . . . , 1) shows that vol(F) = 2S

ωK
vol(F), and so we will compute vol(F) through

multiple changes of variable.
First, we change from the (S + T )-dimensional complex space LS,T to Rn via the trans-

formation which maps a point (x1, . . . , xS; xS+1, . . . , xS+T ) ∈ F to the real-valued point
(ρ1, . . . , ρS, ρS+1, ϕS+1, . . . , ρS+T , ϕS+T ), where ρj = |xj | and ϕj = arg xj for all j (we say
xj = yj + izj = ρje

iϕj ). A straightforward computation shows the Jacobian of this trans-
formation to be ρS+1 · · ·ρS+T . Then F is given by the conditions ρ1 > 0, . . . , ρS+T > 0;
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∏S+T
j=1 ρ

ej

j ≤ 1, where ej is the jth coordinate of λ = (1, . . . , 1; 2, . . . , 2); and 0 ≤ ξk < 1 in
the formula for each jth coordinate of l(x):

log ρ
ej

j =
ej

n
log

(

S+T
∏

k=1

ρek
k

)

+

S+T−1
∑

k=1

ξklj(εk).

These conditions do not restrict ϕj for any value S + 1 ≤ j ≤ S + T , so they take on all
values in [0, 2π). We now change variables again, replacing ρ1, . . . , ρS+T with ξ, ξ1, . . . , ξS+T−1

according to

log ρ
ej

j =
ej

n
log ξ +

S+T−1
∑

k=1

ξklj(εk) (7)

Since the sum of the ej is n, and
∑S+T

j=1 lj(εk) = 0, we sum all the equations (7) and find

ξ =
∏S+T

j=1 ρ
ej

j . Thus F is now defined by the conditions 0 < ξ ≤ 1 and 0 ≤ ξk < 1 for
1 ≤ k ≤ S + T ; clearly this set has positive volume now. This transformation has Jacobian

J =

∣

∣

∣

∣

∣

∣

∣

ρ1

nξ
ρ1

e1
l1(ε1) · · · ρ1

e1
l1(εS+T−1)

...
...

. . .
...

ρST

nξ
ρS+T

eS+T
lS+T (ε1) · · · ρS+T

eS+T
lS+T (εS+T−1)

∣

∣

∣

∣

∣

∣

∣

=
ρ1 · · · ρS+T

nξ2T

∣

∣

∣

∣

∣

∣

∣

e1 l1(ε1) · · · l1(εS+T−1)
...

...
. . .

...
eS+T lS+T (ε1) · · · lS+T (εS+T−1)

∣

∣

∣

∣

∣

∣

∣

=
ρ1 · · · ρS+T

nξ2T

∣

∣

∣

∣

∣

∣

∣

∣

∣

n 0 · · · 0
e2 l2(ε1) · · · l2(εS+T−1)
...

...
. . .

...
eS+T lS+T (ε1) · · · lS+T (εS+T−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

This determinant is now exactly nRK , so J = ρ1···ρS+T

n(ρ1···ρSρ2
S+1

···ρ2
S+T )2T · nRK = RK

2T ρS+1···ρS+T
. We

can now compute the volume of F :

vol(F) = 2T

∫

· · ·
∫

F
dx1 · · · dxSdyS+1dzS+1 · · · dyS+TdzS+T

= 2T

∫

· · ·
∫

F
ρS+1 · · ·ρS+T · dρ1 · · · dρS+T dϕS+1 · · · dϕS+T

= 2T (2π)T

∫ 1

0

· · ·
∫ 1

0

ρS+1 · · · ρS+T |J |dξdξ1 · · · ξS+T−1

= 2T (2π)T RK

2T
= 2T πT RK .

Thus vol(F) = 2S

ωK
vol(F) = 2S+T πT RK

ωK
as desired.
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At last, we have our goal.

Proof of Theorem 2. Combining (6), Lemma 3, Lemma 5, and Lemma 6, we have that

lims→1(s − 1)fA(s) = N(a) 2S+T πT RK

ωKN(a)|DK |1/2 = 2S+T πT RK

ωK |DK |1/2 . Summing over each class A ∈ CK

gives lims→1(s − 1)ζK(s) = 2S+T πT RK

ωK |DK |1/2 h.

3 Applications

The most immediate (but unnecessary) application of the class number formula is for K = Q.
Here ζQ(s) has residue 1 at s = 1 and values S = 1, T = 0, RK = 1, ωK = 2 (corresponding
to -1 and 1), and DK = 1, from which we compute h = 1. This agrees with our knowledge
that Z is a principal ideal domain. We will now explore a less trivial application of this
formula.

We can use (2) to write the class number formula in terms of a Dirichlet L-series. Assume
m ∈ Z is square-free, and let K = Q(

√
m) be a quadratic number field with discriminant

DK . If m = −1 then ωK = 4, and we know Q(i) to be a principal ideal domain (i.e., hK = 1).
If m = −3 then ωK = 6, and we also know this to have hK = 1. Otherwise, it can be shown
easily that if K/Q is a quadratic extension, then ωK = 2, with ±1 the only units in OK , so
assume that K is not one of those two special cases. It can also be shown that DK = m if
m ≡ 1 (mod 4) and DK = 4m otherwise.

First, suppose m > 0. Then S = 2 and T = 0, so we have lims→1(s − 1)ζK(s) = 4hRK

2
√

DK
=

2hRK√
DK

. By Dirichlet’s theorem on units there is a unique (up to inversion) fundamental unit

ε, and then RK = log |ε|. Thus h =
√

DK

2 log |ε| lims→1(s − 1)ζK(s).

Second, suppose m < 0, so that S = 0 and T = 1. Then instead the residue of ζK(s) at
s = 1 is πRKh√

−DK
. Here, though, the entire group of units has rank S + T − 1 = 0 and so the

regulator is the trivial determinant; that is, RK = 1. So h =

√
|DK |
π

lims→1(s − 1)ζK(s). We
now wish to evaluate the limit factor, for which we need a lemma about Kronecker symbols.

Lemma 7. If
(

DK

p

)

= 1, then (p) decomposes into a product of two distinct prime ideal

factors. If
(

DK

p

)

= −1, then (p) remains prime. Otherwise, if
(

DK

p

)

= 0, then (p) is the

square of a prime ideal.

Proof. We know that (p) has at most two prime factors. Suppose first that p does not divide

DK and that
(

DK

p

)

= 1; then x2 ≡ DK (mod 4p) has a solution, which we will call a. Let

r = a−DK

2
and define p = (p, r + DK+

√
DK

2
) and q = (p, r + DK−

√
DK

2
). Set w = a+

√
DK

2
,

which is the root of x2 − ax + tp for some t ∈ Z and so is an integer. However, w/p is not

an integer, since that would imply w−w
p

is an integer, as is
(

w−w
p

)2

= DK

p2 , a contradiction.

Thus p divides neither w nor w, but it does divide ww = tp and so (p) is not prime. An

easy calculation verifies that pq = (p)(p, r + DK+
√

DK

2
, r + DK−

√
DK

2
, a2−DK

4p
) = (p), since the
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middle two generators in the right factor have difference
√

DK and so generate DK , which
is relatively prime to p, making that ideal equal to (1). We last check that p 6= q, subce

(p, q) = (p, r + DK+
√

DK

2
, r + DK−

√
DK

2
) again contains both p and DK and so is (1).

Now suppose that (p) = pq with p 6= q. Then N(p) = p, and 1, 2, . . . , p−1 are all distinct

modulo p, so for some r ∈ Z we have DK+
√

DK

2
≡ r (mod p), or (2r −DK)2 ≡ DK (mod 4p).

The same holds modulo 4q as well, and thus modulo 4p. But this implies that
(

DK

p

)

= 1,

so (p) decomposes into a product of distinct prime ideals if and only if
(

DK

p

)

= 1.

On the other hand, we consider the case p|DK with p odd. Set q = (p, DK+
√

DK

2
);

then q = (p, DK−
√

DK

2
) = (p, DK−

√
DK

2
− DK) = (p, DK+

√
DK

2
) = q. But we then compute

q2 = qq = (p)(p, DK+
√

DK

2
, DK+

√
DK

2
, DK(DK−1)

4p
) = (p). Last, if p = 2|DK , then we have two

remaining cases: if m ≡ 2 (mod 4), then (2) = (2,
√

m)2, and if m ≡ 3 (mod 4), then
(2) = (2, 1 +

√
m)2, and this completes the proof of the lemma.

Theorem 8. ζK(s) = ζ(s)L(s, χ), where L(s, χ) =
∑∞

k=1

(

DK

k

)

k−s.

Proof. In the above statement, we have the character χ(k) =
(

DK

k

)

, which we must first
show is nonprincipal. We know that the discriminant DK , which is not a square, is either
0 or 1 (mod 4), and we split this into two cases. First, suppose DK ≡ 1 (mod 4). Then
write DK = par where (p, r) = 1 and p, a, r are all odd. Pick a quadratic nonresidue s
modulo p and solve x ≡ s (mod p), x ≡ 1 (mod |r|), respectively. Then we evaluate
(

DK

x

)

=
(

x
|DK |

)

=
(

x
p

)a (
x
|r|

)

=
(

s
p

)a

= (−1)a = −1, so the character is nonprincipal.

Second, suppose DK = 4ab with b odd. The b ≡ 3 (mod 4) case falls to similar analysis
with the system x ≡ 3 (mod 4), x ≡ 1 (mod |b|), and x > 0. The remaining b ≡ 1 (mod 4)
case requires only slightly more work; let b = pcq with p, c, q all odd and (p, q) = 1, choose a
nonresidue s modulo p, and solve x ≡ s (mod p), x ≡ 1 (mod |q|), and x ≡ 1 (mod 2). This
analysis shows that in all cases we may find x with

(

DK

x

)

= −1.
Now we may use the Euler product and write:

ζK(s) =
∏

p

1

1 − N(p−s)
=
∏

p

∏

p|p

1

1 − N(p)−s

since each prime ideal p divides some rational prime ideal. If
(

DK

p

)

= 1, then (p) = pq

splits, with N(p) = N(q) = p, so

∏

p|p

1

1 − N(p)−s
=

1

1 − N(p)−s

1

1 − N(q)−s
=

1

1 − p−s

1

1 −
(

DK

p

)

p−s
.

If instead
(

DK

p

)

= −1, then (p) is prime with N(p) = p2, so

∏

p|p

1

1 − N(p)−s
=

1

1 − p−2s
=

1

1 − p−s

1

1 −
(

DK

p

)

p−s
.
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Last, if
(

DK

p

)

= 0, then (p) = p2 with N(p) = p, and we get the same result as before for

the product. Thus, by collapsing Euler products, we have the desired result:

ζK(s) =
∏

p

(

1 − p−s
)−1
∏

p

(

1 −
(

DK

p

)

p−s

)−1

= ζ(s)L(s, χ).

Since L(s, χ) is nonprincipal, it does not have a pole at s = 1. Thus lims→1(s−1)ζK(s) =
lims→1(s − 1)ζ(s)L(s, χ) = Ress=1ζ(s) · L(1, χ) = L(1, χ) by Theorem 1. So we now have:

Theorem 9. Let m be a square-free integer which is neither -1 nor -3, and let K = Q(
√

m).
Then OK contains exactly two units, and so:

h =

{
√

DK

2 log |ε|L(1, χ) if m > 0√
|DK |
π

L(1, χ) if m < 0.
(8)

There are many ways to reduce L(1, χ) to a finite sum; for example, Theorem 3.3 of §3
of [Ayo63] shows that for imaginary quadratic fields, h = −1

DK

∑|DK |−1
r=1 r

(

DK

r

)

, and for real

quadratic fields, h = −1
2 log |ε|

∑DK−1
r=1

(

DK

r

)

log sin πr
DK

. We will conclude, though, with three
examples where the L-series can be evaluated directly.

First, take K = Q(i). We must remember that this was one of our special cases (ω = 4

instead of ωK = 2), so we actually have h =
ωK

√
|DK |

2π
L(1, χ) = 4·2

2π
L(1, χ) = 4

π
L(1, χ). The

L-series here evaluates to L(1, χ) = 1
1
− 1

3
+ 1

5
− 1

7
+ . . ., which we may recognize as Gregory’s

formula for arctan 1 = π
4
. Therefore we see that h = 1.

Second, take K = Q(
√

5), with DK = 5. Our formula produces h =
√

5

2 log 1+
√

5

2

L(1, χ); we

then use generating function techniques to compute:

L(1, χ) =

∞
∑

r=0

(

1

5r + 1
− 1

5r + 2
− 1

5r + 3
+

1

5r + 4

)

=

∫ 1

0

(1 − x − x2 + x3)(1 + x5 + x10 + x15 + . . .)dx

=

∫ 1

0

1 − x − x2 + x3

1 − x5
dx = 0.4304089410 . . .

from which we can evaluate h = 1. Note that this also suggests a more general way to com-
pute h with finitely many terms for a quadratic field; the integral may even be approximated
with any of a variety of fast approximation algorithms, since it should typically be obvious
which is the expected integer value of h.

Third, the smallest such discriminant associated with a quadratic field with nontrivial

class group is DK = −15 for K = Q(
√
−15). In this case, h =

√
15
π

L(1, χ), and we compute
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as before:

L(1, χ) =

∞
∑

r=0

(

1

15r + 1
+

1

15r + 2
+

1

15r + 4
− 1

15r + 7
+

1

15r + 8
− 1

15r + 11
− 1

15r + 13
− 1

15r + 14

)

=

∫

1

0

1 + x + x3 − x6 + x7 − x10 − x12 − x13

1 − x15
dx = 1.622311470 . . .

from which we conclude correctly that h = 2. This can be verified using the extensive tables
provided in [BS66].
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